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Summary

Erosion and physical and biological sediment parameters measurements were carried out

at an intertidal flat in the East Frisian Wadden Sea, Germany, to examine the small-scale

(meter) and large-scale (hundred of meters) spatial and temporal variation of sediment

erodibility, and to identify the main processes that cause these variations. The erodibility

was determined by means of lab and portable (in situ) EROMES erosion devices and quan-

tified in terms of critical erosion shear stresses and erosion rates. The study showed that the

small and large-scale variations of sediment erodibility were mainly governed by biological

factors, especially microphytobenthos (dominated by benthic diatoms) and the presence of

vagile worms. A strong spatial and temporal pattern of erodibility was observed. The sedi-

ments were more stable (i.e. higher critical erosion shear stresses and lower erosion rates)

close to the salt marsh and and in middle tidal flat between mussel beds. By contrast,

sediments were less stable at the site dominated by mud snail Hydrobia ulvae (station B)

and this was probably due to surface tracking, pelletization of the bed material and grazing

activities on benthic diatoms of the mud snails. The sediments were more stable in

September 2002 compared to other sampling periods, and this attributed to be the results

of bio-stabilization by benthic diatoms. By contrast, during June and October 2001 the

sediments were easily eroded due to lower levels of bio-stabilising benthic diatoms.  

Die räumlichen und zeitlichen Muster der Erodierbarkeit auf einem Wattrücken des
Ostfriesischen Wattenmeers, Deutschland

Zusammenfassung

Die zeitliche und räumliche Variabilität der Erodierbarkeit von Sedimentoberflächen wurde

auf einem Rückseitenwatt des ostfriesischen Wattenmeeres auf Skalen von Metern bis

zu mehreren Hunderten von Metern untersucht. Zugleich wurden diejenigen Prozesse, die

für die beobachteten Variabilitäten verantwortlich sind, identifiziert. Ziel war die Schaffung

von Grundlagen zur großskaligen und flächendeckenden Abschätzung von Erosions-



parametern. Dazu wurden Erosionsmessungen durchgeführt sowie physikalische und

biologische Sedimentparameter erfaßt. Die Erodierbarkeit wurde mit Hilfe von EROMES-

Erosionsmessgeräten ermittelt, von denen sowohl die Laborversion als auch die

in-situ-Variante eingesetzt wurde. Als Erosionsparameter wurden die kritische Schub-

spannung und die Erosionsrate bestimmt. Die Studie ergab, dass klein- und großskalige

Variationen der Erodierbarkeit primär durch biologische Faktoren kontrolliert werden,

insbesondere durch die Dichte benthischer Mikroalgen (Diatomeen) und die Dichte röhren-

bauender Würmer. Die Erodierbarkeit wies signifikante räumliche und zeitliche Strukturen

auf. Hohe Werte der kritischen Schubspannung und geringe Erosionsraten wurden auf der

am Rand von Salzwiesen gelegenen Station weiter draußen zwischen Miesmuschelbänken

beobachtet. Hier war das Sediment besonders stabil. Im Gegensatz dazu war das

Sediment am wenigsten stabil in den Bereichen, die von der Wattschnecke Hydrobia ulvae

dominiert wurden. Ursachen dafür sind vermutlich die Kriechspuren der Schnecke, deren

Ausscheidungen und der Wegfraß der stabilisierenden benthischen Diatomeen. Als Folge

der Bedeckung durch benthische Diatomeen war die Sedimentstabilität im September 2002

besonders hoch, während sie im Juni und Oktober 2001 auf Grund geringer Konzentrationen

an Diatomeen wesentlich kleiner war.
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Abstract

Erosion and physical and biological sediment parameters measurements were carried
out at an intertidal flat in the East Frisian Wadden Sea, Germany to examine the small-scale
(a meter) and large-scale (hundred of meters) spatial and temporal variation of sediment
erodibility, and to identify the main processes that cause these variations. Six stations along
a cross-shore transect of 1.5 km length from immediately below the salt marsh to the
middle of the tidal flat were visited during several field campaigns in 2001 and 2002. These
stations differ in their sediment types, tidal emersion periods and benthic macrofauna
assemblages. The erodibility was determined by means of Lab and portable (in situ)
EROMES erosion devices and quantified in terms of critical erosion shear stress and erosion
rate.

The study showed that the small and large-scale variations of sediment erodibility
were mainly governed by biological factors, especially microphytobenthos (dominated by
benthic diatoms). A strong spatial and temporal pattern of erodibility was observed. The
sediments were more stable (i.e. higher critical erosion shearstresses and lower erosion
rates) at station A (close to the salt marsh) and station F (middle tidal flat). The high stability
at station A was attributed to be the results of physical process of drying and biostabilization
by tube building worms. The high stability at station F was attributed mainly to be the results
of biostabilization by benthic diatoms. By contrast, sediments were less stable at the site
dominated by mud snail Hydrobia ulvae (station B) and this was probably due to surface
tracking, pelletization of the bed material and grazing activities on benthic diatoms of
the mud snails. The sediments were more stable in September 2002 compared to other
sampling periods, and this attributed to be the results of biostabilization by benthic diatoms.
By contrast, during June and October 2001 the sediments were easilyeroded due to lower
level of bio-stabilization.

The results from study of erosion potential over bedforms showed that crests of
the bedforms are generally more stable than troughs. In general, crests contained more
chlorophyll-a, colloidal carbohydrate and EPS than troughs. The normalized water content
and wet bulk density of the crests were not significantly different from those of the troughs
except at the most landward station where crests had significantly lower normalized water
content and higher wet bulk density than troughs. Two different processes were identified for
the difference in erodibility between crests and troughs in this study: (1) At seawards stations
(B–F), the higher benthic diatom biomass on the crests increases the amount of EPS, which
is likely to stabilize the sediment surface of these features. (2) At most landward station (A),
where benthic diatom biomass was low, physical processes (drying, compaction) are
more important for sediment stability on the crests.

The measured critical erosion shear stresses fall above the abiotic non-cohesive sedi-
ment values, giving a biostabilization index of 4.2 to 11.6. Differences in critical erosion
shear stress between natural and abiotic non-cohesive sediments are likely caused by the
effect of biostabilization and by cohesive behaviour of naturalsediments.



Kurzfassung

Auf einer Wattfläche im ostfriesischen Wattenmeer wurde die zeitliche und räumliche
Variabilität der Erodierbarkeit des Sediments kleinskalig im Bereich von Metern bis
zu mehreren Hunderten von Metern (großskalig) untersucht. Dazu und um diejenigen
Prozesse zu identifizieren, die für die Variabilität verantwortlich sind, wurden Erosionsmes-
sungen durchgeführt sowie physikalische und biologische Sedimentparameter erfasst.
Entlang einem ca. 1,5 km langen Schnitt, der sich von den Salzwiesen bis etwa zur Mitte der
Wattfläche erstreckt, wurden im Rahmen mehrerer Messkampagnen in den Jahren 2001
und 2002 sechs Messstationen wiederholt beprobt. Diese Stationen weisen Unterschiede
auf hinsichtlich des Sedimenttyps, der Gezeiten bedingten Trockenfall-Periode und des
Bewuchses mit benthischer Makrofauna. Die Erodierbarkeit wurde mit Hilfe von EROMES-
Erosionsmessgeräten ermittelt, von denen sowohl die Laborversion als auch die in-situ-
Variante eingesetzt wurde. Als Parameter wurden die kritische Schubspannung und die
Erosionsrate bestimmt.

Diese Studie zeigt, dass klein- und großskalige Variationen der Erodierbarkeit primär
durch biologische Faktoren kontrolliert wurden, insbesondere durch das benthische Mikro-
algen und hier vor allem durch benthische Diatomeen. Die Erodierbarkeit wies signifikante
räumliche und zeitliche Strukturen auf. Hohe Werte der kritischen Schubspannung und
geringe Erosionsraten wurden auf der in der Nähe der Salzwiesen gelegenen Station A und
auf Station F in der Mitte der untersuchten Wattfläche beobachtet, d.h. hier war das Sedi-
ment war besonders stabil. Verantwortlich für die geringe Erodierbarkeit auf Station A war
die Austrocknung des Sediments und die Biostabilisierung durch Röhren bildende Würmer.
Auf Station F hingegen wurde Biostabilisierung durch benthische Diatomeen als ausschlag-
gebender Prozess identifiziert. Im Gegensatz dazu war das Sediment weniger stabil auf
Stationen, die von der Wattschnecke Hydrobia ulvae dominiert wurden. Ursächlich dafür
waren vermutlich die Kriechspuren der Schnecke, deren Ausscheidungen und der Wegfraß
benthischer Diatomeen. Als Folge der Biostabilisierung durch benthische Diatomeen war
die Sedimentstabilität im September 2002 besonders hoch, während im Juni und Oktober
2001 die Erodierbarkeit unter dem Einfluss geringerer Biostabilisierung wesentlich größere
Werte aufwies.

Untersuchungen des Erosions-Potenzials in Abhängigkeit von der Morphologie haben
gezeigt, dass höher gelegene Wattflächen (Kämme) stabiler als Rinnen waren. In vielen
Fällen war auf den Kämmen der Gehalt an Chlorophyll-a, kolloidalen Kohlenhydraten und
EPS höher als in den Rinnen. Im Gegensatz dazu waren die Unterschiede zwischen Käm-
men und Rinnen hinsichtlich des normalisierten Wassergehalts und der Nassdichte nicht
signifikant, mit Ausnahme der am weitesten landwärtig gelegenen Station, wo auf den
Kämmen wesentlich geringere Werte des normalisierten Wassergehalts und höhere Nass-
dichten beeobachtet wurden. Als Ursache für die unterschiedliche Erodierbarkeit von
Kämmen und Rinnen wurden zwei Prozesse identifiziert:  Auf den seewärtigen Stationen
B– F führt die größere Biomasse benthischer Diatomeen auf den Kämmen zu einer Erhö-
hung des EPS-Gehalts, wodurch die Oberfläche des Sediments stabilisiert wird. Auf der
landnächsten Station A hingegen, mit der geringeren Biomasse benthischer Diatomeen,
sind physikalische Prozesse wie Austrocknung und Kompaktierung auschlaggebend.

Die gemessenen Werte der kritischen Schubspannung liegen über den Werten
des nichtkohäsiven Sediments und ergeben einen Biostabilisierungs-Index zwischen
4,2 und 11,6. Biostabilisierung und das kohäsive Verhalten natürlicher Sedimente sind
wahrscheinliche Ursachen für Unterschiede der Schubspannungen bei natürlichen und
nicht-kohäsiven Sedimenten.
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1. Problem definition 

In estuarine and coastal wetlands, sediment beds are formed under 

different hydrodynamic conditions, which results in mixtures or alternation of 

sand and mud, commonly expressed as cohesive sediments. The transports 

of the sediments are significantly influenced by interacting physical, chemical, 

and biological processes and cannot be parameterized by basic principles yet. 

Hence, quantitative predictions of coastal sediment transports have limited 

accuracy despite the ecological and economical importance of this issue in 

relation to various aspects of coastal zone management, such as shoreline 

protection, habitat stability, pollutant transport, aquaculture and coastal 

engineering.  This is in contrast to the transport behaviour of non-cohesive 

coarse sediment  (sand) that has been studied intensively in the past and 

much theoretical and empirical information has already become available 

concerning erosion and deposition of non-cohesive coarser sediments. 

There are four key processes that govern fine-grained cohesive sediment 

transport in estuarine and coastal waters. These processes are erosion, 

transport, deposition, and consolidation. Erosion is the removal of sediment 

from the surface of the bed due to the stress of the moving water above the 

bed. Transport is the movement of the suspended mud and high concen-

tration layers on or near the bed by the flow. Deposition involves the settling 

through the water column and on the bed of flocculated sediment. 

Consolidation of a deposit is the gradual expulsion of interstitial water by the 

self-weight of the sediment accompanied by an increase in both the density of 

the bed and its strength with time (Whitehouse et al. 2000a). A number of 

laboratory and field studies have been carried out to obtain a better 

understanding of each process. In the present study, only one of the key 

processes is addressed. The study focuses on the erosion process of 

intertidal flat sediment.  

Erosive forces of bed material are generated by the action of tidal and wind 

driven currents and waves acting at different spatial and temporal scales.  
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Biological processes are also important in determining the erosion response 

of an intertidal flat.  Flora and fauna inhabiting intertidal flats mediate sediment 

transport by either stabilizing or destabilizing the sediment surface (e.g. 

Paterson 1997). Erosion of sediment occurs whenever the shear stress 

exerted on the bed by waves or currents exceeds a threshold value, known as 

the critical erosion shear stress. The critical erosion shear stress or erosion 

threshold is one measure to quantify sediment surface erodibility, 

parameterizing the stability of the most upper sediment surface layer. As a 

second parameter the erosion rate is commonly used (Amos et al., 1992), 

which is defined as the amount of material eroded per time and area for a 

given bed shear stress. It describes the stability of surface sediments below 

the upper layer. 

Erodibility is the term used here to describe the susceptibility of a surface 

sediment to erosion through interfacial fluid shear. Thus, a high erodibility 

corresponds to a less stable sediment with a lower critical erosion shear 

stress and greater erosion rate. It has been shown that a number of physical 

factors such as sediment grain-size, bulk density, water content, air exposure, 

rainfall and consolidation affect the erodibility of intertidal flat sediments 

(Anderson and Howell 1984, Amos et al. 1988, Paterson et al. 1990, Paterson 

et al. 2000, Williamson and Ockenden 1996).   

Various studies have also shown that the erodibility can be substantially 

modified by biological factors such as biostabilization by microphytobenthos 

(Paterson 1989, Sutherland et al. 1998,  Austen et al. 1999, Riethmüller et al. 

2000) and biostabilization or destabilization by various benthic macrofauna 

species (Jumars and Nowel 1984, Blanchard et al. 1997, Widdows et al. 

1998c, Andersen et al.  2002, Widdows and Brinsley 2002).  Benthic diatoms 

have been considered as one of the major organisms groups contributing to 

stabilization.  The stabilization occurs mainly through secretion of extracellular 

polymeric substance (EPS) by diatoms during locomotion (Holland et al. 1974, 

Grant et al. 1986). These EPS binds sediment particles together at the mud 

surface and smoothens the surface, hence reducing the susceptibility for 

erosion (Paterson 1989). Benthic macrofauna too may increase sediment 

stability by binding particles with secretions used to construct their tubes 

(Yingst and Rhoads 1978). In most cases, however, they destabilize sediment 
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through pellet productions, grazing, and burrowing activities (Gerdol and 

Hughes 1994, Widdows et al. 1998c, Andersen 2001a).   

Previous sediment erosion studies concerned merely with the spatial 

variation in the erodibility in relation to sediment type, emersion period, and 

bed feature (Amos et al. 1988, Austen et al. 1999, Houwing 1999, Paterson et 

al. 1990, Paterson et al. 2000, Riethmüller et al. 2000). Few attempts have 

been made to examine the variation of erodibility of surface sediment in 

relation to lateral changes of benthic habitat on an intertidal flat. Moreover, 

few studies on sediment erodibility comprise both spatial and temporal 

dimensions (i.e. de Brouwer et al. 2000, Widdows et al. 2000a, Lelieveld et al. 

2003).   

 

 
1.2. Objectives and outline of the thesis 
 

The main objective of this study is, to examine the small-scale (a meter) 

and large-scale (hundred of meters) spatial and temporal variation of 

sediment erodibility, and to identify and parameterize the main processes that 

cause these variations. A broad range of habitats with differences in emersion 

periods, sediment types, and benthic macrofauna assemblages is covered to 

disentangle the different contributions. The central hypothesis of this study is 

that intertidal flat erodibility is controlled over spatial and temporal scales by 

the influences of benthic organisms and sediment properties. Specific 

objectives of this study are:  

•  To quantify the spatial and temporal changes in sediment erodibility of 

intertidal flats and to relate these to spatial and temporal variations of 

benthic organisms, particularly the abundances of microphytobenthos. 

•  To compare critical erosion shear stress of natural sediments to the critical 

stress of abiotic sediment derived from threshold Shields parameter. 

•  To determine the small-scale spatial variation of the erodibility in different 

intertidal flat habitats.  

•  To examine and compare the erodibility of crests and troughs of the 

bedforms and to identify the processes governing differences in erodibility 

between crests and troughs. 
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•  And to identify the potential proxy parameters that can be used to predict 

critical erosion shear stresses for the purpose of mapping of surface 

erosion parameters from small to large scales. 

The thesis is set up in the following order: 

This chapter, chapter 1, deals with the objectives of the thesis and a literature 

review on erosion characteristics of cohesive sediment, biological influence on 

sediment erosion, and instruments for determination of erodibility. Chapter 2 

deals with the description of the study site, field works and used 

methodologies. General feature of the data are presented and discussed in 

Chapter 3. Chapter 4 deals with the erosion characteristics of the different 

habitat types studied. Specific attention is given to intertidal flats dominated by 

cockle Cerastoderma edule and polychaete worm Heteromastus filiformis, 

because these two species are abundant benthic animals at many tidal flats 

and no studies have specifically aimed at a determination of these species 

effect on sediment erodibility. The erosion characteristics for crests and 

troughs of bedforms in terms of critical erosion shear stress and erosion rate 

are also described in this chapter. Chapter 5 describes the large-scale 

(hundreds of meters) spatial and temporal variation of erodibility in relation to 

abundance of microphytobenthos and benthic macrofauna, sediment type, 

and emersion period. Chapter 6 describes various approaches or models that 

can be adopted to predict critical erosion shear stress from proxy parameters 

for purpose of large-scale mapping of sediment surface erosion parameters.  

The results of the erosion experiments and physical and biological sediment 

properties measurements in the previous chapters are used to generate the 

predictive models. In the concluding chapter 7, a synthesis and comprehen-

sive assessment of all results is presented. 

1.3. Erosion characteristics of cohesive sediment without biological 

influences 

Natural cohesive sediments are a mixture of clay, fine silt, and sand. The 

clay particles are cohesive because electrochemical repulsive and attraction 

forces are acting between the particles. Sediment of this type is called 

cohesive because the sediment particles do not behave as individual discrete 
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particles but tend to stick together forming aggregates (mud flocs). The 

resulting inter-particle forces exceed considerably the pure gravitational 

forces, which alone counterbalance erosive forces in case of pure sand 

(Raudkivi 1998). Cohesion begins to be significant when sediment contains 

more than about 5–10 % of clay by weight (Dyer 1986). 

Grain movement will occur when the fluid forces (lift and drag forces) on a 

grain are just larger than the resisting force related to the submerged grain 

weight and the friction coefficient (van Rijn 1993). The initiation of motion of 

non-cohesive sediment is resisted mainly by the submerge weight of the 

grains. For cohesive sediment, cohesive behavior contributes to erosion 

resistance (Dade et al. 1992). The strong binding forces that hold cohesive 

grains together once they have been deposited means the grains can not be 

eroded in the same way as can non-cohesive sediments. Cohesive grains are 

eroded as clumps or flocs, rather than individual grains, and if they have been 

partially consolidated (e.g. an exposed estuarine or tidal mud flat), erosion 

occurs following the mass failure of the sediment surface which is ripped off in 

large lumps. This process requires very high bed shear stress. Thus, once 

deposited, cohesive fine-grained sediment is not easily eroded despite their 

fine grain-size (Open university course team 1989). 

Two main types of erosion have been noted since early in the description of 

cohesive sediment erosion: surface and mass erosion (Mehta et al. 1982).  

These have been recently described as Type I and Type II erosion and also 

as "benign" and " chronic" erosion (Amos 1995). Type I erosion takes place 

when we have an increase of critical erosion shear stress with sediment depth 

due to consolidation. Under Type I, erosion rates peak rapidly and then 

decrease with time. This mode of erosion is also often observed under natural 

field settings (see e.g. Amos et al. 1997).  Under Type II, erosion may be rapid 

at first, as with Type I, but the bed continues to erode.  Type II erosion tends 

to occur when the stress on the bed greatly exceeds the critical stress for 

erosion (Paterson and Black 1999). 

If both the bed shear stress (τb) and the critical erosion shear stress (τcr) 

are known, the erosion rate can be calculated using an appropriate erosion 

formulation.  The following equation is most often used for Type I erosion, 
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when τcr increases with depth into the sediments and limit the extent of 

erosion (Mehta 1988, Amos et al. 1992):  

E = εf exp(α[τb - τcr (z)]β)                                                (1) 

where E is the erosion rate (kg m-2 s-1),  εf is the empirical floc erosion rate (kg 

m-2 s-1), α and β are empirical constants, and z is the depth of erosion.  Many 

researchers use a simple linear relationship between erosion rate and shear 

stress to calculate the erosion rate (e.g. Sanford and Halka 1993, Torfs et al. 

2001).  The linear erosion formulation is written as: 

E = M (τb - τcr)                                                 (2) 

where  M is the erosion rate constant (kg m-2 s-1).  Equation 2 is predominantly 

used to model Type II erosion, with a single constant value of τcr that does not 

change with depth in the sediments (Sanford and Maa 2001). 

Laboratory and in situ erosion measurements have shown that a range of 

critical erosion shear stresses can be found for non-biostabilized natural 

cohesive sediments. Amos et al. (1997) found on the foreshore and upper 

foreslope of the Fraser River delta (Canada) critical erosion shear stress to 

vary between 0.11 and 0.50 N m-2 and seemed to be proportional to the 

sediment wet bulk density. On the Baltimore Harbor, Maryland (USA), Maa et 

al. (1998) found typical critical erosion shear stress of 0.05 and 0.1 N m-2 for 

sediment with high and minimal fluff layers, respectively. Additionally, 

Ziervogel and Bohling (2003) found a critical shear velocity of 0.62 cm s-1 

(about 0.04 N m-2) for muddy sediment covered by a well-developed fluffy 

surface layer in the south western Baltic Sea (Germany). 

1.4. Biological influence on sediment erosion 

Although during storms and floods physical forces (currents and waves) 

undoubtedly exceed most biological influence on sediment erosion, a wide 

range of biotic effects rise in importance during quiescent to moderate 

periods. These effects can broadly be classified as either contributing to 

sediment stability (bio-stabilization) or reducing stability (bio-destabilization) 

(Black et al. 2002). 

Bio-stabilizer such as mussel beds, seagrass beds, macroalgal mats, 

microphytobenthos, and salt marsh macrophytes can modify their immediate 
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physical environment by reducing tidal currents, wave action, and sediment 

resuspension, thus reducing turbidity and increasing light penetration, as well 

as enhancing sediment cohesiveness and sedimentation processes (Widdows 

and Brinsley 2002). By contrast, the bio-destabilizers increase sediment 

erosion/resuspension and modify properties of surface sediments by 

increasing bed roughness, sediment water content, grazing on bio-stabilizers 

and producing fecal pellets (Widdows and Brinsley 2002).       

