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Abstract

In this thesis the concept of scale separation is introduced as a tool for first improving regional
climate model simulations and, secondly, to explicitly detect and describe the added value obtained
by regional modelling. The basic idea behind this is that global and regional climate models have
their best performance at different spatial scales.

Therefore the regional model should not alter the global model’s results at large scales. The for this
purpose designed concept of nudging of large scales controls the large scales withing the regional
model domain and keeps them close to the global forcing model whereby the regional scales are left
unchanged. For ensemble simulations nudging of large scales strongly reduces the divergence of
the different simulations compared to the standard approach ensemble that occasionally shows large
differences for the individual realisations. For climate hindcasts this method leads to results which
are on average closer to observed states than the standard approach.

Also the analysis of the regional climate model simulation can be improved by separating the results
into different spatial domains. This was done by developing and applying digital filters that perform
the scale separation effectively without great computational effort. The separation of the results into
different spatial scales simplifies model validation and process studies. The search for ‘added value’
can be conducted on the spatial scales the regional climate model was designed for giving clearer
results than by analysing unfiltered meteorological fields. To examine the skill of the different simu-
lations pattern correlation coefficients were calculated between the global reanalyses, the regional
climate model simulation and, as a reference, of an operational regional weather analysis. The
regional climate model simulation driven with largescale constraints achieved a high increase in
similarity to the operational analyses for medium-scale 2 meter temperature anomaly fields com-
pared to the global model or the regional model run without nudging of large scales.

Réumliche Skalentrennung in der regionalen Klimamodellierung

Zusammenfassung

In dieser Dissertation wird das Konzept der Skalenseparation einerseits als Werkzeug fiir die Ver-
besserung regionaler Klimamodelle und andererseits fiir die Beschreibung und den Nachweis des



“added values” der regionalen Klimamodellierung vorgestellt. Die grundlegende Idee hierfiir ist,
dass globale und regionale Klimamodelle ihre jeweils beste Leistung auf unterschiedlichen rdum-
lichen Skalen zeigen.

Aus diesem Grund sollte das regionale Modell die Ergebnisse des globalen Modells auf der gro3en
Skala unverdndert belassen. Das aus diesem Grund entwickelte Konzept des “Nudgen der gro3en
Skalen” steuert die gro3en Skalen innerhalb des regionalen Modellgebietes und sorgt dafiir, dass
sic nahe an den Ergebnissen des Globalmodells bleiben, wihrend die regionalen Skalen davon
unbeeinflusst sind. Das Nudgen der groBen Skalen reduziert die Divergenz einzelner Ensemble-
Simulationen erheblich im Vergleich zum Ensemble des Standardansatzes, das teilweise grofle
Unterschiede zwischen den einzelnen Realisierungen zeigt. Fiir klimatische Nachhersagen (‘hind-
casts’) fiihrt diese Methode zu Ergebnissen, die im Durchschnitt niher an beobachteten Zustdnden
sind als der Standardansatz.

Auch die Analyse der regionalen Klimasimulation kann durch die Trennung der Ergebnisse in ver-
schiedene rdaumliche Bereiche verbessert werden. Dies wurde durch die Anwendung eigens hierfiir
entwickelter digitaler Filter erreicht, die die Skalenseparation effektiv und ohne groB3en rechentech-
nischen Aufwand durchfiihrt. Die Trennung der Ergebnisse in verschiedene rdumliche Skalen
vereinfacht die Modellevaluierung sowie Prozessstudien. Die Suche nach einem “added value” kann
auf den raumlichen Skalen durchgefiihrt werden, fiir die das regionale Klimamodell enwickelt wurde
und so klarere Ergebnisse liefern als fiir ungefilterte meteorologische Felder. Um die Giite der ver-
schiedenen Simulationen zu untersuchen, wurden Musterkorrelationskoeffizienten zwischen der
globalen Reanalyse, den regionalen Klimasimulationen sowie als Referenz einer operationellen
regionalen Analyse berechnet. Die regionale Klimamodellsimulation mit grof3skaligem nudging im
Modellinneren erzielte im Vergleich sowohl zum Globalmodell als auch zum regionalen Modellauf
ohne nudging der grof3en Skalen fiir die mittelskalige 2-Meter-Temperatur einen gro3en Zugewinn
an Ahnlichkeit zu den operationellen Analysen.

Manuscript received / Manuskripteingang in TDB: 9. November 2005
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Chapter 1

Introduction

Regional atmospheric models have matured in the past few years and they are cur-
rently utilised in a broad spectrum of applications. These range from process studies,
reconstructions of recent climate and of paleo climates, simulation of pathways and de-
positions of anthropogenic matter, construction of plausible scenarios of future climate
change to regional weather analysis and forecast. Regional climate models (RCMs)!
are often used to gain information on a regional scale that global models® could only
give at a much coarser resolution. The large number of regional modelling studies that
have been conducted have resulted in mainly four different study types:

e Climate scenarios (e.g. Christensen and Christensen (2003), de Elia et al. (2005),
Dorn et al. (2003), Jones et al. (1995), Jones et al. (1997), Plummer et al. (2005),
and Réisénen et al. (2004)) refer to a plausible future climate that has been con-
structed for explicit use in investigating the potential consequences of anthro-
pogenic climate change. Such climate scenarios should represent future condi-
tions that account for both human-induced climate change and natural climate
variability (Giorgi et al. (2001)). RCMs are forced with, e.g., global warming
simulations to compute climate scenarios and those often serve as input to im-
pact models.