In this section, the influences of microphytobenthos and benthic macro-

fauna are emphasized, because microphytobenthos is the most important 

primary producer on intertidal mudflats and their significant role as sediment 

stabilizer has been well documented and quantified. Benthic macrofauna 

prevails everywhere and it is known to contribute both stabilization and 

destabilization. It is expected that microphytobenthos and benthic macrofauna 

are the most determinant parameters for sediment surface stability. 

 

1.4.1. Microphytobenthos 

The microphytobenthos comprises a number of photoautotrophic groups of 

microscopic algae but is dominated by diatoms, cyanobacteria, and 

euglenoids (Black et al. 2002). Benthic diatoms can be subdivided into 

epipsammic diatoms (immotile diatoms, living semi-permanently attached to 

sand grains) and epipelic diatoms (motile diatoms, moving freely through the 

sediment) (Vos et al. 1988). Epipsammic diatoms favour a sandy environment, 

whereas epipelic diatoms favour a fine-grained (silt/mud) environment, 

prevailing throughout the year at locations where wave and current energy are 

low (Augustinus 2002). These diatoms are mobile microorganisms that 

migrate up and down through the sediment in response to light and tidal 

conditions (Hay et al. 1993). 

Benthic diatoms can stabilize sediment surface through their production of 

extracellular polymeric substance, EPS (Paterson 1989). The EPS creates 

bonds between the mixture of mineral and organic particles in the sediment 

and this results in a surface coating which may increase the erosion shear 

stress significantly (Figure 1.1). The production of EPS during diatom 
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locomotion may form a smooth and stable sediment surface when the density 

of the diatoms is high (Paterson 1997), and field evidence of this stabilization 

has been shown (e.g. Underwood and Paterson 1993b, Riethmüller et al. 

1998, Austen et al. 1999, Andersen 2001a).   

 

 
Figure 1.1.  Scanning electron micrograph of the surface layer of an intertidal 
flat sediment showing benthic diatoms on the upper most sediment surface  
(Scale bar = 100 µm).  Courtesy of GKSS Research Centre. 
 

The critical erosion shear stress of soft fine-grained sediment in the 

intertidal zone is typically in the order of 0.2–0.5 N m-2 when diatom biofilms 

are absent (Andersen 2001b). However, when biofilms are present this critical 

shear stress may increase to more than 3 N m-2 (Riethmüller et al. 2000, 

Austen et al. 1999, Tolhurst et al. 1999).   

The ratio between the critical erosion shear stress for sediments with and 

without biogenic stabilization has often been expressed as biostabilization 

index (Manzenrieder 1983). Tolhurst et al. (1999) reported an index of 6.2 for 

fine-grained sediments from Königshafen (German Wadden Sea), and the 

index may exceed 10 for the Kongsmark area (Danish Wadden Sea, 

Andersen 2001a).  The seasonal variability of the biostabilization index was 
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reported by Grant et al. (1982) showing that the index approached unity in 

winter when biological activity was low and reached a maximum during the 

autumn growing season. 

Benthic diatoms require light and are therefore restricted to the sediment-

air and sediment-water interface of estuarine and intertidal sediments.  

Consequently, the biological influence of sediment erosion afforded by benthic 

diatoms is mainly a surface phenomenon and their influence is mostly upon 

critical erosion shear stress rather than erosion rates (Andersen 2001b). The 

critical erosion shear stresses of sediment with diatom biofilm are usually 

highest at the surface and do not increase with depth. Therefore, once erosion 

occurs, the sediment will continue to erode (i.e. mass erosion) because bed 

shear stresses are much higher than critical erosion shear stresses of 

sediment below the surface.  

Chlorophyll-a concentration is an indicator of microphytobenthos biomass, 

while carbohydrate is a measure of EPS or mucopolysaccharides secreted by 

microphytobenthos (Sutherland et al. 1998). Several authors (Madsen et al. 

1993, Underwood and Paterson 1993a, Tolhurst et al. 2002, Friend et al. 

2003b) have demonstrated the increase of critical erosion shear stress with 

increasing EPS. Although EPS is expected to be the appropriate parameter to 

represent sediment stabilization, it cannot be used as a proxy parameter for 

large-scale mapping by optical remote sensing (Riethmüller et al. 2000).  

Chlorophyll-a from microphytobenthos in the uppermost sediment surface 

can be detected and quantitatively estimated by means of optical remote 

sensing techniques (Hakvoort et al. 1998, Paterson et al. 1998). Hence, it may 

be an appropriate candidate for mapping critical erosion shear stress.  Several 

authors have observed a significant positive relationship between critical 

erosion shear stress and Chlorophyll-a concentration on the intertidal 

(Riethmüller et al. 1998, Riethmüller et al. 2000, Austen et al. 1999, Paterson 

et al. 2000) and subtidal (Madsen et al. 1993, Sutherland et al. 1998, Lund-

Hansen et al. 2002) flats. However, the detected relationships are often weak, 

suggesting that important interactions are being missed. For example, the 

variation in Chlorophyll-a contents could explain only 40 % of the variance in 

critical erosion shear stress in the Danish Wadden Sea (Andersen 2001a). 

Riethmüller et al. (2000) showed that the relationship between critical erosion 
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shear stress and Chlorophyll-a concentration can be highly significant at 

specific locations but the relationships vary from location to location and 

sometimes due to specific events, e.g. mass blooms of specific diatom 

species.  

1.4.2. Benthic macrofauna 

Depending on type of feeding, benthic macrofauna can be classified as 

"suspension feeders" and "deposit feeders". This classification is frequently 

used and works well for most species but some species may be both deposit 

feeders and suspension feeders depending on circumstances. Dauer et al. 

(1981) used the term "interface feeders" to refer to species that can switch 

between deposit and suspension feeding. An example is Macoma balthica 

which is often abundant on fine-grained tidal flats and may feed directly from 

the suspension at times but mostly is deposit feeding (Riisgård and 

Kamermans 2001). A further possible distinction is given by the fact that some  

organisms lead a sessile life, while others are motile (Heinzelmann and 

Wallisch 1991). 

Suspension feeders including mussels and cockles extract their food from 

suspended particles in the water column. The filtered material will be 

deposited as faeces or pseudo faeces with settling velocities one order of 

magnitude higher then their constituent grains (Haven and Morales-Alamo 

1966, Andersen and Pejrup 2002). Suspension-feeding organisms tend to 

enhance the flux of suspended material from the water column to the bed via 

suspension feeding and biodeposition (Widdows et al. 1998c).   

Deposit feeders include a large number of worms, snails and mussels.  

They all take their food from the sediment surface (surface deposit feeders) or 

from below the surface (subsurface deposit feeders) (Riisgård and 

Kamermans 2001). The Polychaetes Lanice conchilega and Heteromastus 

filiformis are an example of surface and subsurface deposit feeders, 

respectively.   

The influence of benthic macrofauna on erodibility of fine-grained 

sediments is ambiguous and both stabilization and destabilization can be 

expected. In some cases, both stabilization as well as destabilization of 

sediment by a single species was observed. For example, Gerdol and Hughes 
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(1994) found that the amphiphod Corophium volutator caused destabilization 

of the sediment due to grazing on microphytobenthos and reworking of the 

sediment by burrowing and tube formation. By contrast, Mouritsen et al. 

(1998) attributed the stabilization of sediment to the presence of Corophium 

volutator. They suggested that coating of the walls of burrowing holes by 

mucus was responsible for the observed stabilization. 

Most benthic macrofauna species tend to increase the roughness of the 

bed either by actual presence of the animal itself, by tracking of the surface 

during the locomotion or by the excretion of fecal pellet or pseudo pellets 

(Nowell et al. 1981).  This increase in roughness would increase the erodibility 

of sediments.  The flume studies of Nowell et al. (1981) with the small bivalve 

Transenella tantilla showed that tracking activity of the bivalve doubled the 

boundary roughness and decreased the critical entrainment velocity by 20 % 

of the investigated marine sediments.  

Many benthic macrofauna produce tubes (e.g. worm tubes) protruding few 

millimeters to centimeters above the bed and most obviously change the 

bottom roughness height (Graft and Rosenberg 1997). Animal tubes have 

been suggested in both the stabilization and destabilization of sediment 

(Eckman et al. 1981).  Rhoads et al. (1978) postulated that the arbitrary effect 

of tubes will be related to the density of the tubes.  Single or isolated tubes 

may cause local scour and hence destabilize sediments by deflecting fluid of 

relatively high momentum toward the bed (Eckman et al. 1981).  By contrast, 

high density tube mats may produce a "skimming flow" that effectively 

protects the bed from erosion. In skimming flow, the region of maximum 

turbulent kinetic energy and shear stress production occurs away from the 

bed (Eckman et al. 1981). According to laboratory flume experiments of 

Nowell and Church (1979), skimming flow occurs when one-twelfth of the 

sediment surface is covered with tubes.     

The erodibility of the bed may be also indirectly influenced by benthic 

macrofauna by modifying the bed characteristics, such as water content, 

organic content and particle size distribution. Bioturbation (digging and 

burrowing) activity of macrofauna loosens the bed material thus increasing the 

water content (Rhoads et al. 1978, Rowden et al. 1998, Cadée 2001, de 

Deckere et al. 2001). Both effects reduce the cohesion and hence decrease 
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the bed stability (Rhoads 1974, Rowden et al. 1998). According to Postma 

(1967), an increase in water content of fine-grained sediments from 50 % to 

60 % can result in a decrease of the sediment stability of about 25 %.  

Bioturbation activity may also maintain porosity and prevents compaction 

(Meadows and Tait 1989). Underwood and Paterson (1993a) found that 

elimination of all biological activity with formaldehyde resulted in compaction 

of the sediment and an increase in the critical erosion shear stress. 

Benthic macrofauna can also influence the sediment erodibility by 

production of fecal pellets (Widdows et al. 1998b, Andersen 2001b). Fecal 

pellets or pseudofaeces produced by cockles may indirectly increase surface 

sediment stability by stimulating the growth of microphytobenthos (Sündback 

1984). In most cases, however, a decrease in sediment stability due to 

presence of pellets has been reported (Haven and Morales-Alamo 1966, 

Nowell et al. 1981, Taghon et al. 1984). Pelletization of the bed material by 

mobile deposit feeders results in high porosity at the surface and less 

compaction and cohesion, so enhancing erosion (Rhoads 1974). Andersen 

(2001b) has recently reported the effect of fecal pellet produced by mud snail 

Hydrobia ulvae on sediment erodibility at Kongsmark area, Danish Wadden 

Sea.  He found that erosion rate increased with increasing fecal pellet content 

of the bed material. It was also found in this study that strong seasonal 

variation of the content of fecal pellets of the bed material causes a seasonal 

variation of the erosion rate with high erodibility in the summer period when 

the production of fecal pellet is high and low erodibility in the winter. 

The erodibility of sediment can also be indirectly mediated by feeding 

activity of macrofauna. For example, Corophium volutator increase sediment 

erodibility indirectly by reducing benthic diatom biomass via grazing (Gerdol 

and Hughes 1994, de Deckere et al. 2000). Mud snails Hydrobia ulvae may 

indirectly enhance sediment erodibility by grazing on benthic diatoms (Austen 

et al. 1999, Andersen 2001b). By contrast, the presence of cockle beds may 

indirectly increase surface sediment stability by stimulating the growth of 

microphytobenthos through several mechanisms (Andersen et al. in review). 

These mechanisms include the effect of nutrient release, mainly ammonium, 

by the cockles (Swanberg 1991) and the increase of photosynthetically active 
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radiation (PAR) at the sediment by removing the seston and silt from the 

water column (Newel et al. 2002). 

1.5. Instruments for determination of erodibility 

1.5.1. Overview 

Several techniques have been developed for making laboratory and in-situ 

measurement of the erodibility of cohesive sediment. They differ in size from 

about 10 cm to 3 m in diameter, and in test section areas from smaller than 

0.01 m2 to 1 m2, and in weight from a few kilograms to more than 100 kg.  

Several of the larger instruments are the annular flume "Sea Carousel" 

described by Amos et al. (1992), the "VIMS Sea Carousel" (Maa et al. 1993), 

the In Situ Erosion Flume (ISEF; Houwing and Van Rijn 1998), and the 

straight flume "SEAFLUME" described by Young and Southard (1978).  

Although the forcing of the water flow differs for each instrument, the 

applied technique is broadly the same, namely circulating or straight water 

flow are used to exert a shear force on the bed surface. The main 

disadvantage of straight flumes for use in the field is the size, which is 

necessary to produce a fully developed turbulent boundary layer at the point 

of observation in the test section. This makes deployment difficult and 

expensive.  The infinite flow length of an annular flume results in a fully 

developed boundary layer, but sealing around the rotating annulus is difficult 

(Amos et al. 1992), causing aeration in subaerial deployments. The advantage 

of the annular and straight flume is that flow characteristics are reasonably 

close to the situation in open channel flow and they give good average values 

for thresholds and erosion rates due to large area at which they are measured 

(Black and Paterson 1997, Andersen 2001b). 

Other techniques used for determination of erodibility of cohesive 

sediments are: (1) generating a water jet impacting on the sediment surface 

(e.g. the cohesive strength meter CSM; Tolhurst et al. 1999, 2000a); (2) 

generating a stream of water between an inverted bell-shaped funnel, placed 

at close range above the sediment surface (ISIS; Williamson and Ockenden 

1996); (3) inducing fluid flow by a disc stirring combined with central suction 

(Microcosm; Gust and Müller 1997); (4) inducing turbulent motion by a 
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propeller at close range above the bed surface (EROMES and portable 

EROMES; Schünemann and Kühl 1991, Andersen 2001a; LABEREX 

chamber, Lund-Hansen et al. 2002).  

Instruments of the latter type are smaller and therefore easier to handle.  

Due to their relatively small test section, the results are more sensitive to 

small-scale irregularities of the bed surface and the settings of the instrument 

on the bed surface. Disadvantages are therefore primarily found in the 

distribution of the bottom shear stresses which is often not quite regular in 

time and space (Houwing and van Rijn 1998). 

The CSM is a small portable erosion device that uses a vertical jet of water 

to erode surface sediment (Paterson 1989).  The occurrence and increase of 

eroded matter with generated bed shear stresses is monitored by light 

attenuation in the measuring cell. This instrument has been used to determine 

critical erosion shear stresses of intertidal mudflat and marsh sediments. It 

can be relatively easily transported and in-situ erosion tests undertaken 

rapidly, increasing the number of measurements. In addition, the device 

generates a wide range of equivalent bed shear stresses, enabling it to be 

used on a variety of sediment types, including salt marsh, biostabilized areas, 

desiccated sediments (Tolhurst et al. 1999). There are a number of 

disadvantages with the device: (i) unnatural flow structure – the flow is 

arguably dissimilar to that of a natural flow; (ii) the CSM can not be deployed 

underwater; (iii) critical erosion thresholds are defined by a certain level of 

light attenuation which can not be quantified in terms of erosion rates and 

hence the criterion for the onset of erosion depends strongly on the optical 

characteristics of the eroded material (Tolhurst et al. 2000b); (iv) erosion rates 

are not easily determined by use of the device.  

ISIS (now called as SedErode) was developed by HR Wallingford, Oxford, 

United Kingdom (UK), to measure erosion shear stress directly on undisturbed 

intertidal muds (Williamson and Ockenden 1996, Black and Paterson 1997).  

ISIS consists of a circular, inverted, bell-shaped funnel that fits inside a 

cylindrical perspex column of 90 mm diameter with a 3 mm annular space 

around the edges. The bell head is positioned just above the sediment bed, at 

a typical distance of 4–8 mm from the lowest part of the bell head to the mud 

bed.   
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ISIS produces a steady, approximately uniform shear stress at the 

sediment water interface by recirculating water circumferencially through the 

gap then drawing the water through a hole at the center of the bell head.  

Shear stress at the bed is controlled by the recirculating rate. The point of 

surface erosion is recorded as an increase in turbidity (measured by a 

nephelometer) relating to a significant removal of material from the bed 

surface (Williamson and Ockenden 1996). 

The Microcosm is a relatively small erosion device (30 cm in diameter), 

with a removable lid housing, a stirring disc and water input and output (Gust 

and Müller 1997, Black and Paterson 1997).  The device generates a spatially 

uniform bed shear stress over the sediment surface by controlling the 

rotational speed of the lid and the rate of removal of fluid through the lid. The 

discharge rate from the pump and the revolution rate of the disc determine the 

stress over the bed in the chamber. The turbulence spectrum generated by 

this device matches those of channel flows. A circular hole in the lid allows 

water samples to be taken from the chamber to measure the suspended 

particulate matter (SPM) at every shear stress increment.    

1.5.2. EROMES 

The EROMES (Figure 1.2) has been used in several erosion studies 

(Schünemann and Kühl 1991, Austen et al. 1999, Riethmüller et al. 2000; 

Tolhurst et al. 2000b).  Both critical erosion shear stress and erosion rate can 

be determined with the instrument. The original EROMES system was 

developed by the GKSS Research Centre (Germany) to investigate the 

erodibility of natural muddy sediments in the laboratory.  

A portable field-version of the original EROMES has been designed, built, 

calibrated and tested by Andersen (2001a). The instrument resembles the 

laboratory (original) version but can be used in situ as well. The main 

advantages of the portable EROMES (Figure 1.2) are that it is able to produce 

data on both erosion thresholds, erosion rate and settling velocity of the 

eroded material and measurements can be done quite rapidly (Andersen 

2001b). 

The principle of EROMES is that the turbulence of the water is induced by 

a rotating propeller, causing erosion or resuspension of sediment. The 
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rotational flow in the chamber is significantly reduced by placing a series of 

vertical baffles around the chamber wall (Schünemann and Kühl 1991). The 

propeller revolutions have been converted to bed shear stress by use of a 

calibration on erosion of quartz sands with known critical erosion shear stress.   

One of the disadvantages of EROMES system is that the fluctuations of 

turbulence generated by the propeller are large and the turbulent energy 

spectrum exceeds those found in natural channel flows by an order of 

magnitude (Gust and Müller 1997). On the other hand, it may resemble the 

conditions found on intertidal areas which is characterized by a combination of 

both waves and currents. In addition, bed shear stress generated by the 

device is not radially uniform over the sediment surface, i.e. bed shear stress 

increases with increasing distance toward the outer wall. Gust and Müller 

(1997) found that bed shear stresses are low at radii 0 mm (at the center) and 

40 mm, and stresses are high at 20 mm and 30 mm from the center. The 

rough turbulence spectrum on the one side and the radial dependence of the 

imposed bed shear stress on the other side with an reduced area affected by 

the propeller do not allow a direct transfer of the data to field conditions or 

comparisons with other erosion devices. Still, they are used for relative 

comparisons of erodibility. 

 Two types of bed shear stress calibration have recently been applied for 

the EROMES: a direct measure of bed shear stress using a hot-film probe and 

an indirect calibration using the onset of erosion of quartz-sands with known 

critical bed shear stresses (Schünemann and Kühl 1991, Andersen 2001a).  

Highly fluctuating bed shear stresses were found during the calibration with 

the hot-film sensor due to the stirring motion of the propeller. The flow 

structure is assumed to be comparable to the quartz-sand calibration for bed 

shear stresses below 0.5 N m-2 due to the presence of a viscous sub-layer in 

both calibration experiments. Based on a comparison of the two methods, a 

good agreement was found between the quartz-sand experiments sτ  and the 

mean of the max one third of τ  for the hot film measurements, 3/1τ  (Figure 

1.3).  When calculating sτ and 3/1τ  for the complete range, a fairly good 

agreement is found for a radii of 10, 20 and 30 mm, although a maximum of 

10 % difference is found at the highest bed shear stress (Andersen 2001a). 
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Figure 1.2.  Photographs of Lab (left) and Portable EROMES (right). 

 

 

Figure 1.3.   Comparison of the hot-film and quartz-sand calibrations for the 
portable EROMES (from Andersen 2001a). 
 
 

 

In the present work, two lab and one in-situ systems of EROMES were 

used. The concentration of eroded material (SPM) in the EROMES system 
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was continuously determined by measuring the turbidity, using for one system 

a transmission sensor in a by-pass loop and for the second lab and the in-situ 

system an optical back scatter (OBS) sensor mounted 5 cm above the 

sediment water interface (Figure 1.4). The turbidity was calibrated against 

water samples taken for gravimetric analysis and calibration curves are 

produced for each erosion experiment. The SPM time series are used to 

calculate the erosion rate for each erosion step, giving a time averaged 

erosion rate. Due to problems with turbulence fluctuations and radially bed 

shear stress variations in the EROMES system, the resulting erosion rate is 

probably underestimated due to the fact that only selected parts in the test 

section are affected effectively by applied bed shear stress.  Therefore, the 

resulted erosion rate is called "EROMES erosion rate". The critical erosion 

shear stress is determined by a significant increase of the erosion rate and is 

defined as the bed shear stress when the EROMES erosion rate exceeds a 

critical level of 0.01 g m-2 s-1. 

The results of critical erosion shear stresses EROMES  (see chapter 2.3.1 

for definitions and technical details) have been checked against other devices, 

namely the CSM, the ISIS and the Sea-Carousel (Tolhurst et al. 2000b). In 

case of the CSM, parallel close-by measurements were carried out, covering 

cases with widely differing diatom densities. For a consistent definition of 

critical erosion shear stress, the EROMES criterion, based on erosion rates, 

was transferred to an appropriate threshold of light attenuation measured in 

the by-pass loop. With this threshold criterion good agreement between both 

devices was achieved. To compare with ISIS and SEA Carousel, EROMES 

results were checked indirectly against published data (Williamson and 

Ockenden 1996, Amos et al. 1998) comparing the values of critical erosion 

shear stresses for comparable situations with negligible contribution of diatom 

stabilization and expected dominant impact of physical sediment properties. In 

the comparison, EROMES data were plotted against the sediment surface dry 

bulk density together with ISIS data from the Severn estuary, UK; and against 

sediment surface wet bulk density together with Sea carousel data from sites 

on the Canadian coast and the Humber estuary (Figures 1.5 (A) and (B)). 

Compared to ISIS, the ERMOES data agree in magnitude, trend and range of 

scattering. Compared to the Sea Carousel data, the trend and the range of 
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scattering also agree but the EROMES erosion shear stresses seem to be 

somewhat lower. This may be explained by the fact that for some Sea-

Carousel data effects of biostabilization cannot be excluded. The agreement 

between EROMES and results from other devices suggests that EROMES 

works reasonably well with respect to measurements of critical erosion shear 

stresses. Comparisons made for measured erosion rates will be described in 

chapter 2.3.3.  

 
Figure 1.4. Schematic view of EROMES device with backscatter.  
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Figure 1.5. (A) Comparison of the relationship between erosion threshold and 
dry bulk density for EROMES and ISIS. (B) Comparison of the relationship 
between erosion threshold and dry bulk density for EROMES and Sea 
Carousel. For the EROMES, only data with a chlorophyll-a content less than 
20 mg m-2 was used to reduce the influence of microbial stabilization on the 
thresholds (from Tolhurst et al. 2000b). 
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CHAPTER 2 

FIELD WORKS AND METHODOLOGIES 

2.1. Study site 

The study was conducted on the "Dornumer Nacken", a back-barrier tidal 

flat located between the barrier island of Baltrum and the East-Frisian 

mainland coast in Lower Saxony, Germany (Figure 2.1). The site was 

selected because of its habitat variety and sound documentation of sediment 

distribution and biological properties over many years (van Bernem 1999).  

The mean tidal range is approximately 2.8 m and the tides are semi-diurnal. 

Depth-average tidal current velocities in the channels close to the inlet reach a 

maximum of up to 0.70 m s-1 and on the tidal flats of up to 0.25 m s-1 (Krögel 

and Flemming 1998).  

 
 

Figure 2.1.  Map of the study site showing the Dornumer Nacken intertidal 
flats. 

 
According to the diversity of habitats, the Dornumer Nacken can be divided 

into three main zones: exposed zone, middle zone, and inner zone, including 

a protected salt marsh area close to the mainland. The mud content increases 

towards the shoreline. The exposed zone is sandy, whereas the middle and 

inner zones are mixed tidal flats with a mud content of 20 to 40 % by weight.  

The mud content in the salt marsh is higher than 50 % by weight. The middle 
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zone is slightly less elevated (depression) and has shorter emersion time (i.e. 

four to five hours per tidal cycles) than the exposed and inner zones. The 

emersion time of the exposed zone is less than five hours per tidal cycles, 

while the inner zone is sub-aerially exposed for five to six hours per tidal 

cycles. 

The habitat structure is homogenous in the outer (exposed) zone and 

dominated by sessile polychaetes, e.g. lug worm (Arenicola marina) and sand 

mason (Lanice conchilega).  The middle zone shows a higher heterogeneity of 

habitat patterns including patches of changing density of the blue mussel 

(Mytilus edulis) and cockles (Cerastoderma edule). The inner zone shows 

again a predominantly homogeneous distribution of habitats characterized by 

small sessile polychaetes (e.g. Heteromastus filiformis and Pygospio elegans) 

and patches of the cockles Cerastoderma edule and Macoma baltica. In 

elevate areas the mud snail Hydrobia ulvae is the most abundant grazer on 

the sediment surface.  

The sediment distribution at the study site was described in detail by Krögel 

and Flemming (1998). The pattern generally showed a distinct gradient in 

grain-sizes with coarser sediments and lower mud content close to the tidal 

inlet and increasing mud content towards the mainland dike (Figure 2.2). The 

distribution was attributed to the general decrease in hydrodynamic energy 

from the tidal inlet towards the mainland and to the different settling rates of 

sediment particles induced by seasonal changes in water temperature (Krögel 

and Flemming 1998). It is claimed by those authors that the distribution is 

adjusted to winter conditions with lowest settling velocities of sediment 

particles and highest the energy input. 

2.2. Sampling strategy 

2.2.1. Selection of sampling stations  

On the tidal flat, six stations along a cross-shore transect of approximately 

1.5 km length from immediately below the salt marsh to the middle of the tidal 

flat were chosen (designated A–F seawards in Figure 2.3). The principal 

motivation behind the selection of stations was to cover a range of 

parameters, which are expected to have a detectable effect on the critical 

erosion shear stress and the erosion rate. These parameters are energy 
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regime, exposure time, sediment type, and epibenthic and endobenthic 

macrofaunal assemblages 

 

 

Figure 2.2.  Mud distribution at the study site (Krögel and Flemming 1998). 

  
Station A is located close to the salt marsh. This station is continuously 

exposed for up to seven days between successive spring and neap tidal 

cycles and inundated only around spring tides and during storm surges.  

Station B is located in the Hydrobia dominated strip, approximately 130 m 

from the shoreline and exposed for six hours per tidal cycle. Stations C and E 

are within areas dominated by sessile worms, whereas station D is in the 

cockle bed area.  Stations C, D, and E are approximately 700, 700, and 

1000 m away from the shoreline, respectively.  While the distance between 

the outermost station F and the shoreline is approximately 1500 m. It was 

characterized by blue mussel patches of about 5 m in diameter and 10–15 m 

apart. The sampling location was in between these patches. Stations C – F 

had similar emersion time of about four to five hours per tidal cycle. 

The sediments at station A varied from muddy sand to sandy mud with mud 

content ranging from 46 % to 68 %. The sediments at stations B, C and E 

consisted of slightly muddy sand to muddy sand, with mud content generally 

less than 37 %. Station D was classified as muddy sand with mean mud 
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content of 41 %.  The sediment at station F varied from slightly muddy sand to 

sandy mud with mud content ranging from 18 to 70 % (classification after 

Flemming 2000). Figure 2.4 shows the morphological features of the sediment 

surface at each of the six sampling stations. 

 

Figure 2.3.  The cross shore transect and the six sampling stations. The blue 
lines indicate the approximate boundaries between the described zones as 
suggested by habitat field mappings (C. van Bernem, personal communi-
cation). 

Geomorphological structures (bedforms) were present at all stations during 

the sampling periods. The bedforms were characterized by irregular crest and 

troughs system. The bedforms were aligned more or less normal to the 

shoreline, with wavelengths of 0.5–1 m and heights 0.1–0.15 m. The crests 

were lower at station D with height of 0.02 to 0.05 m. The elevated crests 

emerged at low tide and tended to dry out during emersion (Figure 2.5). The 
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depressions or troughs acted as drainage channels which often contained 

trapped or slowly running water during most of the emersion period. 

 

 

 

 

 

 

 

A B

C D

E F

Figure 2.4. Photographs of the morphological features of the sediment surface 
at sampling stations A – F. 
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Figure 2.5.  Photograph of morphological feature with a pronounced crest and 
trough system at station E. Crests are the emergent elevated parts, and 
troughs are depression parts (scale bar = 0.15 m). 
 
 
 

 

 
 

Figure 2.6.  The sampling positions within each station are located in a circle 
with radius 10 m. 
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2.2.2. Selection of samples at each station 

The samples were collected within a 10-m radius of a permanent marker at 

each station (Figure 2.6) except for station D. At D, the samples were 

collected along a transect with a spacing of approximately 10 m between each 

sample. The transect was 50 m long and oriented perpendicular to a small 

gully. The sampling was conducted at approximately 1 hour after the sampling 

stations were exposed (low tide). The actual choice of the sampling positions 

was guided by the objective to cover a representative set of surface types 

within each station. To minimize sample surface disturbance during transport 

this choice was biased to surfaces which were visually undisturbed and free of 

surface water and benthic macrofauna structure. The samples were taken at 

crests and troughs of the bedforms in 2002 to compare the erodibility of crests 

and troughs. In 2001, the samples were mostly taken on the crests only. 

2.2.3. Temporal (seasonal) sampling pattern   

Sampling was conducted from spring to autumn because biological 

influences on sediment properties and hence erodibility were expected to be 

higher than in winter.  In 2001, samples were taken in April, May, June, and 

October to examine the potential seasonal variability of erodibility on the tidal 

flat as a whole. April and May are representing the spring situation, June 

represents early summer, and October the conditions in autumn. The tidal flat 

was also visited during September 2001, but no sampling was made due to 

stormy weather and water set up. In 2002, the sampling was conducted in 

June and September. The number of samples per station and sampling date 

was considerably increased for the examination of cross-shore variations. 

Additionally, the 2002 sampling was aimed to investigate temporal variations 

of sediment erodibility at each station by comparing June and September 

data.  Additional in situ erosion measurements using portable EROMES were 

conducted at station D in June and September 2002. The temporal pattern of 

sampling is presented in Table 2.1.  

2.2.4. Measured parameters 

The physical and biological sediment parameters (properties) that were 

measured included: 

– Surface parameters (1 mm layer) 
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– physical: wet bulk density, grain-size distribution, and water content 

– biological: microphytobenthos assemblages, chlorophyll-a, colloidal 

carbohydrate, extracellular polymeric substance (EPS), organic 

content and fecal pellet content; 

–    Depth integrated parameters 

– physical ( 0–5 cm layer): wet bulk density, grain-size distribution, and 

water content 
– biological (0–5 cm layer): chlorophyll-a and organic content 

– benthic macrofauna (0–10 cm layer). 

Table. 2.1.  Number of samples collected at each station in 2001 and 2002. 

 2001 2002 

Station April May June October June Sep.  

A – – – – 7 6  

B 1 2 2 2 4 6  

C 1 2 3 2 5 4  

D – – – – 14 14  

E 1 2 2 3 9 4  

F 1 1 3 2 13 6  
 

 

2.3. Methods 

2.3.1. Erosion measurements with Lab EROMES 

A 10-cm diameter perspex tube was used to collect the sediment core for 

erosion measurements. The cores were immediately transported to a nearby 

mobile laboratory. Particular care was taken to avoid any disturbance during 

transport and storage of the cores. The selected core sites had to be 

completely free of surface water; hence, no water could exert stress on the 

sample surface when the cores were moved during the subsequent transport. 

Before excavation, the cores were sealed to prevent any vertical movement of 

the sample inside the cylinder. Next, the cores were transported by sledge 

across the tidal flat and then carefully carried from the shoreline to the nearby 
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mobile laboratory. At the laboratory, they were carefully filled with local 

seawater to a level of 30 cm by pouring it slowly over a plate positioned 1 cm 

above the sample surface. Despite great care being taken, this process 

nevertheless stresses the surface to a certain degree; therefore, the cores 

were allowed to stand for at least one hour and at most 18 hours before the 

start of the erosion experiment. 

Two lab EROMES systems were used to determine the critical erosion 

shear stresses and erosion rates. During each erosion experiment, the 

applied bed shear stress was initially started from 0.05 N m-2 and increased in 

steps of 0.1 N m-2 every 5 minutes. The experiments were ended when the 

turbidity in the system reached saturation. The concentration of eroded 

material (SPM) in the system was continuously determined by measuring the 

turbidity using for one system a transmission sensor in a by-pass loop and for 

the second system an OBS-sensor mounted 50 mm above the sediment water 

interface. The turbidity was calibrated against water samples taken for 

gravimetric analysis, and calibration curves were produced for each erosion 

experiment (Figure 2.7a and b). The SPM time series can then be used to 

calculate the EROMES erosion rate for each erosion step, giving a time 

averaged erosion rate over five minutes. 

  
 

 

Figure 2.7.  Calibration curves for suspended particulate matter (SPM) versus 
(a) transmission sensor and (b) OBS output.  
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Critical erosion shear stress is defined as the bed shear stress when the 

EROMES erosion rate exceeds a critical level of 0.01 g m-2 s-1. Below the 

critical shear stress, loose and fluffy materials that settled during the resting 

period of the cores are eroded and resuspended.  In the presence of filter 

feeders (e.g. Cerastoderma edule, Macoma baltica), negative erosion rates 

due to filter feeding activity of the fauna were often observed.  The exact value 

of critical erosion shear stress was determined by applying a linear regression 

to the observed rate around the critical erosion rate of 0.01 g m-2 s-1. The 

evaluation procedure to compute critical erosion shear stress is illustrated in 

Figure 2.8b for a sample taken in 2001 at the station B.  

 
2.3.2. In situ erosion measurements with portable EROMES 

The equipment was originally described by Schünemann and Kühl (1991) 

and the portable version described in detail by Andersen (2001a). Basically, 

the erosion instrument consists of a 10-cm diameter perspex tube that is 

pushed into the undisturbed bed sediment. The tube is gently filled with local 

seawater and the eroding unit is placed on top of the tube. This eroding unit 

consists of a propeller that generates bed shear stresses and an OBS-sensor, 

which monitors the changing suspended sediment concentration (SSC).  

During each erosion experiment, the bed shear stress was increased in 

steps of 0.1 N m-2 every two minutes from 0.1 N m-2 to 1.0 or 1.5 N m-2 

(depending on the critical erosion shear stress of the bed). Samples for the 

calibration of the OBS-sensor were withdrawn from the instrument during 

each experiment and filtered through pre-weighed Millipore 0.45 µm CEM 

filters.  The method to determine critical erosion shear stress is similar to that 

used for Lab EROMES. 

  
2.3.3. EROMES erosion rate 

Erosion rate for each applied bed shear stress was calculated from 

suspended particulate matter (SPM) time series which measured at every five 

minutes.  The erosion rates, which are reported here, are the average erosion 

rates during the application of the bed shear stress from 1.0 to 2.0 N m-2. In 

order to facilitate direct comparison with earlier publications using the portable 

EROMES (e.g. Andersen 2001a), erosion rate data derived from portable         
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Figure 2.8. An example of the output of erosion experiment using the 
EROMES. (a) The stepwise increase in applied bed shear stress and the 
variation in erosion rate during the erosion experiment. (b) Erosion rate versus 
bed shear stress for the same experiment. To determine the critical erosion 
shear stress, a linear function is fitted to the data in the region around the 
critical erosion rate of 0.01 g m-2 s-1 (open circles). A critical shear stress of 
0.35 N m-2 is found for this experiment.   

 31



EROMES are calculated from 2 minutes increments and as the average 
erosion rate for the bed shear stress increments from 0.5–1.0 N m-2. 

The best fit of the power relationship between log erosion rate and log 
excess bed shear stress ( ) was made at each erosion experiment to 
smooth out the fluctuations of erosion rate (Figure 2.9). The fit was done 
according to the following formula: log  

crb ττ −

( )crbBAE ττ −+= loglog

where E  is the erosion rate,  is the applied bed shear stress,  is the 
critical erosion shear stress,  and 

bτ crτ
A B  are intercept  and slope, respectively.  

From this fit, smoothed and consistent erosion rates as well as SPM 
concentrations can be calculated as a function of bed shear stress. The power 
law approach was used to generated the best fit because the increase erosion 
rate with increasing applied bed shear stress exhibit a power law relationship 
rather than linear or exponential form. 

The best fit described above was also used to extrapolate the erosion rates 

for the cases where the erosion experiments were ended due to the saturation 

of the turbidity (optical devices) in the EROMES system. This allows us to 

make a comparison between sample erosion rates at high bed shear stress, 

i.e. bed shear stress above the turbidity saturation. The smoothed and 

extrapolated erosion profiles presented in chapter 4 (Figure 4.4) were 

generated by plotting the mean of SPM concentration of 4 to 10 samples 

against bed shear stress at every shear stress increment.   

To examine whether erosion rate derived from EROMES are comparable 

with those from other erosion devices, the EROMES erosion rate data were 

indirectly checked with published results from the in situ annular flume device 

(Widdows et al. 1998a). In the comparison, EROMES erosion rates were 

plotted against the applied bed shear stress together with in situ annular flume 

data from the Skeffling mudflat, Humber estuary (UK).  Noted that erosion rate 

data of in situ annular flume presented here were deduced directly from graph 

shown by Widdows et al. (1998a). Compared to in situ annular flume, 

EROMES data agrees in magnitude and trend of the increase erosion rate 

with increasing bed shear stress (Figure 2.10). This suggests that a 

comparable and reasonable erosion rate still can be derived from EROMES 

although the device generates large turbulence fluctuations and not radially 

uniform bed shear stress over the sediment surface. 
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Figure 2.9.  Log EROMES erosion rate as a function of log excess bed shear 
stress. 
 

 

Figure 2.10.  Comparison of the relationship between erosion rate and bed 
shear stress for EROMES and in situ annular flume. 
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2.3.4. Physical and biological sediment properties measurements 

The upper 1 mm of surface sediments was carefully scraped in the direct 

neighbourhood of each erosion core to collect sufficient material for the sub-

samples and to integrate over small scale patchiness. If the diatom distribution 

inside the core was visibly very patchy, the scrapped area was chosen to 

approximate the fraction of diatom coverage visible in the core. The samples 

were well mixed and sub-samples were taken to measure wet bulk density, 

grain-size distribution, water content, organic content, microphytobenthos 

assemblages, chlorophyll-a, colloidal carbohydrate and EPS concentration of 

the bed material.   

Additional samples integrating the upper 0–5 cm of the sediment were 

taken to compare with the data from geological works (e.g. Flemming and 

Delafontaine 2000) and to distinguish more actual conditions (upper mm) from 

more persistent ones. The samples were taken with a small perspex tube core 

of 5 cm diameter. Cores were taken in triplicate and the three samples were 

pooled into one sample for analysis of wet bulk density, grain-size distribution, 

water content, organic content and chlorophyll-a. 

A different sampling strategy was chosen for the samples probed with the 

portable EROMES. These measurements were carried out in close 

cooperation with a scientist from the University of Copenhagen which used 

the following method: a surface scrape of the topmost 1 mm of the bed was 

analyzed for grain-size distribution, fecal pellet content, organic content, 

chlorophyll-a, colloidal carbohydrate and EPS concentration. Additional 

samples of the topmost 5 mm of the bed were taken with a syringe (diameter 

21 mm, five samples pooled into one sample) and analyzed for wet bulk 

density. To examine the vertical distribution of mud content at station D, a 

sediment core was collected by means of a 7-cm diameter aluminum pipe 

(100-cm long). The core was sliced into 2 cm sections and examined for their 

mud content 

Sediment chlorophyll-a concentration 

 Sediment samples were freeze-dried prior to the determination of 

chlorophyll-a.  Chlorophyll-a concentrations were measured using the acetone 

extraction and reverse-phase column HPLC technique of Wright et al. (1991).  
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In this procedure, pigments were extracted by adding 2–3 ml of 100 % 

acetone to the 1–2 g freeze-dried sediment sample and extraction for           

24 hours in the dark at -40 oC. The extract was filtered using a spartan 0.2 µm 
filter. 20–50 µL of the extract was injected to the separation column of HPLC. 

The HPLC system consisted of multiwavelength detector (Jasco MD-915), 

autosampler (851-AS), Line degaser (DG-980-503), ternary gradient unit (LG-

980-02), intelligent HPLC pump (PU-980), and intelligent column thermostat 

(CO-1560). The reversed phase column used was nucleosil 5 µm C18. The 

flow rate was 1 ml/minute and the three solvents used were eluant A: 80 % 

methanol: 20 % 0.5 M ammonium acetate (ph 7.2), eluant B: 90 % 

acetonitrile: 10 % water, eluant C: 100 % ethyl acetate. Chlorophyll-a eluted at 

27 minutes, and analysis of peak area and retention time was used to quantify 

the pigment. The following equation was used for the identification of 

chlorophyll-a (Friend  2001): 

Pigment content (µg/g) = 
WxxRFx

xVxA
10005.0

10  

Where  A   = peak area from HPLC chromatogram 

            V   = volume of acetone extract (ml) 

            RF = response factor (3514 for Chlorophyll-a) 

            W = weight of sample (g DW)  

Chlorophyll-a content (µg/g) was then converted to concentration by area    

(mg m-2) by using the following equation: 

Chlorophyll-a concentration (mg m-2) = 
��
�

��
� −××

100
1 CBA  

where A = chlorophyll-a in µg/g, B = sediment wet bulk density (g cm-3), and  

C = sediment water content (%). 

 

Sediment carbohydrate concentration 

Sediment samples were freeze-dried prior to the determination of 

carbohydrate. Two different fractions of carbohydrate were determined: the 

colloidal fraction and EPS in the colloidal fraction (Underwood et al. 1995). In 

this procedure, 5 ml of saline water (25 o/oo) were added to 100–150 mg of 
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dry sediment. The samples were then left for 15 minutes at 20 °C, followed by 

centrifugation for 15 minutes at 2500 rpm. 1 ml of the supernatant (from 5 ml 

extract) was used for the determination of the colloidal fraction.  To obtain the 
EPS in the colloidal fraction, 7 ml of cold ethanol (2–4  °C) was added to 3 ml of 

the supernatant (from 5 ml extract) to a final concentration of 70 %. The 

sample was incubated overnight at 5 °C, followed by centrifugation for 15 

minutes at 2500 rpm. The supernatant was subsequently discarded and the 

pellets that contained EPS resuspended in 1ml of distilled water. Finally, the 

colloidal carbohydrate and EPS in the colloidal fraction was determined using 

the phenol-sulfuric acid assay with glucose as a reference (Dubois et al. 

1956). 

Water content 

The water content of the sediment was determined by drying 1–2 g of fresh 

sediment samples in an oven to constant weight for 24 hours at a temperature 

of 105 °C. The sediment water content (%) was calculated from the difference 

between wet and dry weight. The following formula was used to calculate the 

sediment water content: 

Water content (%) = 100×−
weightwetSample

weightdrySampleweightwetSample  

Wet bulk density 

To determine the sediment wet bulk density, fresh sediment was put in a 

plastic container under continued stirring until it was completely filled. The 

sample was weighed and the weight of the container was subtracted. The wet 

bulk density of the sample is the ratio of wet weight to wet total volume (here 

48 cm3). 

Organic content 

Organic content was determined by loss on ignition of 1–2 g dry sediment 

after combustion for one hour at 550 °C. The following formula was used to 

calculate the sediment organic content: 

Organic content (%) = 100
105

550105 ×
−

DW
DWDW  
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where  dry weight of sample after oven drying at 105 °C =105DW

            dry weight of sample after combustion at 550 °C  =550DW

Grain-size analysis 

Sediment samples were freeze-dried prior to the determination of grain-size 

distribution.  The  sediment  was  prepared  for  grain-size  analysis  by adding  

300 ml of tap water to 2.5 g of sediment and then adding 30 ml of 30 % v/v 

hydrogen peroxide (H2O2) to the sediment slurry. This removes organic 

material and thereby cleans the sediment particles. The sediment slurry was 

stored overnight in an oven (100 °C) to evaporate the H2O2.  Once cooled, the 

sediment slurry was sieved using a sieve with mesh size of 300 µm. On the 

fraction < 300 µm the determination was done by means of a Galai Cis-1 laser 

particle size analyzer, with a specific analytical size intervals of 1 µm. This 

analyzer is equipped with a module for measurements in the range between  

2 and 300 µm. For samples probed with the portable EROMES, grain size 

analyses were carried out by use of a Malvern Mastersizer/E laser-sizer after 

careful dispersion in 0.01 M Na2P4O7 and ultrasonic treatment for three 

minutes prior to analysis. 

Normalized water content 

It has been shown by Flemming and Delafontaine (2000) that water content 

increases with mud content: muddy sediments have a higher porosity than 

sandy sediments in contrast to expectation taking into account only the grain-

size. The relationship was observed to be site-specific reflecting different 

degrees of compaction. The same phenomenon has been observed for 

sediments taken from the upper mm (Riethmüller et al. 2000). Effects of 

sediment compaction (e.g. due to drying) can not directly be derived from the 

water contents when the mud content is changing accordingly. To 

compensate for this effect a site-specific reference for the relation between 

water and mud content has to be established. 