"Local climate is influenced by regional features such as the local orography, land-sea-contrast, and
small-scale atmospheric features (e.g. convection), which are not well represented in global climate
models because of their coarse resolution. Models of higher resolution cannot practically be used for
global simulation of long periods of time due to limited computer resources. To overcome this, regional
climate models are constructed for limited areas with a higher resolution (typically 10 to 50 km). They
are driven with boundary conditions provided by global climate models.

2Coupled atmosphere-ocean general circulation models consist of a three-dimensional representa-
tion of the atmosphere, coupled with ocean general circulation models, with models of land-surface
processes, and with sea-ice models. A general circulation model operates at a coarser level of detail
than a model used for numerical weather prediction because it has to produce projections for decades
or centuries rather than short-term forecasts.
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e Reconstructions (e.g. Feser et al. (2001), Meinke et al. (2004), and Miiller
(2004)) are usually driven by global modelled data for the preceding decades
taking into account all available observations. These so-called reanalyses® are
used to provide boundary conditions for the regional model. Hereby the global
model fields are quite accurate on the large scale and should not be altered by the
regional model other than on the regional scale. The regional model is used to
refine the coarse-resolution reanalysis both spatially and temporally to be anal-
ysed in detail or to be used as driving fields in further simulation studies, e.g.
storm surge, wave or current modelling.

e Process studies (e.g. Jacob and Podzun (1997), Rinke and Dethloff (2000), and
Weisse et al. (2000)) provide understanding of certain meteorological processes
by means of regional modelling. Also, the model sensitivity to changed bound-
ary conditions or parameterisations can be tested using ensemble studies*. Pro-
cess studies may also be useful to improve the regional model’s quality.

e Regional Forecasts (e.g. Johnsen and Rockel (2001)) are computed using short-
term regional weather forecast models driven by global analyses with assimi-
lated observed atmospheric states. Usually ensemble studies are calculated by
slightly disturbing the driving model data to create a number of possible future
atmospheric states on the regional scale. For regional forecasts the model is
supposed to produce high-resolution forecast with some reliance on the large-
scale global forecast. However, the regional model may, in this case, be used
to slightly improve also the large-scale field, because the large-scale field may
contain errors (Kanamaru and Kanamitsu (2005)).

Reviews on regional climate modelling can be found in, among others, McGregor
(1997), Giorgi and Mearns (1999), and Wang et al. (2004).

A multi-decadal hindcast (reconstruction of weather) for western Europe (Feser
et al. (2001)) showed that for certain weather conditions large deviations between the
driving global reanalyses and the regional model may occur. These deviations are of
course wanted, but only at the regional scale that can be reliably simulated by the re-
gional model, not at the large scale that should be well-resolved by the forcing global
reanalyses. A more detailed analysis showed that these differences happened mainly

3Reanalyses represent global model simulations containing assimilated observation data like buoys,
rawinsondes, land surface, satellite or ship and airplane measurements. The data sets are usually avail-
able for the last 50 years. They provide comprehensive information of the atmospheric state as a gridded,
temporally evenly spaced data set.

“Ensemble studies represent a number of almost similar simulations, differing only slightly in their
initial conditions. These differences may be e.g. a different starting time or slightly changed model
parameters. In reality these slightly changed initial conditions may represent errors in the observations
or insufficient knowledge of physical processes. The resulting ensemble simulations give a measure for
the internal model variability.
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at the large scales. These scales are the ones that can be successfully resolved by the
global reanalyses and therefore should remain unchanged in the regional simulation.
To prevent the regional model from deviating from the driving data for large weather
systems the nudging of large scales was developed (von Storch et al. (2000)). This
method adds nudging terms to the regional model solution which nudge the atmo-
spheric fields towards the direction of the global driving fields, but only at the large
spatial scales. Thereby the nudging coefficients were applied only for the horizontal
wind components for selected low wave numbers and above 850 hPa, with increasing
strength for higher model levels. The spectral nudging technique combines the work
of Kida et al. (1991) and the approach of Waldron et al. (1996), and further refines
them and applies this technique to an atmospheric climate simulation.

Applications of spectral nudging lead to encouraging results, also for ensemble
studies (Weisse and Feser (2003)). Several almost similar simulations with and with-
out nudging of large scales were calculated, differing only in their starting date. For
these ensemble studies it often poses a problem that ensemble hindcasts can show high
variability between the individual ensemble members. For regional hindcasts, only the
single solution closest to the observations is wanted. However, the chance to pick the
simulation closest to observations is reduced by large ensemble variability. These en-
semble deviations were greatly reduced using spectral nudging, leading, on average,
to smaller errors in comparison with observations.

The scale separation used for the nudging of large scales lead to the idea of analysing
limited-area model results separated into different spatial scales. The scale separation
was expected to lead to advanced model validation, enhanced detection of added value
of regional modelling as well as to more detailed process studies. This required that
an appropriate tool be developed for the scale separation. Fourier filters proved not to
be appropriate because of their erroneous description of spatial trends as being com-
posed of waves. The most cost-effective way for the filtering process of large data sets
in terms of computing time was to design an isotropic, discrete filter (Feser and von
Storch (2005)). The filtered fields now provided for a new way of data analysis. Given
an appropriate reference field on the same model grid, direct comparisons between
the simulated data and observation fields are made possible. The regional model can
be examined according to the spatial scale it was designed for and not only in total,
giving more accurate results for the model’s downscaling ability. An added value was
detected especially for more regional-scale variables such as near-surface temperature
(Feser (2005)). Furthermore, for spatially smooth quantities, such as mean sea level
pressure, a gain of additional information on the smaller scales could be extracted for
the simulation using spectral nudging. This filtering technique, in combination with
the analysis of model results on different spatial scales, presents a new approach to
detect added value in limited-area model simulations.
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This work is organised as follows:

The concept of scale separation is briefly presented in Section 1.1. A short overview
of the sponge zone and dynamical downscaling is given in 1.2. The nudging of large
scales is described in Section 1.3 and a short introduction to the description of added
value in regional modelling is given in Section 1.4. Since spectral nudging has been
introduced in 2000, a number of tests and applications have been published. Those,
of which the author of this thesis has made contributions, are briefly summarised in
Section 1.5. A short conclusion and overview is given in Section 1.6. Chapters 2-5
are the four papers constituting this thesis. The summary and conclusions are given in
Chapter 6.

1.1. The concept of scale separation

Global and regional climate models have their individual best simulation performance
at different spatial scales. Global model results perform best for large spatial scales, a
distance of five to six grid boxes and more are often considered to be trustworthy. This
lies in the range of about 800 km and larger, depending on the global model’s resolu-
tion. The regional model should not modify these scales that can be well resolved by
the global model. Laprise (2003) introduced a technique to identify the resolved scales
and the non-linear interactions between these scales in nested limited-area models by
adopting a spectral perspective.

Figure 1.1 shows model variance as a function of spatial scale. For both the global
model (blue solid framed rectangles) and the regional model (red dashed framed rect-
angles) there is a well-resolved and an insufficiently-resolved spatial domain. For the
regional model these areas are shifted towards smaller spatial scales. The blue-striped
overlapping area between the global model’s well-resolved domain and the regional
model’s well-resolved domain should be similar. The global model’s results are re-
garded as trustworthy in this area and should not be modified. The white overlap-
ping area between the insufficiently-resolved global model’s scales and the still well-
resolved regional model’s scales is the part where value added by the regional model
should be expected.

In the multi-decadal hindcast by Feser et al. (2001) it was found that regional model
results differed for large-scale weather phenomena for certain periods and that a spe-
cial large-scale control was needed. To assure that large-scale weather phenomena in
the model’s interior do not largely deviate from the global model’s results the spec-
tral nudging technique was developed. By introducing this large-scale control in the
model’s interior, RCMs can stably be integrated over many decades and provide infor-
mation on spatial and temporal scales not sufficiently resolved by present day global
climate models and weather analyses. The nudging of large scales will be explained in
more detail in Section 1.3 and in Chapter 2; a spectral nudging application is presented
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Figure 1.1: Model variance plotted as a function of spatial scales. Frames show spatial
scales which are well or insufficiently resolved in the global (blue solid
framed rectangles) and in the regional climate model (red dashed framed
rectangles).

in Chapter 3.

By looking into the scale separation technique needed for the nudging of large
scales, the idea of analysing climate model results separated according to their spatial
scales developed. For this purpose several filters were developed that would cost-
effectively perform the scale-separation for the long-term data sets. The filter con-
struction is briefly sketched in Section 1.4 and described in more detail in Chapter 4.
Chapter 5 shows the filter application and the resulting enhanced detection of limited-
area model’s added value.

1.2. Sponge zone and dynamical downscaling

The main goal in downscaling is to obtain regional weather phenomena that are influ-
enced by the local orography, land-sea-contrast, and small-scale atmospheric features
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(e.g. convection). The dynamical downscaling is supposed to retain all the large-scale
information which can be resolved well by the global model or reanalyses. It should
also add regional information that the coarse-resolution global model could not gener-
ate. For this purpose limited-area models require meteorological information at their
boundaries from either a global climate model or reanalysis data. But, regional mod-
els have to deal with the mathematically not well-posed problem of lateral boundary
conditions. That is, there is in general no well-defined solution fitting all prescribed
boundary conditions in the model interior. There may be several or even none solutions
fitting both the model equations and the boundary conditions, therefore in general no
unique solution can be specified as demanded in mathematical terms. The inconsis-
tencies between the model solution and the global forcing field along the boundaries
produce noise and often instabilities. This problem was efficiently rectified by the
inclusion of a sponge zone (Davies (1976)). This broadened buffer zone features ex-
ponentially decreasing weights ensuring the consistency of the interior flow with the
boundary conditions at the outflow boundaries.

Castro et al. (2005) examined to what degree boundary conditions steer processes
in the limited-area model interior. They found that for sufficiently large model do-
mains the surface boundary forcing appeared to be the dominant factor in generating
variability for small-scale features and it exerted greater control on the RCM solution
as the influence of lateral boundary conditions diminished. Their results also showed
that the influence of the surface boundary forcing was highly dependent on the model
experimental design, such as domain size, nudging options, specification of the surface
boundary itself, and model parameterisation schemes.