In the samples taken at the Dornmer Nacken, the described behaviour is 

also to be seen (see Figure. 3.1a). The saltmarsh site, Station A, has 

consistently lower water contents than most data from the other stations 
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reflecting the drying and consolidation due to longer emersion periods and 

energetically calmer conditions. Data from Station F showed a wide scatter 

which may be attributed to the small-scale variability in the hydrodynamic 

conditions caused by the blue mussel patches. A reference line (Water 

content predicted) between water and mud content for this study area was 

computed by a linear regression pooling the data from stations B, C, D and E: 

Water content predicted =  (0.4693 x mud content ) +  23.44 

 

To examine the effect of drying on sediment erodibility, a normalized water 

content was defined in the following way:  

Normalized water content (%) = 100×
predicted

measured

contentWater
contentWater  

 

Values above 100 % denote relatively loosened sediment with higher water 

content, whereas values below 100 % indicate compaction, e.g. due to drying. 

The normalized water content is dependent on the site-specific relationship 

between water content and mud content. Hence, it is not a universal variable 

but it can show the relative degree of compaction for given mud content.  

2.3.5. Microphytobenthos assemblages 

Another sub-sample of some 2 g weight was transferred immediately into 

10 ml glass receptacles with lid and in case of fixation covered with 4 % 

phormol approximately 1 cm above the sediment surface. For the light 

microscopy, the samples were filled up to 10 ml with demineralised water. 

After shaking carefully, a sample of 50 µl was taken out of the suspension, 

transferred onto a glass slide and covered with a cover slip. Five uniformly 

distributed traverses were counted out across the glass cover. Under these 

conditions, the benthic diatoms found can be approximately divided into 

apparently alive or dying individuals and empty valves, according to the 

condition of the protoplast. Taxonomical determination was performed using 

the keys of Hustedt (1930, 1959), Pankow (1990), Hartley (1996) and Tomas 

(1997). 
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2.3.6. Fecal pellet content 

Fecal pellets originating from Heteromastus filiformis at station D were 

determined by gentle wet-sieving of a sub-sample at 63 µm and examination 

of the retained material under microscope in order to estimate the fecal pellet 

content in this material. The retained material was subsequently given an 

ultrasonic treatment for 2 minutes and wet-sieved at 63 µm again in order to 

separate fecal pellet material, sand and shell-fragments. 

2.3.7. Benthic macrofauna 

After performing the erosion experiment, the upper 10 cm of the sediment 

was sieved using a sieve with mesh size of 0.5 mm and subsequently 

preserved in formaldehyde (4 % after dilution). The macrofauna species were 

identified and counted. It should be noted that the true density of the cockle 

derived from erosion core data was probably underestimated.  This is due to 

the fact that when cockles were present at or close to the edge of the cores, 

the sediment surface would often crack and the cores would be discarded for 

erosion experiment (Andersen et al. in review). 

2.3.8. Statistical analysis 

Pearson product moment correlation was used to investigate the 

correlation between the various parameters. One-way ANOVA (α = 0.05) was 

used to test differences in critical erosion shear stress and erosion rate 

between stations for each sampling period in 2002 (spatial differences) and 

between sampling dates (i.e. between June and September 2002) for each 

station (temporal differences). Prior to analysis, log (n+1)-transformations 

were made to satisfy the assumptions of normality and homoscedasticity 

(Fowler and Cohen 1997). A LSD (least significance difference) multiple 

comparison test was used to locate any spatial differences identified by 

ANOVA (α = 0.05). The significance of the difference in mean values between 

crests and troughs of the bedforms were statistically examined using the        

t-test.  

Stepwise multiple linear regression (SMR) models were constructed to 

examine sediment physical and biological parameters apparently correlating 

with critical erosion shear stress, and possibly regulating it. The models had 
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critical erosion shear stress as dependent variable, and mud content, 

normalized water content, chlorophyll-a, EPS, and the density of dominant 

macrofauna species as possible independent variables which might correlate 

with the dependent variable (Kocum et al. 2002).   

The statistical analysis focused on determining the relative effects of major 

physical and biological variables on critical erosion shear stress data. In 

order to achieve this, the stepwise multiple regression function of the 

Statistical Package for Social Sciences (SPSS) computer program (SPSS 

Inc., USA) was used.  This enabled construction of models to determine which 

combination of variables could best explain the most variation in critical 

erosion shear stress.  The minimum probability of F (pin) for a variable to enter 

the equation was set at 0.05 and probability of F to remove a variable (pout) 

from the equation was set at 0.1.  Prior to analysis, log (n +1)-transformations 

were made to satisfy the assumptions of normality distribution of the variable.  

Based on these criteria, stepwise multiple regression was used to develop the 

models, using the given set of initial variables, and to determine which 

variables were significantly correlated with the critical erosion shear stress. 

2.3.9. Sources of error 

•  Tolhurst et al. (2000b) noted that critical erosion shear stresses may 

changes during transport from the field to the laboratory and resting of 

the excavated cores. However, Comparison of the in situ with the 

laboratory measurement shows that the critical erosion shear stress 

derived from lab EROMES fall about the values derived from in situ 

portable EROMES of comparable chlorophyll-a concentration (Figure 

2.11). This suggests that the physical and biological properties and 

hence the strength of the sediment were negligible changed during 

transport, handling and storing (resting) under laboratory condition.  

•  Wet bulk density, water content, organic content, grain size distribution, 

chlorophyll-a, colloidal carbohydrate, and EPS values were determined 

from the samples obtained outside (direct neighborhood) of the each 

erosion core.  It was impossible to measure the properties of the same 

sediment used for the erosion measurement without disturbing the 

sample, and the resulting spatial heterogeneity could decrease 
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correlation between critical erosion shear stress and measured 

physical and biological sediment surface parameters.  The errors due 

to the difference in properties of sediment taken inside and outside of 

the erosion core have not been quantified. 

 

Figure 2.11. A plot of the chlorophyll-a concentration versus the critical 
erosion shear stress. Filled circles: EROMES in situ; diamonds: EROMES in 
the laboratory. 
 

•  Small-scale patchiness of biofilm, cracks and holes inside the erosion 

core might change the stability of surface sediment as erosions usually 

start from the cracks and holes. The magnitude of the errors due to the 

patchiness of biofilm, cracks, and holes are difficult to quantify. 

•  Errors in the determination of water content due to evaporation of the 

samples occurred during the weighing procedure (K. Wirth, personal 

communication). The decrease water content due to evaporation was 

estimated to be 0.002 %. This decrease is very small and hence 

negligible. 

•  The determination of wet bulk density is very sensitive to the 

homogenization during the filling procedure and it is important to 

ensure that the plastic container is completely filled. 

•  Scraping: 1 mm thickness is only by estimation. Increase or decrease 

of the vertical resolution of the scrapping method might change the 
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strength of the relationship between critical erosion shear stress and 

chlorophyll-a and carbohydrate concentration.  Errors in the thickness 

could have been as much as ± 1 mm (i.e. the thickness of the spatula 

used to take the scrape samples). 

•  Grain-size analysis comparison for selected samples revealed that 

values derived from laser particle size analyzer (Galai CIS) agree 

reasonably well with those derived from sieving method: the difference 

for fraction <63 µm was found to be less than 6 %. 

•  Homogenization of the sub-samples. The errors due to homogenization 

process are examined by plotting wet bulk density against water 

content. As shown in Figure 2.12, the correlation between wet bulk 

density and water content is very good (r = 0.97) and it agrees 

reasonably well with the theoretical curve of the relationship between 

wet bulk density and water content for quarzt sand with density of   

2.65 g cm-3. This suggests that the errors due to homogenization were 

very small. 

 

 

Figure 2.12. A plot of the wet bulk density versus water content present in the 
upper 1 mm sediment surface. 
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•  The errors in determination of chlorophyll-a using HPLC may arise 

during extraction, injection to HPLC, analysis and interpretation of the 

peak area from HPLC chromatogram. The magnitude of the errors is 

estimated to be ± 5 % (K. Heymann, personal communication). 
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CHAPTER 3 

GENERAL FEATURES OF THE DATA 

The purposes of this chapter are: 

– to present an overview of the data 

– to show the general relationships between the different parameters, e.g. 

which ones are so close related that only the one which is considered as 

functionally more important will be considered further (e.g. EPS and 

colloidal carbohydrate, Water content and wet bulk density, mud content 

and water content and organic content ). 

– to describe evident structures (e.g. site specific dependencies) which will 

be discussed in more detail in the following chapters. 

– to get an idea of the main processes 

– to formulate hypotheses which will be considered further in the following 

chapters. 

3.1. Sediment surface parameters  

The mean values with standard errors of wet bulk density, water content, 

normalized water content, mud content, median grain-size, organic content, 

chlorophyll-a, colloidal carbohydrate, EPS concentration, critical erosion shear 

stresses and EROMES erosion rates are listed in Table 3.1. This table gives a 

general overview of data collected in June and September 2002 where all 

stations were sampled in a comparable way. The corresponding data for 

Stations B, C, E, and F in 2001 are listed in Appendix 1. The data presented 

in table 3.1 will be discussed in detail in chapter 5. 

To show the relationships between the different parameters, data from 

2001 and 2002 were considered together since no temporal differences in the 

relationships could be detected. The relationship between mud content and 

water content, chlorophyll-a and EPS concentration are shown in Figure 3.1.  

In general, the water content increased with increasing the mud content 

(Figure 3.1a) as discussed already in chapter 2 (section 2.3.4). However, no 

clear relationship between the mud content and the chlorophyll-a and EPS 

concentration was observed.   
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Table 3.1. Critical erosion shear stress, erosion rate and determined physical 
and biological properties of surface sediment at stations A – F in June (J) and 
September (S) 2002 (mean ± S.E, n = 4–14). 
 

      
Date 

 
StationA 

 
 Station B 

 
Station C 

 
Station D 

 
Station E      

 
 Station F 

 
Critical shear 
stress (N m-2) 
 

 
J 
 

S 
 

 
1.10 ± 0.46 

1.53 ± 0.39 

 
0.58 ± 0.05   

0.60 ± 0.04 

 
0.52 ± 0.12 

1.54 ± 0.27 

 
0.36 ± 0.09 

1.04 ± 0.12 

 
0.54 ± 0.09 

1.34 ± 0.37 

 
1.16 ± 0.19 

2.39 ± 0.28 

  
Erosion rate 
(g m-2 s-1) 

 
J 
 

S 

 
0.24 ± 0.12 

 
0.07 ± 0.04 

 
1.73 ± 0.29 

 
1.42 ± 0.80 

 
0.69 ± 0.09 

 
0.04 ± 0.03 

 
0.50 ± 0.11 

 
0.59 ± 0.31 

 
1.58 ± 0.63 

 
0.88 ± 0.62 

 
0.15 ± 0.04 

 
0.01 ± 0.01 

 
Wet bulk 
density  
(g cm-3) 
 

 
J 
 

S 

 
1.63 ± 0.01 

1.65 ± 0.04 

 
1.76 ± 0.04 

1.71 ± 0.01 

 
1.85 ± 0.02 

1.63 ± 0.01 

 
1.69 ± 0.01 

1.55 ± 0.04 

 
1.83 ± 0.01 

1.61 ± 0.06 

 
1.65 ± 0.04 

1.50 ± 0.04 

Water content 
(%) 
 

J 
 

S 
 

42 ± 1.1 

40 ± 2.7 

34 ± 1.5 

36 ± 0.2 

27 ± 0.9 

39 ± 0.0 

37 ± 0.5 

46 ± 2.6 

28 ± 0.7 

42 ± 5.1 

40 ± 2.0 

50 ± 2.7 

Normalized 
Water content 
(%) 

J 
 

S 

81 ± 2 

80 ± 2 

98 ± 3 

102 ± 2 

83 ± 2 

104 ± 1 

86 ± 3 

108 ± 4 

93 ± 2 

120 ± 3 

98 ± 4 

122 ± 5 
 
Mud content 
(%) 
 

 
J 
 

S 

 
60 ± 1 

55 ± 4 

 
23 ± 1 

26 ± 2 

 
19 ± 1 

29 ± 1 

 
42 ± 3 

40 ± 3 

 
15 ± 1 

25 ± 7 

 
38 ± 6 

37 ± 3 

Median grain-
size (µm) 

J 
 

S 
 

50 ± 1 

58 ± 7 

101 ± 1 

97 ± 2 

118 ± 2 

97 ± 1 

80 ± 5 

81 ± 3 

128 ± 2 

113 ± 10 

104 ± 12 

98 ± 6 

Organic 
content (%) 
 

J 
 

S 
 

3.4 ± 0.2 

5.5 ± 0.6 

2.4 ± 0.1 

3.6 ± 0.1 

2.2 ± 0.1 

4.6 ± 0.1 

3.0 ± 0.1 

5.1 ± 0.5 

2.0 ± 0.1 

4.6 ± 0.9 

4.3 ± 0.6 

6.2 ± 0.4 

Chlorophyll-a  
(mg m-2) 
 

J 
 

S 

39 ± 6 

57 ± 2 

48 ± 7 

48 ± 2 

83 ± 8 

160 ± 18 

14 ± 1 

41 ± 4 

50 ± 6 

72 ± 6 

93 ± 4 

91 ± 2 

Colloidal 
carbohydrate 
(mg m-2) 

J 
 

S 

 878 ± 188 

1424 ± 320 

836 ± 0 

 1835 ± 
115 

1600 ± 25 

3505 ± 525 

173 ± 42 

1016 ± 182 

928 ± 161 

2475 ± 105 

1557 ± 164 

3102 ± 556 

 
EPS (mg m-2) 
 

 
J 
 

S 

 
163 ± 45 

363 ± 77 

 
144 ± 0 

352 ± 32 

 
217 ± 15 

982 ± 205 

 
27 ± 7 

204 ± 30 

 
113 ± 23 

784 ± 111 

 
318 ± 41 

  877 ± 164 
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Figure 3.2 shows the relationship between EPS concentration and 

chlorophyll-a concentration and normalized water content. EPS generally 

increased with increasing chlorophyll-a but the relationships between these 

two parameters were not strong except at stations C and D. No correlation at 

all between EPS and chlorophyll-a was observed at station B. These results 

suggest that the variation of EPS was not solely controlled by the abundance 

of   microphytobenthos (measured as chlorophyll-a concentration). EPS 

increased with decreasing normalized water content at station A.  An opposite 

trend was observed at station E. No clear relationship between EPS and 

water content was observed at other stations. 

 

  

 

  

 
Figure 3.1.  Scatter plots of mud content versus (a) water content, (b) 
chlorophyll-a, and (c) EPS present in the upper 1 mm sediment surface.   
 
 

 

 

 

Figure 3.2. Scatter plots of EPS versus (a) chlorophyll-a and (b) normalized 
water content present in the upper 1 mm sediment surface.   
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As parameters such as wet bulk density, water content, median grain size, 

and mud content was highly correlated (see Appendix 3), only one of them 

which considered as functionally more important will be considered further.  In 

this case only mud content will be considered further. Similarly, colloidal 

carbohydrate and EPS was highly correlated and only EPS will be considered 

further due to EPS has been regarded as a functionally closer proxy to biofilm 

stability (Paterson 1994). 

 

 

 

Figure 3.3. Scatter plots of critical erosion shear stress versus (a) chlorophyll-
a, (b) EPS, (c) mud content, and (d) normalized water content present in the 
upper 1 mm sediment surface. The data with arrows were omitted in the linear 
regression analysis because the upper limit of the erosion device was 
reached.  
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The relationships between critical erosion shear stress and chlorophyll-a, 

EPS concentration, mud content and normalized water content are shown in 

Figure 3.3. The critical erosion shear stress generally increased with 

increasing chlorophyll-a and EPS concentration but the slopes of the increase 

differed from station to station. Critical erosion shear stress seems to be 

uncorrelated with the mud content. Critical erosion shear stress increased with 

decreasing normalized water content at station A. This relationship was 

unique to station A. The relationships between critical erosion shear stress 

and normalized water content were not clear at other stations (Figure 3.3d).  

The relationships between the station mean erosion rate and critical 

erosion shear stress are shown in Figure 3.4.  Erosion rate decreased with 

increasing critical erosion shear stress both in June and September 2002.  

The observed negative correlation between erosion rate and critical erosion 

shear stress is obviously due to the fact that as the surface of the sediment 

becomes more resistant to erosion, the erosion also is influenced.  

 

 
 

 

Figure 3.4. Scatter plots of the station mean erosion rate versus critical 
erosion shear stress in June and September 2002. 
 

Figure 3.5 shows the relationships between erosion rate and chlorophyll-a, 

EPS concentration, mud content and normalized water content.  In general, 

the erosion rates seem to be uncorrelated with chlorophyll-a, EPS 

concentration, mud content and normalized water content. The observed low 

values at high chlorophyll-a, EPS concentration, and mud content are simply 

due to the station specific behavior.   
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Figure 3.5. Scatter plots of erosion rate versus (a) chlorophyll-a, (b) EPS, (c) 
mud content, and (d) normalized water content present in the upper 1 mm 
sediment surface.  

 
 
3.2. Comparison between surface (1 mm) and depth integrated (0–5 cm) 

sample 

The relationship between mud content and water content for sediment 

taken at the upper most layer (1 mm) and subsurface layer (0–5 cm) are 

shown in Figure 3.6. With comparable amount of mud content, the water 
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contents of subsurface sediment were lower than those at upper 1 mm layer 

suggesting that subsurface sediments were more consolidated. It should be 

noted that the scatter of the surface (upper 1 mm) data was due to the specific 

of the different stations. The scatter was comparably low for the subsurface 

data (upper 0–5 cm). The upper 0–5 cm points with very high mud content 

stem from the station A. These points did not show increase of water content 

with mud content due to the effect of drying at station A. 

 

Figure 3.6. Comparison of the relationship mud content/water content 
between upper 1 mm and 0–5 cm sediment surface. 
 
 

3.3. Microphytobenthos assemblages  

About 42 species of microphytobenthos were identified but eight epipelic 

benthic diatom species dominated all samples: Cylindrotheca gracilis, 

Navicula A, Navicula B, Nitzschia A, Nitzschia closterium, Melosira westii, 

Cymatosira belgica, and Gyrosigma fasciola. The dominant microphyto-

benthos species at each station during the study is given in Table 3.2. 
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Table 3.2.  The dominant microphytobenthos species at stations A– F  in 2001 
and 2002. 
 

Station A 
 
– 

– 

– 

– 

– 

– 

– 

– 

– 

Cylindrotheca 

gracilis 

Navicula B 

Nitzschia closterium 

 

Station B 
 

Navicula B 

Nitzschia closterium 

Melosira westii 

Station C 
 

Nitzschia A 

Merismopedia A 

Merismopedia B 

 

Station D 
 
– 

– 

– 

– 

– 

– 

– 

– 

Nitzschia closterium 

Navicula B 

 
 

Station E 
 

Cymatosira belgica 

Amphora A 

Navicula A 

 

Station F 
 

Gyrosigma fasciola 

Navicula A 

Merismopedia A 

 

3.4. Benthic macrofauna 

The density of dominant macrofauna species in the erosion cores at each 

station during 2002 is given in Table 3.3. The result of benthic macrofauna 

analysis in 2001 is given in Appendix 2.  The dominant species can be divided 

into four functional groups, i.e. subsurface bivalves (Macoma baltica, 

Cerastoderma edule), epibenthic gastropods (Hydrobia ulvae), tube building 

worms (Capitella capitata, Heteromastus filiformis, Lanice conchilega, 

Pygospio elegans, and Tubificoides benedeni), and subsurface vagile 

sediment dwellers (Eteone longa, Hediste diversicolor, and Tharyx 

killariensis).   

Hydrobia ulvae has been shown to destabilize surface sediments through 

their grazing and tracking activities and fecal pellet production (Blanchard      

et al. 1997, Andersen 2001b). The impact of Macoma baltica on sediment 

erodibility was primarily due to bioturbation and feeding on the surface 

sediment, which loosened the surface and increase surface roughness 

(Widdows et al. 1998c). Tube building worms may stabilize sediment by 

binding particles with secretions used to construct their tube (Yingst and 

Rhoads 1978). 
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Table 3.3.  The average density (individual m-2) of dominant macrofauna 
species in June (J) and September (S) 2002 at the study site. (□) highest 
density of species on stations A– F].  
 

 
 

 

 

  

In 2002, the tube building worms Heteromastus filiformis, Pygospio 

elegans, and Tubificoides benedeni, and bivalve Macoma baltica occurred 

commonly over the entire sampling stations and represented a major part of 
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the total number of macrofauna.  Other species such as Hydrobia ulvae was 

present only at station A and B and absent at other stations. Hydrobia ulvae 

and Macoma baltica observed at station A were probably imported from the 

outer nearby areas (e.g. station B) during the spring tide floods. Lanice 

conchilega was only present at stations D and F and absent at other stations.  

Cerastoderma edule was abundant at station B and D both in June and 

September.   

The mean density of Cerastoderma edule was higher in June than in 

September 2002 at station B. An opposite trend was observed at station D.  

The mean densities of Heteromastus filiformis were higher in September than 

in June 2002 at all stations. In contrast, the densities of Macoma baltica were 

lower in September than in June 2002 at all stations except stations A and B. 

Hydrobia ulvae was more abundant in September than in June 2002 at station 

B but opposite trend was observed at station A (Table 3.3). 

 

 
 

 

Figure 3.7.  Scatter plots of Hydrobia ullvae density versus chlorophyll-a 
concentration at stations A and B. 

 

The relationships between Hydrobia ulvae density and chlorophyll-a 

concentration at stations A and B are shown in Figure 3.7. The chlorophyll-a 

concentration decreased with increasing Hydrobia ulvae density at station A.  

This trend was not observed at station B. At this station, high values of 

chlorophyll-a were only found at low Hydrobia ulvae densities.  By contrast, a 

broad range of chlorophyll-a values was observed at high Hydrobia ulvae 

 53



densities. There was no correlation between Macoma baltica density and 

chlorophyll-a concentration (Figure 3.8).  

 

 
 
Figure 3.8. Scatter plots of Macoma baltica density versus chlorophyll-a 
concentration at the study site. 
 

3.5. Comparison with abiotic sediment erosion 

The measured critical erosion shear stresses can be compared to the 

critical erosion shear stress of abiotic non-cohesive sediment, which can be 

determined from knowledge of grain density and size and the fluid properties 

by using one of the version of the Shields parameters.  Here, the threshold 

Shields parameter for cohesionless grains θcr was calculated using a formula 

proposed by Soulsby and Whitehouse (1997): 
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With the Shields parameter the abiotic non-cohesive sediment critical erosion 
shear stress (τcr-Shields) can be calculated as follows: 
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 ( )[ ]dgsShieldscr cr ρρθτ −=−  

where ρ  and  are fluid and sediment density, respectively, s = ,  g is 

acceleration due to gravity, d is grain diameter, and 

sρ ρρ /s

ν  is kinematic viscosity of 

water. For this purpose,  was taken as 2650 kg m-3, sρ ρ  as 1027 kg m-3, g as 

9.81 m s-2 and ν  as 1.36 x 10-6 m2s-1. 