An efficient way to test the downscaling ability of nested RCMs is the Big-Brother
Experiment (BBE) conducted by Denis et al. (2002). A high-resolution reference cli-
mate was computed and then degraded by low-pass filtering to use this filtered data
to drive a limited-area model. The limited-area model results were then compared to
the high-resolution reference data. Differences can thus be attributed to errors asso-
ciated with the nesting and downscaling technique. Denis et al. (2003) examined the
sensitivity of nested RCMs to the resolution of the lateral boundary conditions using
the BBE. They found that satisfactory results were achieved for spatial resolutions de-
graded up to a factor of 12. For the lateral boundary conditions update interval it was
shown that 12 hours were the upper limit but 6 hour update intervals gave significantly
better results. Only recently, Herceg et al. (2005) applied the BBE to the NCEP Re-
gional Spectral Model for a tropical region. They found that the results of the Big
Brother were well reproduced by the Little Brother for most variables. Only precipita-
tion posed a problem, but this was concluded to be rather a model-specific convection
scheme deficiency and can not be blamed on the nesting strategy which the BBE was
originally designed to test. de Elia and Laprise (2002) analysed the ability of a limited-
area model to regenerate the removed small scales filtered out in an BBE. Their results
show that the small-scale regional model was capable of recreating the right amount of
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small-scale variability but differences with the reference run grew with time. The best
BBE results can be achieved for model set-ups with high exchange rates between the
lateral boundaries and the model interior. For model domains located in areas with, or
weather conditions leading to, low exchange rates, the BBE may be less successful.

If the regional model is driven only by boundary conditions without controlling
large-scale weather phenomena in the model interior some problems with large-scale
features may occur, especially for blocking weather situations. Thereby the domain
size is an important factor. Large model areas are more affected by large-scale devia-
tions between the global and regional model. But also the exchange rate between the
lateral boundaries and the inner model domain has an immediate effect on the large-
scale constraint the driving global model exerts on the limited-area model. Rinke and
Dethloff (2000) showed that in the circumpolar Arctic domain the lateral boundary
control is weaker compared to that in model areas of similar domain size in mid-
latitude areas. They also showed that RCMs may develop systematic errors in the
simulation of the large-scale flow if the boundary forcing is weak. Spectral nudging is
one way to minimise such deviations between regional and global model on the large
scale.

1.3. Nudging of large scales

Kida et al. (1991) presented a new concept of a spectral boundary to join global and
regional climate model. In this technique large-scale fields of a limited-area model
are replaced with the corresponding large-scale fields supplied externally from the
global climate model at a selected regular time interval. It was then further developed
by Waldron et al. (1996) to a method that allows imposition of the large-scale fields
throughout the limited-area model domain. von Storch et al. (2000) used and further
refined the technique to nudge the long waves in the regional domain to those of the
driving global reanalyses in a multi-decadal climate hindcast study. Horizontal wind
components were nudged to match the driving reanalyses. Thereby the nudging co-
efficients were applied exclusively for low wave numbers and above 850 hPa, with
increasing strength for higher model levels. The method was also implemented into a
RCM to study the East Asian summer monsoon (Kang et al. (2005)). They found that
the nudging led to improved model performance not only in simulating the mean fea-
tures but also in capturing individual precipitation events. Recently, a new approach to
nudge the large scales of the driving global model to a regional spectrally represented
model was presented by Kanamaru and Kanamitsu (2005).

The application of a spectral nudging technique forces the model to approximate
the large scales to the global model data for the whole integration area while the small
scales develop freely according to the regional model. Large-scale control of regional
climate modelling overcomes the fundamental problem of dealing with an ill-posed



16 1.4 Detection of added value in regional modelling

boundary value problem, but its usefulness depends on the specific application. For
reconstructions, so-called hindcasts, only one solution should be gained and spectral
nudging is very helpful in this case. For a scenario simulation this is more complicated
as global scenarios contain significant errors and the regional model may not be able
to rely totally on the lateral forcing. But the one-way nesting prohibits the mutual in-
teractions between global and regional model which makes it difficult to expect that
the regional model could improve the accuracy of the large-scale portion of the global
warming simulation within the regional domain (Kanamaru and Kanamitsu (2005)).
For process studies, nudging of large scales may not always be favourable because the
simulation for certain experiments should be as free as possible to respond to varia-
tions in internal parameters. For regional weather forecasts spectral nudging might
be a promising approach to reduce regional model’s ensemble deviations caused by
large-scale deviations between regional and global model, but so far, to the author’s
knowledge, this has not been tested.

1.4. Detection of added value in regional modelling

The added value of regional models has not been well described so far. To learn more
about the skill and added value given by RCMs a new way of analysing simulation
data was developed. By using spatial filters, model data is separated into wave number
ranges that should give the best improvement by either the global or the limited-area
model. Also e.g. model variability, process studies, or model validation can be looked
upon for a certain spatial scale range. Spatial filters were rarely used for the evaluation
of RCM output so far, in particular not in the context of regional climate simulations
with a RCM. In limited-area model forecasting and evaluation, one approach was to
expand a limited field in a 2-d Fourier series and to rebuild a filtered field by recombin-
ing only Fourier components with relevant scales (Errico (1985), Stamus et al. (1992)).
Bettge and Baumhefner (1980) introduced digital filters using classical ideas proposed
by Shuman (1957) and Shapiro (1970). For the spatial scale separation used in this
thesis several discrete, isotropic spatial filters were developed that perform the filter
computations in a cost-effective and especially for the limited-area model designed
manner (Feser and von Storch (2005)).