 

 

Figure 3.9.  Measured critical erosion shear stress in 2002 (mean ± SE) and 
compared to sShieldcr −τ  of quartz grain in seawater of 10 oC and salinity    
35 o/oo (Soulsby and Whitehouse 1997). 

 
 

As shown in Figure 3.9, critical erosion shear stresses at all stations fall 

above Shields predicted values and the divergence can not solely be 

attributed to difference in erosion threshold criteria. The discrepancy between 

the measured critical erosion shear stress and abiotic non-cohesive sediment 

values is most likely caused by the existence of benthic diatoms.  Even in the 

sand flat with lack of visible diatom biofilm, Lelieveld et al. (2003) still found an 

increase of sediment critical shear stress relative to abiotic sediment by up to 

factor of 14, highlighting that visible diatom biofilms are not a prerequisite for 

measurable sediment stabilization. In this case the stabilization is most likely 

due to gluing by sessile diatoms which do not form a bioflim.  
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The differences in critical erosion shear stress between natural sediment 

and abiotic sediment may be also caused by the effect of cohesiveness 

associated with natural sediments, which will increase the critical shear stress.  

As suggested by Mitchener and Torfs (1996), the mode of erosion changes 

from cohesionless to cohesive behaviour at low mud contents (< 62.5 µm) 

added to sand, with a transition occurring in the region 3 % to 15 % mud by 

weight.  The mud content of sediment at all stations were above the transition 

region of 3–15 % suggested by Mitchener and Torfs (1996) to impart 

cohesive properties on sediment.  

Differences in critical erosion shear stress between natural and abiotic 
sediments have been often expressed in terms of a biostabilization index,     
SB = [ )(/)( Shieldsmeasured crcr ]ττ  (e.g. Manzenrieder 1983). This index (SB ) 
represents the discrepancy in critical erosion shear stress relative to abiotic 
value and provides a platform for analyzing the biological effects. The 
denominator in the formula to calculate SB need not necessarily be the Shields 
critical shear stress, and some workers use wintertime (i.e. minimum 
biological influence) values (Grant et al. 1982) or laboratory determined 
values on sterilized sediment (Grant and Gust 1987). Here, the biostabilization 
index SB, was calculated from the ratio of mean critical erosion shear stress at 
each station (τcr measured) during 2002 to critical shear stress for cohesionless 
grain (τcr Shields) or Shields predicted values presented in Figure 3.9.  The way 
to calculate the biostabilization index SB, is similar to that of Friend et al. 
(2003b). Noted that Shields curve presented in Figure 3.9 was used to 
calibrate the EROMES. 

The highest SB was 11.6 at station A, whereas the lowest index of 4.2 

occurred at station B. A comparison of these biostabilisation indices with 

indices from other studies is somewhat difficult due to the different methods to 

calculate the biostabilisation indices. For example, Yallop et al. (1994) 

reported a biostabilization index of 2.9 for intertidal mudflat sediment at 

Portishead in the Severn Estuary, UK. These authors calculated the 

biostabilization index from the ratio of sediment with visible biofilm to sediment 

with non-biofilm. The value derived from such method is likely to be an 

underestimate because although biofilm formation was not apparent this does 

not suggest a lack of biotic activity (Yallop et al. 1994). 
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3.6. Conclusions 

•  The mud content was strongly correlated with the water content, which 

water content increased with increasing mud content. However, the mud 

content seems to be uncorrelated with either the chlorophyll-a or EPS 

concentration. 

•  The EPS concentration was strongly correlated with the chlorophyll-a 

concentration at stations C and D but in most cases the relationships 

between these parameters were weak. 

•  The critical erosion shear stress generally increased with increasing 

chlorophyll-a and EPS concentration but the slopes of the increase 

differed from station to station. 

•  The increase in critical erosion shear stress with decreasing normalized 

water content was unique to station A. In most cases no correlation 

between these parameters was observed. 

•  The erosion rate generally decreased with increasing critical erosion 

shear stress. The erosion rate seems to be uncorrelated with the 

chlorophyll-a, EPS, mud content, and normalized water content. 

•  Sediments taken at subsurface layer (0–5 cm) were more consolidated 

compared to those taken at upper 1 mm layer. This was reflected by the 

lower increase of water content with mud content for sediment taken at 

0–5cm layer. 

•  The microphytobenthos at the study site was dominated by epipelic 

diatom. 

•  The dominant benthic macrofauna at the study site can be divided into 

four functional groups, i.e. subsurface bivalves, epibenthic gastropods, 

tube building worms, and subsurface vagile sediment dwellers. 

•  The measured critical erosion shear stresses fall above the abiotic 

sediment values, giving a biostabilization index of 4.2 to 11.6. 

Differences in critical erosion shear stress between natural and abiotic 

sediments are likely caused by the effect of biostabilization and by 

cohesive behaviour of natural sediments. 
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The formulated hypotheses below will be considered in the next chapters: 

•  Small-scale variations of critical erosion shear stress and erosion rate 

are influenced mainly by microphytobenthos (chapter 4). 

•  Small-scale variations of critical erosion shear stress and erosion rate 

are influenced directly or indirectly by benthic macrofauna (chapter 4). 

•  Physical processes of drying influences small-scale variations of critical 

erosion shear stress (chapter 4). 

•  Erosion characteristics and physical and biological properties of surface 

sediment are affected by the presence of geomorphological structures 

(bedforms) (chapter 4). 

•  There is a synergistic effect of physical processes (i.e. drying) and 

biological processes (i.e. biostabilization) on sediment surface stability 

(chapter 4). 

•  Spatial and temporal variation of critical erosion shear stress and 

erosion rate of surface sediment are controlled mainly by micro-

phytobenthos (chapter 5).   

•  Spatial and temporal variation of critical erosion shear stress and 

erosion rate of surface sediment are influenced directly or indirectly by 

benthic macrofauna (chapter 5). 

•  Emersion period affects sediment surface erodibility (chapter 5). 

•  Mud content affects critical erosion shear stress and erosion rate of 

surface sediment (chapter 5). 

•  Critical erosion shear stress can be predicted satisfactory from 

chlorophyll-a concentration alone (chapter 6). 

•  Critical erosion shear stress can be predicted better by a combination of 

two or more potential proxies (chapter 6). 
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CHAPTER 4 

SMALL-SCALE (WITHIN STATION) VARIATION OF SEDIMENT 

ERODIBILITY 

4.1. Introduction 

The physical and biological parameters that affect sediment erodibility (e.g. 

EPS production, drying, and macrofaunal grazing) can change significantly on 

spatial-scales of a few meters to a few kilometers. Therefore, small and large-

scale variations in erodibility can be expected due to these changes. This 

chapter is set out to determine the small-scale variations of sediment 

erodibility within a 10-m radius of a permanent marker at each station. A 

better understanding of those and the processes that cause the variations is 

expected also to elucidate the large-scale variations of sediment erodibility at 

the study site. 

We start with the microphytobenthos since this is the most obvious effect 

on sediment erodibility variations as shown in Chapter 3, then followed by the 

effects of benthic macrofauna, drying, and geomorphological structures. The 

effect of cockle Cerastoderma edule and polychaetes worm Heteromastus 

filiformis was studied in more detail because these two species are abundant 

benthic species at many tidal flats and no studies have specifically aimed at a 

determination of these species effect on sediment erodibility. This specific 

study was carried out at station D where Cerastoderma edule and 

Heteromastus filiformis were observed to be abundant during the period of 

this study.  

In this study, data set from 2001 and 2002 are included since no temporal 

difference in the relationships of between parameters could be detected. 

Major questions addressed are: (1) Does small-scale variation of sediment 

erodibility mainly influenced by microphytobenthos? (2) Is sediment erodibility 

related to other sediment parameters such as mud content or normalized 

water content in the sediment? (3) Does benthic macrofauna have influential 

role on the small-scale variation of sediment erodibility? (4) Is there any 

synergistic effect of physical processes and biological processes on sediment 

stability? (5) Does the presence of geomorphlogical structures (bedforms) 

affect the sediment erodibility? 
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4.2. Results 

The widest range of critical erosion shear stress for erosion was observed 

at station F with a range of 0.25–3.70 N m-2, while the narrowest range of    

the values were measured at station B with a range of 0.35 – 0.75 N m-2.     

The critical erosion shear stresses varied from 0.35 to 3.70, 0.35 to 2.20,    

0.15 to 1.78, 0.20 to 2.50 N m-2 at station A, C, D, and E, respectively. The 

widest range of erosion rate was observed at station E with a range of          

0 – 5.812 g m-2 s-1.  The narrowest rate was observed at station A with a range 

of 0 – 0 .736 g m-2 s-1. A wide range of erosion rate was also observed at 

stations B (0.093–5.355 g m-2 s-1) and C (0 – 5 .416 g m-2 s-1). Similar to 

station A, the erosion rates did not vary much at stations D (0.033–1.161 g m -2 s-1)

 and F (0 – 0 .993 g m-2 s-1). 

4.2.1. Effect of microphytobenthos 

Critical erosion shear stress increased with increasing chlorophyll-a 

concentration at all stations (Figure 3.3a) and the relationships between these 

variables were significant at all stations except stations A and B (Appendix 4, 

5 and 6). However, the strength of the relationships between critical erosion 

shear stress and chlorophyll-a differed from station to station. The correlations 

were high at stations C (r = 0.88), D (r = 0.83), and E (r = 0.65) but relatively 

low at stations A (r = 0.49), B (r = 0.51) and station F (r = 0.59).  The slopes of 

the increase in critical erosion shear stress with increasing chlorophyll-a also 

differed from station to station. For example, the increase of critical erosion 

shear stress with chlorophyll-a was much steeper at station D compared to 

that at station C (see Figure 3.3a). 

Critical erosion shear stress were also significantly correlated with colloidal 

carbohydrate and EPS concentrations at all stations except station B 

(Appendix 4, 5 and 6 and Figure 3.3b). Similar to chlorophyll-a, the correlation 

between critical erosion shear and colloidal carbohydrate and EPS was highly 

site specific. For example, the slope of the increase critical erosion shear 

stress with EPS was much higher at station D (0.0035) than at station C 

(0.0013). 
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A significant negative correlation was found between the erosion rate and 

chlorophyll-a at station E (r = 0.54, P < 0.01). At station F, the erosion rate 

was negatively correlated with chlorophyll-a (r = 0.87, P < 0.01), colloidal 

carbohydrate (r = 0.64, P < 0.01) and EPS (r = 0.58, P < 0.01, Appendix 6).  

No significant correlation between the erosion rate and either chlorophyll-a, 

colloidal carbohydrate or EPS was found at other stations. 

 

4.2.2. Effect of benthic macrofauna 

Hydrobia ulvae 

The density of mud snails, Hydrobia ulvae, was positively correlated with 

erosion rate at station A (r = 0.93, P < 0.01; Figure 4.1). This means that a 

high erosion rate is related to a high density of Hydrobia ulvae and vice versa.  

It was expected that Hydrobia ulvae and Cerastoderma edule present with 

high densities at station B would have a direct significant effect on the 

variations of erodibility of surface sediment. However, no direct effects of 

these macrofauna on variations of either erosion shear stress or erosion rate 

were observed there.  There was a negative correlation between chlorophyll-a 

and the density of Hydrobia ulvae at station A (Figure 3.7) 

Macoma baltica 

Specifically, there was no significant direct effect of bioturbator Macoma 

baltica on either critical erosion shear stress or erosion rate at any station. 

While a decrease in the chlorophyll-a concentration was observed with the 

density of Hydrobia ulvae at station A, there was no correlation between 

chlorophyll-a concentration and Macoma baltica density at any station (Figure 

3.8). This was also true for all other macrofauna species listed in Table 3.3. 

Patches of Mytilus edulis 

Sediment parameter such as normalized water content and mud content 

varied considerably at station F.  These large variations were attributed to the 

small-scale variability in the hydrodynamic conditions caused by the presence 

of blue mussel patches.   
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Figure 4.1.  Scatter plot showing the relationship between erosion rate and 
density of Hydrobia ulvae at station A. 
 
 
Cerastoderma edule and Heteromastus filiformis  

The results show that there was no correlation between the critical erosion 

shear stress and the density of Cerastoderma edule and Heteromastus 

filiformis This was also true for the erosion rate. Fecal pellets from 

Heteromastus filiformis were observed in all samples with a content between 

8 and 24 % by weight. Grain-size analyses carried out on disaggregated 

pellets from Heteromastus filiformis revealed that the texture of the pellets 

with a mud content of about 77 % was significantly finer than that of surface 

sediments (41 %). This fine-grained material is obviously picked up by the 

worm at depths of about 10 to 30 cm and the result is a pronounced decline in 

the mud content at this depth (Figure 4.2).  

 

 

4.2.3. Effect of drying 

The degree of drying was estimated by the computed normalised water 

contents. At all stations outside the saltmarsh, no correlation between 

normalized water content and erosion parameters was detected. Only at 
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station A, the erosion shear stress was negatively correlated with normalized 

water content of sediment (r = 0.83, P < 0.01, Figure 3.3d). 
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Figure 4.2.   The vertical variation of the mud-content at station D. The 
decrease with depth is assigned to the conveyor-belt feeder H. filiformis. 
            
 
 
4.2.4. Effect of geomorphological structures 

To examine the effect of geomorphological structures (bedforms) on small-

scale variation of sediment erodibility, the data was sorted into samples 

collected from the crests and troughs of the bedforms at each station. Here 

only data from 2002 was used. The critical erosion shear stresses and erosion 

rates at station D were determined by means of the portable EROMES, while 

at the other stations critical erosion shear stresses and erosion rates were 

determined by means of the Lab EROMES.  It should be noted again that the 

erosion rates reported here are calculated as the average erosion rate for the 

bed shear stress increments from 0.5 to 1.0 N m-2 for station D and from 1.0 

to 2 N m-2 for other stations. Results clearly indicate an effect of these 

geomorphological structures on the sediment erodibility.   
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Critical erosion shear stress and erosion rate 

Sediments on the crests had generally higher critical erosion shear 

stresses and lower erosion rates than those in the troughs.  The mean erosion 

shear stresses and erosion rates on the crests and in the troughs at each 

station are shown in Figure 4.3.  The results of the statistical significance tests 

between crests and troughs for critical erosion shear stress, erosion rate and 

physical and biological sediment parameters are listed in Table 4.1.   

  

Table 4.1.  Level of significance of the difference between crests and troughs 
for critical erosion shear stress, erosion rate and physical and biological 
sediment parameters [ns: not significant (P > 0.05), based on t-test]. 
 

  

Station A 

 

Station B 

 

Station C 

 

Station D

 

Station E 

 

Station F 

 

Critical erosion stress 

 

P < 0.05 

 

ns 

 

ns 

 

ns 

 

P < 0.05 

 

ns 

Erosion rate P < 0.05 ns ns P < 0.05 P < 0.05 P < 0.05 

Median grain-size ns ns ns ns ns P < 0.05 

Mud content ns ns ns ns ns ns 

Chlorophyll-a P < 0.05 P < 0.05 ns ns P < 0.01 P < 0.01 

Colloidal carbohydrate P < 0.01 ns ns ns P < 0.05 ns 

EPS P < 0.01 ns ns ns P < 0.05 ns 

Wet bulk density  P < 0.01 ns ns ns ns ns 

Norm. Water content P < 0.05 ns ns ns ns ns 

Organic content  ns ns ns ns ns ns 

 
 

Crests had significantly higher critical erosion shear stresses than troughs 

at station A (P < 0.05) and station E (P < 0.05), but not at stations B, C, D and 

F. Differences were also observed in the erosion profiles of the crests and 

troughs, with crests tending to have shallower erosion profiles at all stations.  

Note that only selected stations where crests and troughs showed quite 
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pronounced difference in erosion profile are shown (Figure 4.4).  Erosion   

rates were significantly lower on the crests than in the troughs at station A    

(P < 0.05), D (P < 0.05), E (P < 0.05), and F (P < 0.01), but no significant 

difference was observed at station B and C, although erosion rates were lower 

on the crests than in the corresponding troughs.  

 

 
 

 

Figure 4.3. (a) Critical erosion shear stress and (b) erosion rate on the crests 
and in troughs at each station (mean ± S.E, n = 4–11).   
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Chlorophyll-a, colloidal carbohydrate, and EPS 

Figure 4.5 shows the mean chlorophyll-a and EPS concentrations on the 

crests and in the troughs at the stations. Crests contained significantly higher 

chlorophyll-a than troughs at station A (P< 0.05), B (P < 0.05), E (P < 0.01) 

and station F (P < 0.01).  There was no significant difference in chlorophyll-a 

concentration between crests and troughs at station C and D, although the 

concentrations were higher on the crests than in the troughs.   

Crests had significantly higher colloidal carbohydrate contents than troughs 

at station A (P < 0.01) and E (P < 0.05) but the content was not significantly 

different at station C, D and F. Colloidal carbohydrate was slightly higher on 

the troughs than crests at station B but the difference was not significant. 

Similarly, EPS concentrations were significantly higher on the crests than in 

the troughs at station A (P < 0.01) and E (P < 0.05) but not significantly 

different at station B, C and F. 

 

 
 

  

Figure 4.4.  The average erosion profiles derived by EROMES erosion 
analysis of sediment on the crests and troughs at station A, E, and F (mean   
± S.E, n = 4–10). 
 

Grain-size, normalized water content, wet bulk density, and organic content 

The mean mud content (fine-grain fraction < 63 µm) and normalized water 

content are shown in Figure 4.6. No significant difference in mud content and 

median grain-size between crests and troughs was observed at any of the 

stations except station F (P < 0.05, Table 4.1).   

There was a significant difference between crests and troughs with respect 

to normalized water content and wet bulk density at station A (P < 0.05,         

 66



P < 0.01, respectively), with the crests being drier and denser than the 

troughs. No significant difference was observed between crests and troughs 

at the other five stations with respect to these parameters. No significant 

difference in organic content between crests and troughs was observed at any 

of the stations. 

 
Figure 4.5.  (a) Chlorophyll-a and (b) EPS concentration of surface sediment 
on the crests and troughs at each station (mean ± S.E, n = 4–11). 
 

 

 

 

 
Figure 4.6. (a) Mud content and (b) normalized water content of surface 
sediment on the crests and troughs at each station (mean ± S.E, n = 4–11).  
 

4.3. Discussion 

4.3.1. Effect of microphytobenthos 

Critical erosion shear stress generally showed stronger correlation         

with chlorophyll-a, colloidal carbohydrate, and EPS than other sediment 
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parameters. These results indicated that the variations in erodibility at each 

station were controlled to a large degree by microphytobenthos present (in 

this environment mainly consisting of benthic diatoms). A similar influence of 

microphytobenthos has been found in many studies, which are listed in the 

introduction (see chapter 1).  

On the other hand, the correlation between chlorophyll-a concentration and 

sediment erodibility is highly site specific. This was also observed in previous 

studies and ascribed to the differences in e.g., sediment texture, shelter and 

biotic community structure as supposed by Riethmüller et al. (2000) and 

demonstrated by Defew et al. (2002). The weak correlations between critical 

erosion shear and chlorophyll-a and EPS observed at some selected stations 

(e.g. stations B and F) can be attributed to the influence of other physical and 

biological factors that contribute some of the variations in the data. The 

influences of these factors may be indirect and non-linear. The differences in 

slopes of increase in critical erosion shear with chlorophyll-a or EPS can also 

be attributed to the influences of these factors. 

 

4.3.2. Effect of benthic macrofauna 

The direct effect of benthic macrofauna on the sediment erodibility was only 

locally detectable and less dominant compared to the effect of 

microphytobenthos.   

Hydrobia ulvae 

The mud snail Hydrobia ulvae was the only analyzed benthic macrofauna 

significantly correlated to sediment erodibility at station A: the erosion rate 

increased at this station with increasing density of Hydrobia ulvae (Figure 4.1). 

From the literature, Hydrobia ulvae can enhance erodibility directly by moving 

through the surface sediment and by loosening the sediment through 

pelletization of the surface material (Blanchard et al. 1997, Andersen 2001a). 

It is also likely that Hydrobia ulvae indirectly affect the sediment erodibility 

at station A by reducing the stabilizing effect of microphytobenthos (Austen et 

al. 1999). This was supported by the fact that microphytobenthos biomass 

(measured as chlorophyll-a) decreased with increasing Hydrobia ulvae 

densities at station A (Figure 3.7). 
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 The correlation between chlorophyll-a and critical erosion shear stress was 

low at station B. This was probably due to the small range of the chlorophyll-a 

concentration at this station. High density of Hydrobia ulvae was probably 

responsible for the low microphytobenthos biomass (measured as chlorophyll-

a) as these snails feed mainly on benthic diatoms (Lopez and Kofoed 1986).    

Macoma baltica 

The influences of Macoma baltica on sediment erodibility have been 

reported in several previous studies (Widdows et al. 1998c, Widdows et al. 

2000a).  In the Skeffling, Humber estuary (UK), Widdows et al. (2000a) found 

a significant decreased in critical erosion velocity with increasing Macoma 

baltica density. A significant positive correlation between mass of sediment 

eroded m-2 and Macoma baltica density, has also been recorded in the 

Westershelde (The Netherlands, Widdows et al. 2000b). However, in the 

present study the direct influence of Macoma baltica on small-scale (within 

station) variability of critical erosion shear stress and erosion rate was not 

detected.  Moreover, the abundance of microphytobenthos did not seem to be 

affected by the grazing activity of Macoma baltica.  This was indicated by the 

lack of correlation between Macoma baltica density and chlorophyll-a 

concentration. 

Patches of Mytilus edulis 

The variations of critical erosion shear stress, normalized water content, 

and mud content were large at Station F. This may be attributed to the within 

station hydrodymical variability due to the presence of patches of Mytilus 

edule and an overall sheltering of this area.  The weak correlation between 

critical erosion shear stress and chlorophyll-a and EPS concentration at 

station F was unclear, but may also be related to the small-scale hydro-

dynamic variability at this station. 

Cerastoderma edule and erodibility 

No direct effect of the presence of Cerastoderma edule with respect to 

sediment erodibility was observed. This may be due to two opposing effects: 

although Cerastoderma edule is not a deposit-feeder, it locally removes 

microphytobenthos from the surface by movement of his siphons, as 
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recognisable by the characteristic 1 cm diameter holes in the biofilm coverage 

directly above this bivalve. On the other hand, there are indications for an 

indirect stabilisation by Cerastoderma edule. A laboratory study by Swanberg 

(1991) suggested that the presence of Cerastoderma edule may actually 

increase the stock of benthic diatoms. Her study showed a stimulating effect 

of Cerastoderma edule on microphytobenthos, mainly by increasing the level 

of ammonium in the water. However, in this study the potential effect of 

Cerastoderma edule in enhancing stock of benthic diatoms was not 

pronounced.  This is reflected by the fact that density of Cerastoderma edule 

was high at stations D but the chlorophyll-a concentration was relatively low 

(see also chapter 5).   