Employing appropriate spatial filters, the scale-dependent skill of a state-of-the-art
RCM was examined by comparing its skill with that of the global reanalyses driving
the RCM. Pattern correlation coefficients were calculated to measure the skill between
spatially filtered global reanalyses or RCM simulations (with and without nudging of
large scales) and a reference operational regional weather analysis. It is demonstrated
that RCMs are indeed returning significant added value. For the medium scales the
RCM improves the spatially smooth variable air pressure if the RCM is driven with
large-scale constraints, but not for the large scales. For the regionally more struc-
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tured quantity near-surface temperature the added value of the regional model using
nudging of large scales is more obvious. An increase of the mean pattern correlation
coefficient of up to 30% was described for the simulation of medium-scale 2m temper-
ature anomaly fields. The filtering technique and its application are explained in more
detail in Chapters 4 and 5.

After the introduction of spectral nudging in 2000, and the availability of a 40-year
high-resolution reconstruction of western European weather which was obtained by
downscaling NCEP reanalyses with spectral nudging (Feser et al. (2001)), the tech-
nique has been examined in a series of papers. It was found that the method’s ability to
enforce the right large-scale state also improved the performance of the regional model
on the medium spatial scales. Also, the 40-year simulation was used to in a number of
applications, specifically with respect to marine wind issues. The author of this thesis
contributed to several of these. Therefore they are listed, together with their abstracts,
in the following.

1.5. Applications of Spatial Scale Separation

The following articles give examples for the application of spatial scale separations in
regional climate modelling. The author of this thesis has contributed to two spectral
nudging validation studies, dealing with the simulation of cloudiness and with wind
variability on time scales of a few hours. In both cases the method worked properly.

The skill of spectral nudging is demonstrated in this work on cloud parameterisa-
tion in the regional model SN-REMO:

A Validation of the Cloud Parameterization in the Regional Model SN-REMO

I. Meinke, H. von Storch, and F. Feser

Institute for Coastal Research, GKSS Research Centre

21502 Geesthacht, Germany

Published in:

J. Geophys. Res., Vol. 109, D13205, doi:10.1029/2004JD004520, 2004.

Abstract : The cloud parameterization in the regional atmospheric model SN-REMO
(Spectrally Nudged Regional Model) was validated using satellite data from the IS-
CCP ( International Satellite Cloud Climatology Project). There is an overall good
agreement between the cloudiness of SN-REMO and ISCCP in terms of temporal and
spatial means. However, with further investigation a deficiency was localized regard-
ing the simulation of cloud amount: Too many clouds are simulated. This overestima-
tion occurs especially during the night. It is connected with a poor simulation of the
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cloud diurnal cycle. Clouds at low-level emissivity heights ( 1000 - 475 hPa) are caus-
ing this overestimation. The magnitude of the overall overestimation is also affected
by the underestimation of simulated cloud amount at high-level emissivity heights
(< 475 hPa) and its diurnal variation. The overestimation of the simulated cloud
amount is caused by subgrid-scale cloudiness. As the simulation of subgrid-scale
clouds in the regional model SN-REMO is described by a relative humidity param-
eterization, these deficiencies are connected with this parameterization.

Another example for the skill of nudging of large scales is given in the work on
aliasing in power spectra. It shows high similarity for near-surface wind spectra of
NCEP and REMO if sampled at the same time intervals:

Aliasing in Power Spectra: Comment on ‘Improved global maps and 54-year history
of wind-work on ocean inertial motions’ by M. H. Alford

F. Feser, H. von Storch, R. Weisse, and E. Zorita
Institute for Coastal Research, GKSS Research Centre
21502 Geesthacht, Germany

Published in:

Geophys. Res. Lett., Vol. 30, No. 22, p. 2165, 2003.

Abstract : In his paper ‘Improved global maps and 54-year history of wind-work on
ocean inertial motions’ (GRL Vol. 30, No. 8, 6-1 - 6-4, 2003), the author is using near
surface (10 meter) winds from a number of different sources as input for subsequent
analyses. One of the sources is the gridded multi-decadal reconstruction prepared by
Feser et al. (2001) with the help of the regional atmospheric model REMO. Other
sources used are the NCEP reanalyses. Analyzing both types of data Alford (2003)
comes to the conclusion that “The NCEP and the REMO winds are highly coherent
at all frequencies over the entire domain. However, the spectra of the REMO winds
at f are lower than the NCEP winds by a constant factor. To account for this atten-
uation, the REMO winds are multiplied by 1.32.” We tried to reconstruct the spectra
that led Alford (2003) to the conclusion that REMO winds have too little variance at
high-frequencies. If the hourly REMO time-series is sampled at 6-hour intervals, the
resemblance with NCEP in the high-frequency range is obvious. This suggests that
the hourly sampled REMO winds do not underestimate spectral densities but that the
6-hourly sampled data suffer from an aliasing effect.

Other papers relevant in this context are Garcia-Sotillo (2003), Kanamaru and
Kanamitsu (2005), Meinke et al. (2005), and Miguez-Macho et al. (2004).
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Spectral nudging and the hourly data set of the 40-year hindcast by Feser et al. (2001)
has been used in a number of studies, such as changing storm counts in European seas
and long-range transports of pollutants.

An application study of the multi-decadal data set computed with nudging of large
scales is given in the following work on Northeast Atlantic and North Sea Storminess:

Northeast Atlantic and North Sea Storminess as Simulated by a Regional Climate
Model during 1958-2001 and Comparison with Observations.

R. Weisse, H. von Storch, and F. Feser

Institute for Coastal Research, GKSS Research Centre
21502 Geesthacht, Germany

Published in:

J. Climate, Vol. 18, No. 3, pp. 465-479, 2005.

Abstract : An analysis of the storm climate of the Northeast Atlantic and the North
Sea as simulated by a regional climate model for the past 44 years is presented. The
model simulates the period 1958-2001 driven by the National Center for Environmen-
tal Prediction’s (NCEP’s) weather re-analysis. Comparison with observations shows
that the model is capable of reproducing impact related storm indices such as the num-
ber of severe and moderate storms per year or the total number of storms and upper
intra-annual percentiles of near-surface wind speed. The indices describe both, the
year-to-year variability of the frequency as well as changes in the average intensity of
storm events. Analysis of these indices reveals that the average number of storms per
year has increased near the exit of the North Atlantic Storm track and over the South-
ern North Sea since the beginning of the simulation period (1958), but the increase
has attenuated later over the North Sea and the average number of storms per year is
decreasing over the Northeast Atlantic since about 1990-1995. The frequency of the
most severe storms follows a similar pattern over the Northeast North Atlantic while
there occurred too few severe storms in other areas of the model domain preventing a
statistical analysis for these areas.

Another application study used the multi-decadal atmospheric data set computed
with spectral nudging to reconstruct airborne pathways and depositions of gasoline
lead in Europe:
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Four Decades of Gasoline Lead Emissions and Control Policies in Europe: A Retro-
spective Assessment

H. v. Storch, M. Costa-Cabral, C. Hagner, F. Feser, J. Pacyna, E. Pacyna, and S. Kolb
Published in:
Science of the Total Environment (STOTEN), Vol. 311, pp. 151-176, 2003.

Abstract : Over decades, large amounts of the neurotoxin lead were released into the
European environment, mostly from gasoline lead additives. Emissions were growing
unabatedly until the 1970s, when a series of regulations on the allowable gasoline lead
content were adopted. As a result, in the 1990s most gasoline contained only small
amounts of lead. We have examined this case of environmental pollution and regu-
lation, and performed a retrospective assessment of the extent of regional-scale lead
pollution and the effects of gasoline lead regulations in Europe. With the help of a re-
gional climate model, NCEP re-analyses, spatially disaggregated lead emissions from
road traffic and point sources and various local data, the airborne pathways and depo-
sitions of gasoline lead in Europe since 1958 were reconstructed. It turns out that this
approach is successful in describing the time-variable, spatially disaggregated deposi-
tion of gasoline lead. Additional data from analyses of concentrations in biota, includ-
ing plant leaves, mussels and human blood, allows an assessment about the impact of
the lead phase-out on the quality of the environment. Demonstrating the success of the
lead policies, concentrations in leaves and human blood have steadily declined since
the early 1980s. At the same time, the economic repercussions that had been feared did
not emerge. Instead, the affected mineral oil and car manufacturing industries in Ger-
many (our case-study) were able to deal with the effort without incurring significant
extra costs. We suggest that our method of quantitatively reconstructing and anticipat-
ing fluxes and depositions of substances can be applied to other relevant substances
as well, such as, for example, Persistent Organic Pollutants, radioactive substances or
pollens.

Other publications which have used the long-term data set are Friedhoff (2005)
and Koch and Feser (2005); another application study using spectral nudging was pub-
lished by Kang et al. (2005).

1.6. Conclusion and Overview

In this introductory Chapter, the key aspects of dynamical downscaling with regional
climate models have been briefly introduced and discussed. While the idea of re-
gional atmospheric modelling is not new (see e.g. the review on regional modelling
by Giorgi and Mearns (1999)) it soon became clear that extended integrations were
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associated with methodical problems. The reason for this is that the solution in the
model’s interior is not well-defined by the boundary values. A first, and most sig-
nificant break-through was the invention of the sponge zone (Davies (1976)). In this
work a second important modification, the so-called spectral nudging (von Storch et al.
(2000)), was added. In the following Chapters it is demonstrated in detail how spectral
nudging works (Chapter 2), how it suppresses the tendency of RCM’s to intermittently
generate solutions in the model’s interior decoupled from the global forcing (Chapter
3)(Weisse and Feser (2003)), and how the added value of regional modelling can be
detected using an appropriate spatial filter (Chapter 4)(Feser and von Storch (2005)).
An added value is described in Chapter 5 for two important variables, namely sea
level pressure and near-surface temperature (Feser (2005)). Finally, the summary and
conclusions are given in Chapter 6.
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Abstract

The “spectral nudging” method imposes time variable large-scale atmospheric states
on a regional atmospheric model. It is based on the idea that regional-scale climate
statistics are conditioned by the interplay between continental-scale atmospheric con-
ditions and such regional features as marginal seas and mountain ranges. Following
this “downscaling” idea, the regional model is forced to satisfy not only boundary
conditions, possibly in a boundary sponge region, but also large-scale flow conditions
inside the integration area.