The presence of other deposit feeders may also hamper the stabilization 

potential of Cerastoderma edule. As an example, Cerastoderma edule and 

Hydrobia  ulvae have been found to be able to co-exist at high densities on a 

mudflat in the Danish Wadden Sea (T.T..J. Andersen et al., in preparation). 

This implies that the possible stimulating effect of the presence of 

Cerastoderma edule on microphytobenthos may be completely overridden 

when a deposit feeder like Hydrobia ulvae is present as it will feed on the 

microphytobenthos and greatly increase the erodibility if present in high 

numbers (Austen et al. 1999, Andersen 2001a). Additionally, some 

observations indicate that the cockle may tend to destabilize the sediment 

surface if is present in very high numbers (R. Riethmüller, unpublished data). 

Cerastoderma edule and biodeposition 

The faeces and pseudo-faeces produced by Cerastoderma edule are very 

fragile and it was not possible to discern any of these after gentle wet-sieving 

at a 63 µm sieve. This is consistent with the study of Austen (1997) who also 

found that pellets produced by C. edule were rare in sediments from mixed 

mudflats of the Lister Dyb tidal basin. Due to the fragile nature of the pellets, it 

was not possible to determine the contribution of these to the total fine-

grained content of the surface material. However, a comparison of the rate of 

biodeposition and the sediment accumulation rate at the site provides an idea 

of the contribution. The biodeposition rate of C. edule is dependent on both 

the density of the animal, the suspended sediment concentration and perhaps 
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to some extent also season. For a density of 135 individuals m-2 in the 

Oosterschelde (the Netherlands), Smaal et al. (1986) calculated a deposition 

of 81 g m-2 per day. The density at the sampling station is of the same order 

(146 individuals m-2) and assuming biodeposition for 300 days each year 

(allowing for reduced/absent biodeposition during the winter period), a gross-

deposition of 24 kg m-2 per year is found. For comparison, with the estimated 

accretion rate of 0.7 cm per year (T.J. Andersen, unpublished data), the 

average dry bulk density of 0.98 g cm-3 and the average mud content of 41 %, 

the net-deposition of mud at the site is 2.4 kg m-2 per year – an order of 

magnitude lower. This indicates that a substantial part of the fine-grained 

material deposited at the site may be biodeposits from C. edule and is in 

accordance with the early observations of Verwey (1952) who found that the 

biodeposits originating from M. edulis and C. edule made up a significant 

portion of the total accumulation of fine-grained material in the Dutch Wadden 

Sea area. The gross-deposition being much larger than the estimated net-

deposition shows that a large part of the biodeposits are resuspended quickly 

after deposition.  

Heteromastus filiformis and erodibility  

The finer texture of the fecal pellets compared to the texture of the surface 

material is caused by the preferential ingestion of the finer particles of the 

sediment by Heteromastus filiformis. This will decrease the fine-grained 

content of the subsurface sediment and increase the content at the surface as 

observed in the vertical profile of the mud content (Figure 4.2).  

The fecal pellets on average contributed to 11 % of the surface material, 

and correction for the fine-grained content of the fecal pellets reduces the mud 

content of the surface sediments from 41 to 36 % – a reduction of about 12 %. 

Therefore, H. filiformis obviously increases the mud content of the surface 

material. Even without fecal pellets from Heteromastus filiformis, the mud 

content is still 36 % which shows that most of the fine-grained surface material 

is in the form of other aggregates and some of this material is fecal pellets and 

pseudo-faeces produced by Cerastoderma edule. It should be stressed that 

the vertical variation of the mud content at the site does not result from 

increasing sedimentation of fine-grained material but merely reflects the 
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strong sediment reworking by Heteromastus filiformis. A study on sediment 

reworking by Heteromastus filiformis in the Dutch Wadden Sea was reported 

by Cadée (1979) who showed that at a measured average density of 500 

individuals m-2, this species alone could account for sediment reworking of 

about 4 cm per year. This is due to the feeding at depth (10–20 cm; up to 

30 cm in the winter) and deposition of pellets at the sediment surface. An 

even stronger reworking must be expected at the present study site due to the 

higher density of the species.  

4.3.3. Effect of drying 

From literature it is expected that dewatering through drying and drainage 

would have a significant effect on sediment stability (Anderson and Howell 

1984). A significant positive effect of drying (in terms of normalised water 

content) on sediment stability was only found at the most landward station (A) 

where emersion periods or subaerial exposures are long. No such effects 

were found at the seaward stations, probably due to the short emersion 

periods for significant drying to occur. At station A, critical erosion shear stress 

increased significantly with EPS concentration and decreased with normalised 

water content (Figures 3.3b and 3.3d). A reduced water content should result 

in a sediment with increased strength and hence resistance to erosion 

(Whitehouse et al. 2000b). An increase in sediment stability due to drying 

during long air exposure has been previously demonstrated by Amos et al. 

(1988) and subsequently confirmed by Paterson et al. (1990). There is 

evidence that the capacity of EPS in binding sediment particles together is 

increase when the surface matrix of EPS becomes dehydrated (Paterson 

1988). Therefore, the combination of drying and microphytobenthos (EPS) 

stabilization may have a synergistic effect on sediment stability at station A.  

On the other hand, the increase of critical erosion shear stress with EPS was 

not higher compared to station D and part of station F, pointing to a potential 

other source that influence the dependence of critical erosion shear stress on 

EPS.  

4.3.4. Effect of geomorphological structures 

 The results of this study suggest that the presence of bedforms may 

introduce different modes of erosion.  The sediments deposited on the crests 
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were more stable than those in the troughs. This result supports the study of 

Paterson et al. (2000) who also found higher sediment stability on the crests 

(ridge) than in the troughs (runnel) at the Skeffling mudflat, Humber Estuary, 

UK. 

Two parameters were used to characterize the erodibility of the bed at the 

study site: critical erosion shear stress and erosion rate. Significantly higher 

critical erosion shear stresses on the crests were observed only at two 

stations (A and E), the difference at the other three stations being statistically 

not significant, although critical erosion shear stresses were in general higher 

on the crests than in the corresponding troughs in all cases.  

A more pronounced effect of bedforms on sediment erodibility was found 

when considering the erosion rate. These were significantly lower on the 

crests than in the troughs at all stations except stations B and C. Differences 

in erodibility between crests and troughs are thus better represented by 

means of erosion rate rather than critical erosion shear stress in this study. 

The difference in erodibility between crests and troughs is also illuminated by 

their erosion profiles. As shown in Figure 4.4, mean erosion profiles for the 

crests are lower than for the troughs, the patterns being particularly clear for 

the sediments of station A, E and F. This suggests that much more sediment 

was eroded in the troughs once the bed shear stresses exceeded the critical 

values. 

In this study, the difference in erodibility between crests and troughs can 

not be explained by mud content, median grain-size and organic content as 

crests and troughs are generally not significantly different with respect to 

these parameters.  Instead, the differences in erodibility can be explained by 

the following physical and biological processes.  

The differences between crests and troughs may firstly come from their 

physical characteristics (Blanchard et al. 2000). Crests are completely 

emerged during low tide and progressively dry out, whereas troughs are often 

covered with a thin layer of trapped or slowly running water.  Consequently, 

sediment would be drier on the crests. A reduced water content results in a 

sediment with increased strength and hence greater resistance to erosion 

(Anderson and Howell 1984, Amos et al. 1988, Paterson et al. 1990). 

However, in the present study the effect of drying on normalized sediment 
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water content was apparent only at station A. This was probably due to the 

relatively long emersion time here. In addition, the ability of surface diatom 

biofilms to retain water in order to avoid desiccation and to maintain diatom 

viability may substantially reduce drying of the surface sediment on the crests 

(Christie et al. 2000) at the other stations. 

Secondly, the physical characteristics prevailing in the troughs may also 

prevent carbohydrate-mediated stabilisation of the sediment (Blanchard et al. 

2000).  As observed in this study, the troughs generally contained less 

chlorophyll-a, colloidal carbohydrate and EPS than crests (Figure 4.5.).  There 

are two explanations for the lower concentrations of both carbohydrate and 

chlorophyll-a in the troughs than those on the crests. Firstly, the 

carbohydrates freshly excreted by microphytobenthos in the troughs are 

probably rapidly dissolved in the thin layer of trapped water (Paterson et al. 

2000) and may be washed out with the slowly running water (Blanchard et al. 

2000).  Secondly, a decrease in light due to overlying turbid water probably 

results in a lower activity of microphytobenthos in the troughs. All of these 

mechanisms may lead to a decrease in the potential biostabilization by 

microphytobenthos in the troughs of the bedforms (Blanchard et al. 2000). 

Since water contents on the crests were not significantly higher at stations 

B–F, the higher sediment stability on the crests was evidently not associated 

with drying effects.  Instead, biostabilisation by benthic diatoms through 

secretion of mucopolysaccharides seems to play a more important role in 

stabilizing the sediment surface on these crests. This was particularly true for 

station E where chlorophyll-a, colloidal carbohydrate and EPS concentrations 

were significantly higher on the crests than in the troughs. 

By contrast, the most landward station (A), where benthic diatom 

biomasses were relatively low and the emersion periods longer, the physical 

processes (drying and compaction) seem to be the most important 

mechanism for the enhanced sediment stability on the crests.  This is 

supported by the fact that the sediments on the crests were significantly drier 

at this station.   

At the same time, concentrations of colloidal carbohydrate and EPS were 

also found to be significantly higher on the crests. One has to note that the 
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mechanisms of motile diatoms in stabilizing sediments are related to the 

physical characteristics of the mucilage produced for locomotion. If the 

mucopolysaccharide matrix at the surface becomes dehydrated it is possible 

that the sediment will become more tightly bound in the thickening matrix.  

Therefore, drying of sediment and dehydration of the mucopolysaccharide 

matrix may act together to raise the sediment stability (Paterson 1988) on the 

crests compared to the troughs. It is evident that this synergistic effect most 

likely occurs at station A where the emersion period is long enough to allow 

for significant drying. 

 
4.4. Conclusions 

The small-scale variation of sediment erodibility at each station was mainly 

controlled by microphytobenthos. However, the dependence of critical erosion 

shear stress on chlorophyll-a or EPS differed from station to station 

suggesting that the relationship between these parameters was highly site 

specific.  The direct effect of benthic macrofauna on sediment erodibility was 

only detected at station A where the erosion rate decreased with increasing 

Hydrobia ulvae density. It is also possible that Hydrobia ulvae indirectly affect 

the sediment erodibility at station A by reducing the stabilizing effect of 

microphytobenthos. No direct or indirect effect of other macrofauna species 

on the sediment erodibility was observed. Both the presence of Cerastoderma 

edule and Heteromastus filiformis will increase the content of fine-grained 

sediments at the surface compared to abiotic situation. 

The significant effect of drying (in terms of normalized water content) on 

sediment stability was only observed at station A where the emersion periods 

or subaerial exposure are long. Drying of sediment due to prolonged subaerial 

exposure will increase the capacity of EPS in binding sediment particles 

together. Therefore, drying and microphytobenthos (EPS) may have 

synergistic effect on sediment stability at station A. 

The sediments deposited on the crests of bedforms were found to be more 

stable than those in the troughs. Two different processes were identified for 

the difference in erodibility between crest and troughs: (1) at stations B–F, the 

higher benthic diatom biomass on the crests is likely to stabilize the sediment 

surface of these features. (2) At station A (most landward station), where the 

 75



tidal emersion period is longer and benthic diatom biomass is relatively low, 

physical processes (drying, compaction) are more important for sediment 

stability on the crest. 
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CHAPTER 5 

LARGE-SCALE (BETWEEN STATION) VARIATION OF SEDIMENT 

ERODIBILITY 

5.1. Introduction 

In this chapter, the large-scale (hundred of meters) spatial and temporal 

variation of erodibility is examined. Only data from 2002 are used to describe 

the spatial (between station) differences in erodibility. To investigate seasonal 

changes, data of 2001 are included when examining the erodibility of the 

studied transect as a whole. 

Major questions addressed in this study are: (1) Is there a spatial (between 

station) and temporal variation of erodibility and sediment parameters? (2) if 

yes, how large is the variation? (3) What are the main processes that cause 

the spatial and temporal variation of sediment erodibility? 

5.2. Results 

Grain-size, normalized water content, and organic content 

Mud contents were considerably higher both in June and September at 

station A compared to other seawards stations (Table 3.1 and Figure 5.1a) 

suggesting that station A is associated with a low energy environment.  The 

mean mud contents at station A were 60 % and 55 % in June and September, 

respectively. The mean mud contents at stations B, C and E were generally 

less than 30 % both in June and September. The mean mud contents were 

slightly higher at stations D and F compared to those at stations B, C, and E 

both in June and September. Mean mud contents were higher in September 

than in June at stations, B, C, and E but the opposite pattern was observed at 

stations A, D and F (Table 3.1 and Figure 5.1a). 

Mean normalized water content generally decreased from station F towards 

the shoreline both in June and September 2002 (Figure 5.1b). In June, the 

normalized water content decreased from about 90 % at station F to 80 % at 

station A. This decrease was gradual compared with September when the 

normalized water contents decreased from about 120 % at station F to 80 % 

at station A. The normalized water content was lower in June than in 

September at all stations except stations A and B where the contents 
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remained constant. No consistent spatial variation in organic content was 

evident in both June and September 2002.  However, a general increase from 

June to September was observed (Table 3.1).  

 

 

 
 

 

Figure 5.1. Spatial variation of the (a) mud content and (b) normalized water 
content at stations A–F for June and September 2002 (mean ± SE, n = 4–14). 

 

Chlorophyll-a, colloidal carbohydrate and EPS 

The spatial variations of chlorophyll-a, colloidal carbohydrate, and EPS 

concentrations for June and September 2002 are shown in Figure 5.2. All 

three parameters showed nearly the same patterns as a consequence of the 

same source in most cases (i.e. microphytobenthos). Two maxima were 

observed: one at station C and another one at station F. The lowest concen-

trations were measured at station D both in June and September (Table 3.1 

and Figure 5.2). In general, an increase of these parameters from June to 

September was observed at all stations. The only two exceptions found were 

constant level of Chlorophyll-a concentrations at the stations B and F.  
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Figure 5.2.  Spatial variation of the (a) chlorophyll-a, (b) colloidal carbo-
hydrate, and (c) EPS at stations A– F for June and September 2002 (mean    
± SE, n = 4–14). 
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Benthic macrofauna 

As described in chapter 3, Hydrobia ulvae was present only at stations A 

and B, while other species such as Heteromastus filiformis, Pygospio elegans, 

Tubificoides benedeni, and Macoma baltica occurred commonly over the 

entire sampling stations (Table 3.3). Hydrobia ulvae were more abundant in 

September than in June 2002 at station B but the opposite was observed at 

station A (Figure 5.3).  Cerastoderma edule were abundant at stations B and 

D both in June and September 2002. The mean density of this cockle was 

higher in June than in September at station B but the opposite was observed 

at station D (Table 3.4). The mean densities of Heteromastus filiformis were 

higher in September than in June 2002 at all stations (Table 3.4).  By contrast, 

the densities of Macoma baltica were lower in September than in June 2002 

at all station except stations A and B (Table 3.4 and Figure 5.4). No consistent 

spatial and temporal pattern was observed for other species listed in Table 

3.4. The spatial and temporal variation of the mean density of sum of tube 

building worms is shown in Figure 5.5. The densities of these worms were 

higher in September than in June 2002 at all stations except stations E and F 

(Figure 5.5).  

  

 
Figure 5.3.  Spatial and temporal variation of the Hydrobia ulvae density at 
stations A and B (mean ± SE, n = 4–7). 
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Figure 5.4.  Spatial and temporal variation of the Macoma baltica density at 
stations A – F  (mean ± SE, n = 4– 14). 
 
 

  

 
 
Figure 5.5.  Spatial and temporal variation of the mean density of sum of tube 
building worms at stations A– F (mean ± SE, n = 4– 14). 
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Critical erosion shear stress and erosion rate 

Mean critical erosion shear stresses varied from 0.36 N m-2 at station D in 

June to 2.39 N m-2 at station F in September (Table 3.1 and Figure 5.6). 

Spatial differences were more significant in September than in June (Table 

5.1a). In June, station F had significantly higher mean critical erosion shear 

stress than other stations except stations A and B (Table 5.1a). Critical 

erosion shear stress was significantly lower at station D compared with those 

at stations A and F.  In June, the average critical erosion shear stresses were 

comparable in magnitude at stations A, B, C, and E with a value of some     

0.5 N m-2.  In September, station F had also significantly higher mean critical 

erosion shear stress than other stations except station C (Table 5.1a). The 

mean critical erosion shear stress was significantly lower at station B 

compared to those at all other stations except station D. 

As in the case of colloidal carbohydrate and EPS concentrations, critical 

erosion shear stresses at stations C– F showed significant increase from June 

to September, contrasted by minor differences at stations A and B (Figure 

5.6). Indeed, ANOVA showed that critical erosion shear stresses were 

significantly higher in September than in June at stations C– F but not at 

stations A and B (Table 5.1b). Changes in the coefficient of variation (cv; 

temporal standard deviation / temporal mean) for critical erosion shear stress 

support trends of increased temporal variability at stations C (cv = 0.70),        

D  (cv = 0.68), E (cv = 0.55), and F (cv = 0.53) compared with stations A      

(cv = 0.23) and B (cv = 0.04). 

Erosion rates reported here are calculated as the average erosion rate for 

the bed shear stress increments from 1.0 to 2.0 N m-2. Erosion rate data 

derived from portable EROMES at station D were not included in the analysis 

because erosion rates derived from this device are calculated from 2 minute 

time increments and as the average erosion rate for the bed shear stress 

increments from 0.5–1.0 N m-2. The mean erosion rate showed differences in 

space and time over two orders of magnitudes: the lowest rate of 0.01  g  m-2 s-1

was observed at station F in September, while the highest value was         

1.73 g m-2 s-1 at station B in June (Table 3.1 and Figure 5.6b). In general 

mean erosion rates were higher in June than in September which is expected 
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since critical erosion shear stresses increased. The only exception is station D 

where the mean erosion rate was not significantly higher in September than 

June. The differences between June and September were significant only at 

stations C and F. The highest rates on the average were measured at station 

B, while the lowest rates were observed at stations A and F. The results        

of statistical significance test between stations for erosion rate are listed in 

Table 5.2.   

 
 

 
 
Figure 5.6.  Spatial and temporal variation of the (a) critical erosion shear 
stress and (b) erosion rate at stations A– F (mean ± SE, n = 4– 14). 
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Table 5.1.  Results of one-way ANOVA carried out to detect differences in 
critical erosion shear stress with station (a) or time (b) as the factor. 
 
 

 
Month 

 
F-value 

 
p-value 

 
Level of significance of differences between stations  

(LSD multiple comparison test) 
 

 
(a) Spatial analysis 
 
June 4.68 0.002  Sta. A Sta. B Sta. C Sta. D Sta. E 

   Sta. B ns _    

   Sta. C ns ns _   

   Sta. D p = 0.005 ns ns _  

   Sta. E ns ns ns ns _ 

   Sta. F ns ns p = 0.024 p = 0.000 p = 0.008 

         

September 6.75 0.000 Sta. B p = 0.006 _    

   Sta. C ns p = 0.006 _   

   Sta. D ns ns ns _  

   Sta. E ns p = 0.031 ns ns _ 

   Sta. F p = 0.021 p = 0.000 ns p = 0.000 p = 0.015 

    

 

     

(b ) Temporal analysis 
 

Sta. A 1.07 0.323       

Sta. B 0.18 0.677       

Sta. C 15.41 0.006       

Sta. D 25.90 0.000       

Sta. E 8.64 0.013       

Sta. F 13.75 0.002       

 
 
  
 
Significant p-values are in bold 
ns: not significant (p > 0.05)  
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Table 5.2.  Results of one-way ANOVA carried out to detect differences in 
erosion rate with station (a) or time (b) as the factor. 
 
 

 
Month 

 
F-value 

 
p-value 

 
Level of significance of differences between stations  

(LSD multiple comparison test) 
 

 
(a) Spatial analysis 
 
June 7.914 0.000  Sta. A Sta. B Sta. C Sta. D Sta. E 

   Sta. B p = 0.000 -    

   Sta. C ns p = 0.024 -   

   Sta. D ns p = 0.006 ns -  

   Sta. E p = 0.000 ns ns p = 0.024 - 

   Sta. F ns p = 0.000 p = 0.044 ns p = 0.000 

         

September 3.610 0.014 Sta. B p = 0.006 -    

   Sta. C ns p = 0.011 -   

   Sta. D p = 0.036 ns p = 0.047 -  

   Sta. E ns ns ns ns - 

   Sta. F ns p = 0.003 ns p = 0.021 ns 

    

 

     

(b ) Temporal analysis 
 

Sta. A 1.216 0.294       

Sta. B 0.615 0.455       

Sta. C 29.185 0.001       

Sta. D 0.841 0.395       

Sta. E 1.999 0.185       

Sta. F 6.248 0.023       

 
 
 
  
Significant p-values are in bold 
ns: not significant (p > 0.05)  

 85



Seasonal pattern of the study transect erodibility as a whole 

To examine the seasonal pattern of the erodibility of the intertidal flat as a 

whole, data from stations B, C, E, and F were pooled and grouped according 

to the sampling period. Data from stations A and D were excluded because 

these two stations were not sampled during 2001. The highest mean mud 

content of 65 % was observed in April 2001, while the lowest content of was 

observed in June 2001 (15 %). The mean mud contents were comparable for 

other sampling periods with contents somewhat less than 30 % (Figure 5.7a). 

The mean normalized water content varied between 90 % in April 2001 and 

110 % in May 2001 and September 2002 (Figure 5.7b). The seasonal 

variation of mean organic content was fairly similar to mud content with 

highest value in April 2001 and lowest in June 2001 (Figure 5.7c).   

 

Figure 5.7.  Seasonal variation of the (a) mud content, (b) normalized water 
content, and (c) organic content at the study site (mean ± SE, n = 4– 31). 

 

Chlorophyll-a, colloidal carbohydrate, and EPS showed nearly the same 

pattern with low concentrations in June and October 2001 and high concen-

trations in September 2002 (Figure 5.8). The seasonal variation of mean 

Cerastoderma edule, Hydrobia ulvae, Macoma baltica, and sum of tube 

building worms density are shown in Figure 5.9. The highest density of 

Cerastoderma edule was in October 2001 (1020 indiv. m-2), with low numbers 

in September 2002, and they were absent in April 2001. Hydrobia ulvae were 

more abundant in September 2002 than other sampling periods. The highest 

density of Macoma baltica was in June 2002, with low numbers in April 2001, 

and they were absent in October 2001. The highest and lowest densities of 
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sum of tube building worms were in May 2001 and September 2002, 

respectively. 

 
 
Figure 5.8.  Seasonal variation of the (a) chlorophyll-a, (b) colloidal carbo-
hydrate, and (c) EPS concentration at the study site (mean ± SE, n = 4– 31). 

The seasonal variations of mean critical erosion shear stress and erosion 

rate are shown in Figure 5.10.  The mean critical erosion shear stresses were 

lower in June and October 2001 than those at all other sampling periods.  The 

highest mean critical erosion shear stress was observed in September 2002 

with value of 1.47 N m-2.  An opposite trend was found accordingly in erosion 

rate, which was higher during June and October 2001. Erosion rate was 

considerably lower in April 2001 compared to other sampling periods.  

5.3. Discussion 

 Variation in physical and biological sediment parameters 

Generally, on tidal flats mud content increases with increasing elevation 

due to lower current velocities (van Straaten and Kuenen 1957, Postma 

1961). This has been observed on a tidal flat in the Ems-Dollard estuary 

(Colijn and Dijkema 1981) and on the same area in the East Frisian Wadden 

Sea (Krögel and Flemming 1998). Similar with these findings, finer sediment 

with high mud content was observed at the most landward station (A) and   

the mud content decreased seaward (Figure 5.1a). Stations D and F did      

not follow this general pattern probably due to the presence of high amount   

of biodeposits. As discussed in chapter 4, Cerastoderma edule and 

Heteromastus filiformis contribute a considerably high amount of fine-grained 

material at station D. A similar phenomenon may also occur at station F where 
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mussels Mytilus edulis enhance the deposition of fine-grained particles by 

their filter feeding activities. 

 

 

 

 
 

 

 

 
 
Figure 5.9.  Seasonal variation of the (a) Cerastoderma edule, (b) Hydrobia 
ulvae, (c) Macoma baltica, and (d) sum of tube building worms at the study 
site (mean ± SE, n = 1– 30). 
 

Colijn and Dijkema (1981) observed higher chlorophyll-a concentration in 

muddy sediments and attributed the relationship to reduced hydrodynamic 

energy. Similarly, Lelieveld et al. (2003) also observed higher chlorophyll-a 

concentration in the muddy site but they attributed this to higher organic 

compound associated with muddy sediment that can stimulate diatom growth.  

In the present study the concentration of chlorophyll-a was relatively low at the 

most muddy station (A) and low and high concentrations were observed at the 

sandy mud to muddy stations (B– F) indicating that the spatial distribution of 

chlorophyll-a concentration can not be attributed to the mud content. High 
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grazing pressure could be one explanation for lower chlorophyll-a concen-

tration at the station A. The densities of diatom grazers including Hydrobia 

ulvae, Macoma baltica, and Pygospio elegans (Lopez and Kofoed 1986, 

Widdows et al. 2000a) were relatively high here (Table 3.3) and it is likely that 

the growth of diatoms was prevented by grazing. In addition, desiccation 

during long exposure is also a possible cause of reduced diatom biomass at 

station A. 

 

 

 

 

Figure 5.10.  Seasonal variation of the (a) critical erosion shear stress and (b) 
erosion rate at the study site (mean ± SE, n = 4– 31). 
 

The microphytobenthos is known to be variable both spatially and 

temporarily (Colijn and Dijkema 1981) but generally a peak has been 

observed in spring and early autumn in the Danish Wadden Sea (Andersen 

2001a) and on Dutch tidal flats (Cadee and Hageman 1977). Guarini et al. 

(1998) observed high summer values and low winter values for the macrotidal 

Marennes-Oleron Bay in France. The temporal variation of chlorophyll-a with 

high concentration in early autumn (September) is consistent with the results 

in this study. Whilst observed lower biomass in early summer (June) could be 

due to a range of factors, such as nutrient limitation and grazing by macro- or 

meiofauna (Gerdol and Hughes 1994). The relatively low or lack of temporal 

variability in chlorophyll-a concentration at station B appears to be related with 

the high numbers of mud snail Hydrobia ulvae at this station, which reduced 

the microphytobenthos biomass by grazing. 
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Yallop et al. (1994) observed higher carbohydrate concentrations at the 

muddy site than concentrations at the sandy sites. Similarly, de Brouwer et al. 

(2003) observed an increase in carbohydrate concentration with decreasing 

median grain-size. Contrasting with these findings, no correlation was 

observed between median grain-size and carbohydrate concentration in this 

study. The presence of microphytobenthos appears to be more important in 

determining the spatial as well as temporal variation of carbohydrate 

concentration at the study site. 

 

Variation in erodibility 

Spatial differences (between station) in mean critical erosion shear stress 

and erosion rate were significant both in June and September 2002 but no 

consistent spatial pattern across the tidal flat was observed. This is in contrast 

to other studies which have identified clear and consistent spatial variation in 

critical erosion shear stress (e.g. Paterson et al. 1990, Austen et al. 1999, 

Lelieveld et al. 2003). Studies by Paterson et al. (1990) at Tamar and Severn 

estuaries (UK) showed that the highest sediment stability occurred at the high 

shore stations (landward stations), where a dense population of epipelic 

diatoms was present.  In the present study, the more stable sediments (i.e. 

higher critical erosion shear stresses and lower erosion rates) were observed 

both at stations A and F.  

Station A has longest emersion periods among the investigated stations. 

Thus drying during prolonged air exposure may have increased the sediment 

stability at this station (Amos et al. 1988, Paterson et al. 1990). Moreover, 

drying of sediment would enhance the stabilizing effect of mucilage (EPS) 

produced by benthic diatoms (Paterson 1988).  It is also possible that the high 

density of tube building worms (Figure 5.5) increased the stability of surface 

sediment at this station as these worms have been shown to increase 

sediment stability by binding particles with secretions to construct their tubes 

(Yingst and Rhoads 1978). The increase of critical erosion shear stresses with 

EPS concentrations was similar to stations D and parts of F which exhibit now 

sign of drying but together with A share an increased level of tube building 

worms compared to the other stations. 
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Chlorophyll-a, colloidal carbohydrate and EPS were generally higher at 

station F than at other stations, reflecting on the average higher diatom 

biomass and mucous production. The high diatom biomass and mucous 

production at station F can be explained by the fact that this station has 

comparable long emersion time due to its position at the edge of the central 

depression and therefore at many patches very good conditions for biofilm 

development (diatom growth). Accumulation of mucilage (biofilm) at the 

sediment surface reduce sediment susceptibility to erosion by reducing 

bottom roughness as well as by increasing intergrain-adhesion (Paterson 

1989), so higher stability at station F was most likely due to the higher 

biostabilization effect of benthic diatoms.  

Moreover, physical disturbance (by waves or currents) of the surficial 

sediment structure at station F was probably minimized by the presence of 

mussel beds.  Mussel beds may physically protect sediment from erosion and 

resuspension by reducing the water flow and bed shear stress (Widdows and 

Brinsley 2002).  Infrequent disturbance would not only minimize susceptibility 

to particle entrainment but also facilitate the accumulation of mucilage in 

surface sediments (Lelieveld et al. 2003), which is consistent with the high 

colloidal carbohydrate and EPS concentrations at station F. 

The lowest critical erosion shear stress was observed at station D in June.  

Low diatom biomass and hence low biostabilizing effect in June at station D 

was the main explanation for this.  The reasons for lower diatom biomass at 

this station compared with other stations are unclear, but may be related to 

the presence of high density of Cerastoderma edule. These cockles may 

locally remove diatoms from the surface by movement of their siphons, which 

in turn would reduce the diatom biomass. 

The erosion rate was higher in September than in June at station D. This 

was unexpected because the rate of erosion should be lower due to increased 

critical shear stress.  Reasons for this are unclear, but may be related to the 

increased in cockle Cerastoderma edule density and hence bioturbation 

activity in September. Visual observations during the erosion experiments 

show that the cockles sometimes moved through sediment in response to the 

increase of turbulence. These moving activities would loosen the sediment 

and hence increase the erosion rate. Therefore, higher erosion rate in 
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September at this station can be partly attributed to the higher bioturbation 

activity of the cockles. 

Station B had low erosion shear stresses and high erosion rates and the 

values were relatively constant throughout the sampling periods. Mud snails 

Hydrobia ulvae were very abundant at this station both in June and 

September and it was likely that high density of Hydrobia ulvae increase the 

erodibility through grazing on diatoms, surface tracking and pellet production 

(Gerdol and Hughes 1994, Andersen 2001a). It is also possible that high 

erodibility at station caused by the bioturbation activity of cockle 

Cerastoderma edule because of the very high density of Cerastoderma edule 

at this station both in June and September. 

The seasonal pattern of erodibility of the study transect as a whole 

The stability of surface sediment at the study transect was high in 

September 2002 (early autumn) and lowest in June (early summer) and 

October 2001 (late autumn). This pattern can not be explained by the 

relatively small changes in mud content, normalized water content, and 

organic content of the sediment over the study period. 

At the same time the observed seasonal pattern is best reflected by those 

parameters describing the amount of biofilm present on the sediment surface.  

The higher sediment stability during September 2002 coincided with higher 

biomass of benthic diatoms (measured by chlorophyll-a concentrations) and 

high concentrations of carbohydrate in the sediment.  In contrast, during June 

and October 2001 when lower numbers of diatom were present, the 

sediments were more easily eroded.  This pattern also strongly suggests that 

temporal variation in sediment erodibility at the study site was closely linked to 

the presence of benthic diatoms as already observed in the inner station 

variability and in many other previous studies (e.g. Kornman and de Deckere 

1998).   

Benthic macrofauna do not seem to have any bearing on the seasonal 

variation of erodibility. As an example, the highest critical erosion shear stress 

was in September 2002, and also the highest density of Hydrobia ulvae, which 

is opposite to the trend one would expect if destabilization by Hydrobia ulvae 

was significant. 
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Low erosion rate observed in April 2001 was probably related to the very 

high mud content together with the lowest observed normalized water 

contents present in this period.  For mixed sediments the mud/sand ratio is an 

important parameter determining the strength development of the bed. 

Mitchener and Torfs (1996) concluded from their laboratory experiment that 

with increasing mud/sand ratios both the strength of a sediment bed increases 

and reduction in amount of erosion can be found once erosion occurred.  

Similarly, erosion experiment conducted by Houwing (1999) on an intertidal 

mudflat sediment (Dutch Wadden Sea) showed that erosion rates decreased 

by a factor of 6 and 10 at stations where the mud contents of the sediment 

increased (over 20 % mud by weight). 

 

 

5.4. Conclusions 

This study has shown that the sediment erodibility varied spatially and 

temporally. The variations were lower compared to the inner station variations.  

Sediments were more stable (i.e. higher critical erosion shear stress and 

lower erosion rate) in September 2002 than in June 2002; this was attributed 

to be the result of biostabilization by benthic diatoms.  

Erosion rates were lower at stations A and F over the study periods. The 

lower erosion rates at station A were attributed to the either drying or          

biostabilization of tube building worms or to the combination of both. Bio-

stabilization of the benthic diatoms and infrequent disturbance of surface 

sediment due to the presence of mussel beds were the main cause of lower 

erosion rate at station F.  Erosion rate was highest at the station dominated by 

mud snails Hydrobia ulvae. This is probably explained by the fact that H. ulvae 

feeds mainly on diatoms, thus large number of H. ulvae reduce the amount of 

diatoms, hence their stabilizing effect. Additionally, H. ulvae loosens the 

sediment via surface tracking and pelletization of the surface material and 

hence enhances erosion rate. 

The  seasonal  patterns  of  erodibility  of  the  study transect as a whole with 

low  erodibility  in  September 2002  and  high  erodibility in  June  and October 

2001 can be attributed exclusively to the presence of benthic diatoms. 
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CHAPTER 6 

PREDICTING CRITICAL EROSION SHEAR STRESS FROM PROXIES 

 

6.1. Introduction 

The critical erosion shear stress or erosion threshold of intertidal sediments 

is a measure of sediment stability, and an important parameter to model the 

morphodynamic evolution of estuaries. Presently, this erosion parameter is 

measured only on contact areas up to the order of 1 m-2, depending on the 

size of the erosion device (Cornelisse et al. 1994, Black and Paterson 1997).  

Each individual measurement is demanding so that the number of data points 

is limited. A strategy to generate large scale maps of surface sediment 

stability parameters is to establish a relationship to proxy parameters which 

can be mapped either by field surveys or by remote sensing techniques 

(Riethmüller et al. 2000). 

As long as surface disturbance by benthic macrofauna is negligible, 

chlorophyll-a concentration of surface sediment is one promising candidate as 

proxy parameter for critical erosion shear stress. This is because chlorophyll-a 

in the uppermost sediment surface can be detected and quantitatively 

estimated by means of optical remote sensing techniques (Hakvoort et al., 

1998; Paterson et al., 1998).  A number of studies have reported a significant 

increase of critical erosion shear stress with increased chlorophyll-a concen-

tration both on intertidal (Paterson et al. 1994, Riethmüller et al. 1998, Austen 

et al. 1999) and subtidal flats (Madsen et al. 1993, Sutherland et al. 1998).  

On the other hand, it was observed that the rise of critical erosion shear stress 

with increased chlorophyll-a was highly site-specific and depends on the 

sediment type, the macrofaunal assemblage present and on the exposure to 

hydrodynamic energy input (Paterson et al. 1994, Riethmüller et al. 2000, 

Defew et al. 2002). These results show that chlorophyll-a alone is not 

sufficient as a proxy parameter for critical erosion shear stress. 

In this chapter, it is investigated whether other proxies alone or 

combinations of more than one can predict critical erosion shear stresses 

more generally and to what extent critical erosion shear stress can be 

predicted from optically quantifiable parameters. The following study is 
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arranged in two steps.  Firstly, it is investigated whether the variation of critical 

erosion shear stress can be explained to a high degree by a limited set of 

parameters. Secondly, several options to predict critical erosion shear stress 

from a proxy are proposed and discussed and the pros and cons of each 

option (model) are assessed.   

In this study, the full data set ranging from April 2001 to September 2002 is 

included. The site-specific dependence of critical erosion shear stress on 

chlorophyll-a, colloidal carbohydrate and EPS was already introduced in 

chapters 3 and 4 (e.g. Figure 3.3a).  Colloidal carbohydrate was not discussed 

further since it is highly correlated with EPS and EPS has been regarded as  

a functionally closer proxy to biofilm stability (Paterson 1994).   

 

 

6.2. Results 

Model 1: Chlorophyll-a as only proxy with global calibration 

The relationship between chlorophyll-a concentrations and critical erosion 

shear stresses was quantified using a simple linear regression analysis. A 

functional relationship between critical erosion shear stress, as the dependent 

variable, and chlorophyll-a, as independent variable, is suggested.  When all 

data (from the different stations and sampling periods) were pooled, a 

statistically significant positive relationship was found between chlorophyll-a 

concentrations and critical erosion shear stresses (Table 6.1). However, the 

coefficient of determination (r2) is low: the linear model explained 35 % of the 

observed variability when the outliers are excluded. Thus, when the location of 

the samples was not taken into account, it appeared that chlorophyll-a was a 

weak but still significant predictor of the critical erosion shear stress. As 

shown in Figure 6.1, the model does not fit the data very well and the 

variability of the residual values is high with standard deviation of 0.48. The 

predicted values derived from the model never exceed 2.3 N m-2. 

Model 2: Chlorophyll-a as only proxy with site-specific calibration 

To consider the obviously site-specific relationships, the model was 

modified with respect to the different stations of the samples that were likely to 
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Table 6.1.  Regression equations, coefficients of determination, and 
significance levels of relationship between chlorophyll-a (X) and critical 
erosion shear stress (Y) [ns: not significant (p > 0.01)] (compare Figure 3.3a). 
 

Type of 
relationship 

 

Regression equation coefficient of 
determination

Significance 
level 

All stations Y = 0.0104X + 0.3012 r 2 = 0.35 p < 0.01 

Station A only Y = 0.0278X - 0.1647 r 2 = 0.24 ns 

Station B only Y = 0.0048X + 0.3800 r 2 = 0.26 ns 

Station C only Y = 0.0086X + 0.1036 r 2 = 0.77 p < 0.01 

Station D only Y = 0.0226X + 0.0431 r 2 = 0.69 p < 0.01 

Station E only Y = 0.0082X + 0.0295 r 2 = 0.42 p < 0.01 

Station F only Y = 0.0143X - 0.0581 r 2 = 0.35 p < 0.01 

 

 
 
Figure 6.1.  Comparison of measured and predicted critical erosion shear 
stress derived from chlorophyll-a with global calibration.  The data with arrows 
(outliers) were omitted in the linear regression analysis because the upper 
limit of the erosion device was reached. 
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affect the relationship.  When analyzing the data separately for each sampling 

station, significant positive relationships between chlorophyll-a and critical 

erosion shear stress were found for all stations except stations A and B (Table 

6.1). However, the slopes of the regression lines and the coefficients of 

determination differed from station to station. The slopes differed by a factor of 

up to 3 (see stations C and D). The highest coefficients of determination was 

observed at station C (r2 = 0.77) and the lowest was observed at station A (r2 = 

0.24).   

 

 
 
Figure 6.2.  The relationships between critical erosion shear stress and 
chlorophyll-a concentration at the study site (Dornumer Nacken), Sylt-Rømø 
bight, and Büsum area. 

This site-specific behaviour is in line with data obtained in the inner Sylt-

Rømø Bight and intertidal flats close to Büsum, both located in the North 

Frisian Wadden Sea (Riethmüller et al. 2000). The slopes obtained in this 

study area are on the average lower than those from the Sylt-Rømø bight but 

the increase is much steeper than in the Büsum area (see Figure 6.2). As a 

consequence, site specific calibrations are required when using chlorophyll-a 

as a meaningful proxy parameter to predict critical erosion shear stress. 
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Therefore, critical erosion shear stress was calibrated separately for each 

station using the corresponding regression equations listed in table 6.1.         

A comparison of observed and predicted critical erosion shear stresses 

derived from chlorophyll-a with site specific calibration is shown in Figure 6.3. 

The model fits the data reasonably well, at least up to critical shear stress     

of 1.5 N m-2. The variability of the residual values is relatively low with 

standard deviation of 0.43. At higher critical erosion shear stresses, the 

predictions become biased towards the low predicted values which never 

exceed 2.2 N m-2.  

 
 
Figure 6.3.  Comparison of measured and predicted critical erosion shear 
stress derived from chlorophyll-a with site-specific calibrations. The data with 
arrows (outliers) were omitted in the linear regression analysis because the 
upper limit of the erosion device was reached. 
 
 
Model 3: Multiple regression analyses of critical erosion shear stress 

The stepwise multiple regression analyses showed that with exclusion or 

inclusion of macrofauna density data, sediment EPS concentration and mud 

content were found to be the only significant predictors of critical erosion 

shear stress, which explained 38 % of the variation in the data (r2 = 0.38,        

 98



P < 0.001 when the outliers are excluded). The predictive model generated 

from the multiple regression analyses was  

log (A + 1) = 0.099 [log (B + 1)] + 0.080 [log (C + 1)] - 0.076, where A = critical 

erosion shear stress, B = EPS concentration, and C = mud content. 

The multiple regression coefficient of each variable included in the model 

was used in an equation to predict the magnitude of critical erosion shear 

stress by multiplying the magnitude of the variable with the corresponding 

coefficient that the model yielded. Since the obtained critical erosion shear 

stresses are still in the logarithmic scale, back transformations are required to 

obtain the actual magnitude of the predicted critical erosion shear stress. A 

comparison of observed and predicted critical erosion shear stress derived 

from the stepwise multiple regression models are shown in Figure 6.4.  

 

 
Figure 6.4.  Comparison of measured and predicted critical erosion shear 
stress derived from the multiple linear regression analysis. The data with 
arrows (outliers) were omitted in the multiple linear regression analysis 
because the upper limit of the erosion device was reached. 
 

As shown in Figure 6.4, the agreement between prediction and observation 

was good enough for critical erosion shear stresses lower than 1 N m-2.  

However, at higher critical erosion shear stresses the prediction becomes 

systematically biased towards the low predictive values which never exceed 
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1.3 N m-2. Moreover, the variability of residuals values derived from model 3 is 

high with standard deviation of 0.47. 

Model 4: Combination of EPS and tube building worms as a proxy 

To examine the dependence of critical erosion shear stress on EPS 

concentration, EPS data from all stations except station B was firstly 

regressed on critical erosion shear stress values. Station B was excluded from 

the regression analysis because it had high densities of mud snail Hydrobia 

ulvae, which are known to excrete significant amount of mucilage. On first 

appearance, the relationship between EPS and critical erosion shear stress 

showed station-specific characteristics with a pronounced bifurcation in the 

data (Figure 3.3b and Table 6.2). Stations A and D showed a high rise of 

critical erosion shear stress with increased EPS, while station C and E 

showed a low rise of critical erosion shear stress with increased EPS.  Both 

low and high rise of critical erosion shear stress with increased EPS was 

evident at station F.  

Table 6.2.  Regression equations, coefficients of determination, and signifi-
cance levels of relationship between EPS (X) and critical erosion shear stress 
(Y) (compare Figure 3.3b). 
 

Type of 
relationship 

 

Regression equation coefficient of 
determination

Significance 
level 

All stations Y = 0.0015X + 0.4456 r 2 = 0.54 p < 0.01 

Station A only Y = 0.0043X + 0.0254 r 2 = 0.85 p < 0.01 

Station C only Y = 0.0013X + 0.3175 r 2 = 0.95 p < 0.01 

Station D only Y = 0.0035X + 0.3423 r 2 = 0.65 p < 0.01 

Station E only Y = 0.0014X + 0.4171 r 2 = 0.66 p < 0.01 

Station F only Y = 0.0015X + 0.5194 r 2 = 0.58 p < 0.01 

 

The bifurcation in the data suggests that the structure is non-linear and 

therefore cannot be detected by statistical methods based on linear 

regression models. One approach to disentangle the station pattern 
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(bifurcation) of the relationship between EPS concentrations and critical 

erosion shear stresses is to look at other potential parameters that may have 

a direct or indirect influence on critical erosion shear stress. These para-

meters include drying of sediment surface (normalized water content), mud 

content, microphytobenthos assemblage, Macoma baltica as a documented 

sediment destabilizer which was present at nearly all stations, and individuals 

and the sum of species of tube building worms.  Since the separation between 

the two branches observed in Figure 3.3b is evident only for critical erosion 

shear stresses above 1 N m-2 and EPS concentrations above 400 mg m-2 only 

results from those samples fulfilling these conditions are considered. Among 

the above listed parameters only the sum of the tube building worms showed 

the above described station pattern.  As shown in Figure 6.5, stations A and D 

belong to group with high densities (> 2000 individuals m-2) of tube building 

worms, while stations C and E belong to the low density group (< 2000 

individuals m-2). Station F falls within both the high and low density group.  