In the present paper we examine the performance of spectral nudging in an ex-
tended climate simulation. We demonstrate its success in keeping the simulated state
close to the driving state at larger scales, while generating smaller-scale features. We
also show that the standard boundary forcing technique in current use allows the re-
gional model to develop internal states conflicting with the large-scale state. It is con-
cluded that spectral nudging may be seen as a suboptimal and indirect data assimilation
technique.
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2.1. Background

The state of the atmosphere can not be observed in its entirety. Only samples of mostly
point observations irregularly distributed in space are available. They are used by
operational weather centers to construct, or “analyze”, a continuous distribution of
atmospheric variables. Such “analyses” are our best guess of the atmospheric state and
deviate from the true, unknown state to some extent. Likely, the large scales are best
described, simply because they are better sampled. On the other hand, the details on
scales of a few tens of kilometers and less, are insufficiently sampled and subject to
significant uncertainty.

In old days, the analyses were prepared by hand. The major breakthrough was
the systematic interpretation of observational data aided by quasi-realistic dynamical
models. However, the only features which can be well reproduced by these objective
analyses with quasi-realistic models are those that are well resolved by the model. For
example, while the effect of the Baltic Sea may to some extent be captured, the imprint
of Jutland, separating the Baltic Sea from the North Sea, may not. Thus, the lacking
detail in analyses remains at present a major problem in weather analyses.

While in former days the purpose of weather, or synoptic, analyses was for prepar-
ing short-term weather forecasts, these analyses have in recent years attained a differ-
ent role, namely to provide a data base for climatic and other environmental studies
(von Storch et al. (2000)). For fulfilling this purpose, it is no longer sufficient to have
the best analysis at a given day. It is also necessary that the quality of the analyses is
homogeneous, so that improvements of the analysis process do not introduce artificial
signals in the climate data set. For meeting these requirements, weather services have
prepared so-called global re-analyses, i.e., they have analyzed weather observations of
the past decades with the same analysis scheme (Kalnay et al. (1996)).

We suggest the ”spectral nudging” technique (Waldron et al. (1996)) for using these
global re-analyses to derive smaller-scale analyses. This technique is based on the view
that small scale details are the result of an interplay between larger-scale atmospheric
flow and smaller-scale geographic features such as topography, land-sea distribution or
land-use (von Storch (1999)). To describe this small-scale response, a regional climate
model is forced with large-scale weather analyses. Differently from the conventional
approach, the forcing is not only stipulated at the lateral boundaries but also in the
interior. This interior forcing is maintained by adding nudging terms in the spectral
domain, with maximum efficiency for large scales and no effect for small scales. Also,
the nudging is confined to higher altitudes, so that the atmospheric state at lower levels
is free to adjust to surface geographical properties. Waldron et al. (1996) named the
technique “spectral nudging”. As far as we know this technique has not been used
in regional climate simulations, but it shares similarities with methods to force area
averages upon the interior solution as proposed by Kida et al. (1991), Sasaki et al.
(1995) and by McGregor et al. (1998), or the technique to insert the large scale state
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(Juang and Kanamitsu (1994); Juang et al. (1997); Cocke and LaRow (2000)) in the
spirit of “anomaly models” (Navarra et al. (1988)). A conceptually similar technique

has been used to impose a prescribed tropospheric state on a upper atmosphere model
(Kouker et al. (1999)).

For purposes of weather analysis, our proposed technique is suboptimal. Ideally,
inside the model area one would directly assimilate local observational data, which
had little impact on the coarse-grid global re-analyses and, accordingly, were not fully
exploited. However, such a scheme is technically very demanding and often not fea-
sible. The proposed technique may be considered a “poor woman’s data assimilation
technique”.

The same technique may be used to derive regional scale climate change scenarios
from global climate models ("downscaling”; von Storch (1995)). The basic idea of
downscaling is to transfer onto smaller scales that large-scale information which has
been simulated reliably in climate change scenarios. This is done with the help of
statistical models or dynamical regional climate models. The latter technique, named
“dynamical downscaling” uses output from global climate models to force regional at-
mospheric (e.g., Giorgi (1990), Podzun et al. (1995), Jacob and Podzun (1997), Kidson
et al. (1998), Rinke and Dethloff (2000)) or regional oceanic models (Kauker (1998)).
In nearly all studies performed to date, the forcing is administered exclusively at the
lateral boundaries. The technique of statistical dynamical downscaling developed by
Fuentes and Heimann (1996) and Frey-Buness et al. (1995) is related to our approach,
as they consider the response of a regional climate model to prescribed conditions such
as the geostrophic wind.

In our view, the conventional practise of using forcing exclusively along the lat-
eral boundaries stems from the classic view of regional weather modeling as being a
boundary problem rather than a downscaling problem. Problems like data assimila-
tion and downscaling were not considered in classical numerical mathematics. The
inclusion of the “sponge zone” (Davies (1976)) was already a violation of the “pure”
mathematical concept. In this paper we demonstrate that the boundary value format is
conceptually inappropriate for the problem at hand.

The present paper is organized as follows. A brief introduction of the regional at-
mospheric model is given in Section 2.2. The spectral nudging technique is described
in Section 2.3, and the results are presented and discussed in Section 2.4. The discus-
sion makes use of measures, which quantify the degree of similarity or dissimilarity
on different spatial scales. Sensitivity experiments dealing with the strength of the
coupling are considered. Conclusions are summarized in Section 2.5.
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2.2. REMO model

We use the regional climate model REMO (REgional MOdel) as described by Jacob
and Podzun (1997). REMO is a grid point model featuring the discretized primitive
equations in a terrain-following hybrid coordinates system. Details are given by Jacob
and Podzun (1997) and Jacob et al. (1995). The finite differencing scheme is energy
preserving. The prognostic variables are surface air pressure, horizontal wind com-
ponents, temperature, specific humidity and cloud water. A soil model is added to
account for soil temperature and water content.