Macoma baltica on the other hand shows no distinctive station pattern. 

As the sum of tube building worms showed the station pattern of the two 

branches observed when critical erosion shear stresses are plotted versus 

EPS concentrations, it is expected that the different densities of tube building 

worms present in the sediments to some extent may explain the bifurcation of 

the relationship between EPS and critical erosion shear stress. To test this 

hypothesis, the data were split according to the sum of tube building worms 

density. As shown in Figure 6.6, much clearer dependencies of critical erosion 

shear stress on EPS emerge after the data were split into density  < 2000 and 

> 2000 indiv. m-2.  Regression analysis of both data sets showed a statistically 

significant linear relationship between EPS and critical erosion shear stress (P 

< 0.01 for both cases).  For the data set of densities < 2000 indiv. m-2, the 

linear model explained 85 % of the variation in the critical erosion shear 

stress, and for the data set of densities > 2000 indiv. m-2 the model explained 

81 % of the observed variability.  For comparison, the same grouping applied 

to chlorophyll-a concentrations but no improvement of the critical erosion 

shear stress and chlorophyll-a relationships emerge (see Figure 6.7). 
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Figure 6.5.  Density of Macoma baltica versus the sum of tube building 
worms. Note that only samples with critical erosion shear stresses higher than 
1 N m-2 and EPS concentrations higher than 400 mg m-2 were used.  
 
 
 

The density of 2000 indiv. m-2 was used to separate the data because here 

the separation looks clearest in Figure 6.5. Since to use this density value for 

the separation looks somewhat arbitrary, the sensitivity of this model was 

investigated by varying the separation density between 1000 and 4500 indiv. 

m-2. Figure 6.8 shows the relationship between the coefficient of determination 

(r2) and the sum of tube building worms separation density.  The polynomial fit 

yields a maximum of r2 around 3000 indiv. m-2, but the maximal  r2 is indeed at 

2000 indiv. m-2.  The slow decrease of r2 with increasing separation density is 

due to the fact that there are only few samples in this region. 

It should be noted that at low EPS concentrations (i.e. low micro-

phytobenthos biomass and weak biofilm) there is still relatively high scatter in 

the data (between 0.2 and 1.0 N m-2). This was probably due to the spatial 

patchiness of EPS concentrations (i.e. difference between inside and outside 

erosion core),  small-scale patchiness of biofilm strength,  cracks,  and holes                              
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Figure 6.6.  Relationships between EPS concentrations and critical erosion 
shear stresses for low and high tube building worms densities. 
 
 

 
 

Figure 6.7.  Relationships between chlorophyll-a concentrations and critical 
erosion shear stresses for low and high tube building worms densities. 
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inside the erosion core. Moreover, with absence or lack biological influence, 

physical sediment properties may better explain the variability of critical 

erosion shear stress. For example, Riethmüller et al. (2000) found that for 

chlorophyll-a less than 20 mg m-2 the variation of the data could be better 

explained by wet bulk density as was found also by Williamson and Ockenden 

(1996) and Amos et al. (1998).  In contrast to these studies, the dependence 

of critical erosion shear stress on wet bulk density for low chlorophyll-a (less 

than 20 mg m-2) and EPS (less than 100 mg m-2) samples was not observed 

in the present study.  

 

 
Figure 6.8. The polynomial relationship between coefficient of determination 
(r2) and the sum of tube building worms separation density.  Outliers are those 
samples where the erosion experiment was stopped without reaching the 
critical shear stress.  

In the model 4, the critical erosion shear stresses were predicted 

separately for densities of tube building worms lower and higher than 2000 

indiv. m-2 using the corresponding regression equations shown in Figure 6.6 

and then compared with the observed values.  As shown in Figure 6.9, this 

model explains 80 % of the variances when the outliers are excluded.  In 

addition, the bias of predicted values relative to the measured values is very 
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low and the saturation of prediction nearly not observed. Noted that two of the 

three outliers belong to the samples with extremely high density of worms. 

 
Figure 6.9. Comparison of observed and predicted critical erosion shear 
stress derived from calibrations with EPS and sum of tube building worms 
density. The data with arrows (outliers) were omitted in the regression 
analysis because the upper limit of the erosion device was reached. 
 
 
6.3. Discussion and conclusions 

The advantages and disadvantages of predicting critical erosion shear 

stress from chlorophyll-a with global calibration (model 1), chlorophyll-a with 

site specific calibration (model 2), a combination of EPS and mud content 

(model 3), and a combination of EPS and tube building worms (model 4) are 

listed in Table 6.3. 

Predicting critical erosion shear from chlorophyll-a by a global calibration 

(model 1) is technically relatively straightforward.  Moreover, chlorophyll-a can 

be detected and quantitatively estimated from sediment surface reflectance 

spectra in the optically observable spectral range (e.g. Hakvoort et al. 1998, 

Paterson et al. 1998). Hence chlorophyll-a is apparently a potential proxy para- 
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Table 6.3. The pros and cons of each predictive model. The expression “high”, 
“medium” and “low” are used to simplify the assessment and are explained in 
the text in more detail. 
 

 Type Optically 
detectable

Demand of 
methodology

Power of 
prediction 
(r2) (excl. 
outlier) 

Bias Standard 
deviation  

of residual 
value 

 
Model 1 

 
Only chlorophyll-a, 
global calibration 
 

 
Yes 

 

 
Low 

 

 
0.35 

 

 
High 

 

 
0.48 

 
Model 2 

 
Only chlorophyll-a 
Site specific 
calibrations   
 

 
Yes 

 

 
Low 

 

 
0.51 

 
mediu

m 

 
0.43 

 
Model 3 

 
Stepwise multiple 
linear regression  
 

 
No 

 

 
High 

 

 
0.38 

 
High 

 

 
0.47 

 
Model 4 
 

 
EPS and tube 
building worms 

 
No 

 

 
High 

 
 

 
0.80 

 
Low 

 

 
0.29 

 

meter for the purpose of large scale mapping of sediment surface erosion 

parameters. However, the results of this study showed that chlorophyll-a 

alone is a poor predictor of critical erosion shear stresses: the relationships 

are either highly site-specific or poor at all (stations A and B). This results in 

large variability of the residuals between predicted and observed values. 

Additionally, the predicted values are highly biased from the observed one 

and saturate at critical erosion shear stresses of 2.3 N m-2. In addition, the use 

of chlorophyll-a as a proxy of critical erosion shear stress in remote sensing 

technique is only suitable for bare intertidal areas, as substrata lying beneath 

plant canopies are not available for assessment by remote sensing (Friend et 

al. 2003a). 

In model 2, chlorophyll-a was used as a predictor of critical erosion shear 

stress, but with a site-specific calibration. Model 2 gives a better prediction 

than model 1. This is indicated by higher r2 and lower variability of the residual 

values. In addition, the predicted values derived from this model are 

somewhat less biased, at least up to a critical shear stress of 1.5 N m-2.  

Therefore, model 2 is a better option when using chlorophyll-a to predict 
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critical erosion shear stress.  However, a disadvantage of this model is that 

field surveys are required to establish the site-specific calibrations and to 

define the habitat boundaries of each site.   

Similar to model 1, model 3 (a combination of EPS and mud content) gives 

a bad prediction. The model does not fit the data very well, it produces 

relatively high variability of the residual values and the predictions saturate 

already at 1.3 N m-2. Other disadvantages of this model are that parameters 

involved in the model are only partly detectable by optical remote sensing 

techniques. In addition the determination of EPS concentrations is methodolo-

gically demanding and time consuming. Therefore, a combination EPS and 

mud content is by no means a good set of proxy parameters for the purpose 

of large scale mapping of sediment surface erosion parameters.  

A combination of EPS concentration and tube building worms yields a quite 

nice prediction of critical erosion shear stresses. It explains more than 80 % of 

the observed variability, has very little bias and does not show significant bias. 

In addition, it explains qualitatively two of the three outliers as cases for 

extreme high worm densities present. However, for the large-scale mapping 

by optical remote sensing, these two parameters cannot be directly used as 

proxy parameters. This is because the remote sensing of EPS and macro-

fauna is not possible. In addition, predicting critical erosion shear stress by 

taking measurements of EPS concentration and worm density is methodolo-

gically demanding and more time consuming than conducting erosion 

experiments directly. 
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CHAPTER 7 

GENERAL DISCUSSION AND CONCLUDING REMARKS 

 

7.1. The variation of sediment erodibility 

The variation of sediment erodibility at each station was more correlated 

with chlorophyll-a, colloidal carbohydrate, and EPS than other measured 

sediment parameters. This indicated that benthic diatom was the main 

parameters determine the variation of sediment erodibility.  Other factors, on 

other hand, may amplify or reduce the stabilizing effect of benthic diatoms.  

For example, high density of Hydrobia ulvae at station B reduced the amount 

of benthic diatoms through grazing and hence lowers the stabilizing effect of 

benthic diatoms.  In contrast, the stabilizing effect of benthic diatom at station 

A was amplified by the physical process of drying and by the presence of high 

density of tube building worms. 

The direct effect of benthic macrofauna on the sediment erodibility was only 

locally detectable and less dominant compared to the effect of benthic diatom.  

There was a direct relationship between Hydrobia ulvae and erosion rate at 

station A which the erosion rate increased with increasing the density of 

Hydrobia ulvae.  These snails can enhance erosion directly by moving trough 

the surface sediment and by loosening the sediment through pelletization of 

the surface material (Andersen 2001a). As erosion rate at station A was 

relatively low compared to other stations (except station F), the destabilizing 

effect of Hydrobia ulvae appears to be overridden by the stabilizing effects of 

other factors such as biostabilization by benthic diatom and tube building 

worms and physical process of drying.  

The results from study of erosion potential over bedforms suggest that 

presence of bedforms may introduce different modes of erosion. The 

sediments deposited on the crests were more stable than those in the 

troughs. Crests are completely emerged during low tide and progressively dry 

out, whereas troughs are often covered with a thin layer of trapped or slowly 

running water. Reduced water content on the crest results in sediment with 

increased strength and hence greater resistance to erosion.  This drying effect 

on sediment stability on the crests was particularly important at most lanward 
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station (station A) where the emersion period is long enough to allow 

significant drying. The higher benthic diatom biomass on the crests is also 

likely to stabilize the sediment surface of these features. This process was 

more important at seaward stations (B–F).  The small-scale variability in the 

sediment erodibility due to the presence of bedforms suggests that the 

occurrence of bedforms should not be ignored when modeling mudflat 

development.    

Sediments were generally more stable in September 2002 compared to 

other sampling periods, and this was associated with the presence of visible 

benthic diatom biofilms, as supported by the markedly higher chlorophyll-a, 

colloidal carbohydrate, and EPS in the period. The temporal pattern of 

sediment erodibility at the study site can not be explained by median grain-

size, mud content, water content, and organic content of the sediment since 

these parameters did not vary much during the study.  Instead, the temporal 

(seasonal) variation of sediment erodibility was controlled mainly by the 

temporal (seasonal) variation of benthic diatom abundance (measured as 

chlorophyll-a) and carbohydrate concentration of the sediment. Higher 

chlorophyll-a concentration that observed in September 2002  (early autumn) 

was probably due to higher light availability and nutrient level during the 

period.  In contrast, lower values observed in June 2001 (summer) may be 

caused by several factors such as nutrient limitation and grazing by macro- or 

meiofauna. 

Spatial analysis of sediment erodibility showed that the sediments were 

more stable at station A (close to the salt marsh) and station F (middle tidal 

flat). The higher stability at station A was attributed to be the results of 

physical process of drying and biostabilization by tube building worms.  Higher 

level of biostabilization by benthic diatoms was the main cause of the higher 

stability at station F. Moreover, the presence of mussel beds probably 

minimized the physical disturbance (waves or currents) of the surficial 

sediment structure at station F.  Minimal disturbance would not only facilitate 

the accumulation of mucilage in surface sediment but also minimized 

susceptibility to particle entrainment (Kornman and de Deckere, 1998). By 

contrast, the erosion rates were highest at the site dominated by Hydrobia 
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ulvae (station B) and this was attributed to the destabilizing effect of Hydrobia 

ulvae.  

A strategy to obtain the large-scale distribution of critical erosion shear 

stress is to establish relationship to proxy parameter that can be mapped 

either by field surveys or by remote sensing techniques. Ideally, the proxy 

should be easily sampled and measured and can be optically detected by 

remote sensing techniques. Chlorophyll-a is one of the potential proxies that 

meet this criterion. Although this study showed that chlorophyll-a alone is a 

poor predictor of critical erosion shear stress, the use of chlorophyll-a to 

predict critical erosion shear stress will provide more realistic threshold values 

for natural sediments of a given grain-size than the values obtained from 

criteria develop for abiotic sediments. Moreover, predicting critical erosion 

shear stress from chlorophyll-a can be further improved by making a site-

specific calibration. A combination of EPS concentration and tube building 

worms yields a quite nice prediction of critical erosion shear stresses. 

However, for the large-scale mapping by optical remote sensing, these two 

parameters cannot be directly used as proxy parameters since they are not 

optically detectable. In addition, predicting critical erosion shear stress by 

taking measurements of EPS concentration and worm density is methodolo-

gically demanding and more time consuming than conducting erosion 

experiments directly. 

From this study one can conclude that spatial and temporal pattern of 

sediment erodibility at the study site was closely linked to the spatial and 

temporal variation of benthic diatoms.  Moreover, this study showed that the 

physical factors like drying of sediment due to prolonged air exposure may be 

just as significant for sediment erodibility variation as biological factors.   

 

7.2. Recommendation for further work 

The present study was conducted with several limitations, so that we are 

still unable to answer all questions concerning the spatial and temporal 

variation of sediment erodibility at the intertidal flat. However, fundamental 

information was achieved, enabling the improvement our understanding on 

erosion characteristics of intertidal flat sediment. 
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In the present study, the samplings were restricted only to the inner and 

middle zones of Dornumer Nacken intertidal flat.  In order to have a complete 

picture of the erosion parameter variability of the site, there is a need to 

extend the erosion study to the outer zone (sandy area) of the site. 

The information on variability of erosion parameters in the winter situation 

is still missing in the present study. Therefore, it is recommended to conduct 

erosion experiments during winter in order to have a complete temporal 

pattern of the erodibility at the study site.  

Our results showed that the relationships between chlorophyll-a and critical 

erosion shear stress are generally strong and are not the function of season.  

So, it should be possible to generate a map of critical erosion shear stress 

from chlorophyll-a distribution with a site-specific calibration. Mapping of 

critical erosion shear stress at the site using chlorophyll-a as proxy would be 

the next challenge. 
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Appendix 2.  The average density (individual m-2) of dominant macrofauna 
species during the sampling period in 2001 at the study site.  
 
 

Species 

 

Station B 

 

Station C 

 

Station E 

 

Station F 

Capitella capitata 18 223 382 291 

Cerastoderma edule 692 0 32 0 

Eteone longa 36 16 0 18 

Heteromastus filiformis 55 557 255 528 

Hydrobia ulvae 8935 16 16 0 

Macoma baltica 400 127 191 0 

Pygospio elegans 5914 191 287 764 

Tharyx killariensis 4968 1274 812 2147 

Tubificoides benedeni 3421 175 175 1838 
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Appendix 3.  Pearson correlation coefficient (r) between critical erosion shear 
stress and physical and biological sediment properties for the combined data 
set.  Den. = wet bulk density, Mud = mud content, Median = median grain-
size, Water = water content, N. water = normalised water content, Org. = 
organic content, Chl-a = chlorophyll-a, Coll. Car. = colloidal carbohydrate 
concentration, EPS = EPS concentration, crτ = critical erosion shear stress, 
and E. rate = erosion rate. 
 

 Den. Mud Median Water N. 

water 

Org. Chl-a Coll. 

car. 

EPS crτ  

 

Mud 

 
-0.70 

         

Median 0.63 -0.95         

Water -0.98 0.71 -0.64        

N. water -0.36 -0.32 0.37 0.38       

Org. -0.89 0.73 -0.67 0.89 0.22      

Chl-a -0.27 0.15 -0.09 0.22 -0.02 0.37     

Coll.car. -0.48 0.14 -0.15 0.44 0.19 0.53 0.77    

EPS -0.55 0.20 -0.18 0.51 0.24 0.59 0.70 0.92   

crτ  -0.38 0.25 -0.19 0.36 0.16 0.48 0.59 0.71 0.73  

E. rate 0.37 -0.44 0.36 -0.37 0.08 -0.41 -0.38 -0.34 -0.31 -0.33 

Numbers in bold: significant at P < 0.01  
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Appendix 4.  Pearson correlation coefficient (r) between critical erosion shear 
stress and physical and biological sediment properties for station A and B 
only. Den. = wet bulk density, Mud = mud content, Median = median grain-
size, Water = water content, N. water = normalised water content, Org. = 
organic content, Chl-a = chlorophyll-a, Coll. Car. = colloidal carbohydrate 
concentration, EPS = EPS concentration, crτ = critical erosion shear stress, and 
E. rate = erosion rate (Numbers in bold: significant at P < 0.01). 
 
 

 Den. Mud Median Water N. 

water 

Org. Chl-a Coll. 

car. 

EPS crτ  

Station A 

Mud 

 
-0.89 

         

Median 0.92 -0.98         

Water -0.98 0.91 -0.95        

N. Water -0.83 0.55 -0.64 0.85       

Org. -0.33 0.37 -0.31 0.25 -0.02      

Chl-a 0.25 -0.11 0.22 -0.26 -0.41 0.53     

Coll.car. -0.51 0.60 -0.76 -0.89 0.23 0.53    

EPS 0.73 -0.57 0.63 -0.73 -0.77 0.25 0.68 0.93   

crτ  0.73 -0.61 0.68 -0.78 -0.83 0.20 0.49 0.96 0.92  

E. rate -0.42 0.13 -0.22 0.38 0.61 -0.30 -0.66 -0.57 -0.59 -0.42 

           
Station B 

Mud 

 
-0.92 

         

Median 0.91 -0.98         

Water -0.97 0.96 -0.93        

N. water 0.34 -0.65 0.65 -0.40       

Org. -0.92 0.95 -0.93 0.97 -0.46      

Chl-a 0.61 -0.59 0.44 -0.68 0.04 -0.58     

Coll.car. -0.22 -0.01 -0.08 0.10 0.21 0.12 0.35    

EPS -0.71 0.50 -0.56 0.64 0.05 0.66 -0.17 0.72   

crτ  0.57 -0.64 0.58 -0.57 0.51 -0.54 0.51 0.27 -0.14  

E.rate 0.41 -0.53 0.44 -0.43 0.58 -0.40 0.31 -0.18 -0.20 0.32 

0.73 
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Appendix 5. Pearson correlation coefficient (r) between critical erosion shear 
stress and physical and biological sediment properties for station C and D 
only. Den. = wet bulk density, Mud = mud content, Median = median grain-
size, Water = water content, N. water = normalised water content, Org. = 
organic content, Chl-a = chlorophyll-a, Coll. Car. = colloidal carbohydrate 
concentration, EPS = EPS concentration, crτ = critical erosion shear stress, and 
E. rate = erosion rate (Numbers in bold: significant at P < 0.01). 
 

 Den. Mud Median Water N. 

water 

Org. Chl-a Coll. 

car. 

EPS crτ  

Station C 

Mud 

 
-0.93 

         

Median 0.93 -0.99         

Water -0.96 0.93 -0.91        

N. water -0.84 0.68 -0.65 0.90       

Org. -0.95 0.94 -0.96 0.92 0.74      

Chl-a -0.40 0.36 -0.46 0.25 0.09 0.55     

Coll.car. -0.39 0.31 -0.41 0.24 0.12 0.50 0.98    

EPS -0.47 0.35 -0.43 0.31 0.23 0.55 0.92 0.95   

crτ  -0.46 0.34 -0.39 0.30 0.23 0.54 0.88 0.89 0.97  

E. rate 0.16 -0.19 0.25 -0.18 -0.13 -0.30 -0.47 -0.44 -0.37 -0.34 

           
Station D 

Mud 

 

-0.28 

         

Median 0.29 -0.96         

Water -0.98 0.23 -0.22        

N. water -0.89 -0.15 0.13 0.93       

Org. -0.95 0.18 -0.20 0.98 0.93      

Chl-a -0.92 -0.02 -0.05 0.89 0.40 0.91     

Coll.car. -0.94 0.00 0.00 0.96 0.39 0.97 0.91    

EPS -0.48 -0.38 0.27 0.47 0.37 0.50 0.79 0.72   

crτ  -0.73 -0.07 -0.06 0.72 0.45 0.77 0.83 0.72 0.81  

E. rate 0.05 -0.55 0.46 -0.03 0.20 -0.01 0.23 0.26 -0.17 -0.16 
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Appendix 6. Pearson correlation coefficient (r) between critical erosion shear 
stress and physical and biological sediment properties for station E and F 
only.  Den. = wet bulk density, Mud = mud content, Median = median grain-
size, Water = water content, N. water = normalised water content, Org. = 
organic content, Chl-a = chlorophyll-a, Coll. Car. = colloidal carbohydrate 
concentration, EPS = EPS concentration, crτ = critical erosion shear stress, and 
E. rate = erosion rate (Numbers in bold: significant at P < 0.01). 
 

 Den. Mud Median Water N. 

water 

Org. Chl-a Coll. 

car. 

EPS crτ  

Station E 

Mud 

 
-0.86 

         

Median 0.73 -0.93         

Water -0.97 0.91 -0.79        

N. water -0.82 0.61 -0.44 0.82       

Org. -0.96 0.92 -0.82 0.98 0.80      

Chl-a -0.46 0.61 -0.75 0.46 0.21 0.55     

Coll.car. -0.72 0.72 -0.80 0.71 0.47 0.75 0.85    

EPS -0.81 0.75 -0.72 0.83 0.69 0.83 0.67 0.88   

crτ  -0.76 0.78 -0.73 0.79 0.55 0.81 0.65 0.75 0.81  

E.rate 0.28 -0.43 0.41 -0.29 -0.17 -0.40 -0.54 -0.43 -0.30 -0.37 

           
Station F 

Mud 

 
-0.55 

         

Median 0.56 -0.97         

Water -0.99 0.57 -0.59        

N. water -0.43 -0.43 0.39 0.44       

Org. -0.89 0.77 -0.82 0.91 0.13      

Chl-a -0.30 0.60 -0.56 0.30 -0.44 0.44     

Coll.car. -0.66 0.26 -0.35 0.70 0.40 0.67 0.47    

EPS -0.71 0.27 -0.35 0.74 0.47 0.70 0.41 0.97   

crτ  -0.40 0.29 -0.36 0.45 0.08 0.49 0.59 0.76 0.76  

E.rate 0.40 -0.42 0.43 -0.42 0.20 -0.54 -0.87 -0.64 -0.58 -0.68 
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