The integration area shown in Figure 2.1 has a horizontal spherical resolution of
0.5° with a pole at 170°W, 35° N, resulting in 91 x 81 grid points. Because of the
spherical resolution, the straight grid lines shown in the map are only approximate. A
time step of 5 minutes is adopted.
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Figure 2.1: The model area and the REMO grid. Solid lines demarcate 100 (10 x 10)
grid boxes. Because of the spherical resolution, the straight lines are only
approximations.

REMO is forced with NCEP (National Centers for Environmental Prediction) re-
analyses (Kalnay et al. (1996)) over the three month period of January to March 1993.
These observed states are updated every six hours. In between, values are derived
through linear interpolation. The horizontal resolution of the analyses is approximately
2¢ longitudinally and latitudinally (Figure 2.2). Since REMO operates with a rotated
spherical grid, its coverage with NCEP grid-boxes is inhomogeneous. In the north-
south direction, there are 21 NCEP boxes, and in the east-west direction, 27 boxes
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along the southern margin and 48 along the northern margin. That is, the REMO model
offers a resolution enhanced by factor of 1:16, on average. Maximum improvement of
resolution is achieved in the southern part of the integration area.
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Figure 2.2: The REMO model domain and the NCEP grid. The lines demarcate every
fifth grid box.
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2.3. Spectral Nudging

As outlined in the Introduction, we have used two different approaches to force the
regional model to follow the steering provided by the analyses. In the “standard” ap-
proach in current use, the steering takes place exclusively along the lateral boundaries
in the spirit of a classical boundary value problem. In the “spectral nudging” approach,
the atmospheric state inside the integration area is also forced to accept the analyses
for large-scales whereas smaller scales are left to be determined by the regional model.

In the standard setup (Jacob and Podzun (1997)), the observed state is forced upon
the model in a lateral boundary zone covering 8 grid points using Davies (1976) clas-
sical “sponge” technique: The “interior” solution of the model, denoted W, is brought
closer to, or “nudged” to the observed state, denoted V*, by adding an adjustment or
restoring term - (\U* — W), where the “nudging coefficient” -y takes largest values at the
lateral boundary and decreases towards the interior of the integration domain. When
U > U* the restoring terms cause a decrease in W, and when W < U* an increasing
tendency of V¥ is induced. The nudging coefficient has units of 1/sec. This standard
approach is commonly used in regional weather forecasting and regional climate simu-
lations. The “sponge” zone has been introduced to avoid reflection of traveling features
at the boundaries. Inconsistencies stemming from internally generated features travel-
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ing towards the lateral boundaries and conflicting there with the prescribed conditions
are dampened out in this manner.

In the “spectral nudging” approach, the lateral “sponge forcing” is kept and an
additional steering is introduced as described next.

Consider the expansion of a suitable REMO variable:
T Km
U\, b, t) = S ali(t)eM ekl le (2.1)
j=—JImk=—Kn,

with zonal coordinates A, zonal wave-numbers 7 and zonal extension of the area L.
Meridional coordinates are denoted by ¢, meridional wave-numbers by k£, and the
meridional extension by L. t represents time. For REMO, the number of zonal and
meridional wave-numbers is J,,, and K,,. A similar expansion is done for the analy-
ses, which are given on a coarser grid. The coefficients of this expansion are labeled
aj, and the number of Fourier coefficients is J, < J,, and K, < K,,. The confi-
dence we have in the realism of the different scales of the re-analysis depends on the
wavenumbers j and k and is denoted by 7; .

The model is then allowed to deviate from the state given by the re-analysis condi-
tional upon this confidence. This is achieved by adding “nudging terms” in the spectral
domain in both directions

Ja , Kq
> malf(t) — ag(t))ed M Eretelte (2.2)
j=—Jask=—K,

In the following, we will use the nudging terms dependent on height. That is, our confi-
dence in the reanalysis increases with height. On the other hand, we leave the regional
model more room for its own dynamics at the lower levels where we expect regional
geographical features are becoming more important. The better the confidence, the
larger the 7); ;-values and the more efficient the nudging term.

In this study, we have applied nudging to the zonal and meridional wind compo-
nents. Following Giorgi et al. (1993) we use a height dependence nudging coefficient.
Specifically, we use the prescription of the German Weather Service version of REMO,
which uses a pointwise nudging in case of excessively high wind speeds for preventing
numerical instability

2

__p

n° (p) = o (1 850hPa) for p < 850hPa 23)
0 for p > 850hPa

with p denoting pressure (Doms et al. (1995)). In our base simulation with spectral
nudging we used the ad-hoc value @ = (.05, resulting in a vertical profile as shown
in Figure 2.3. This choice amounts to an e-folding decay time of an introduced distur-
bance of about 20 days at 850 hPa, 10 hours at 500 hPa and about 2 hours at 100 hPa.
(The e-folding time is given by At/n with At = 300 sec.)
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Figure 2.3: Vertical distribution of the spectral nudging term 7 (blue dashed curve)
and corresponding e-folding time in days (red solid curve).

We have set 7);, = 1° for j = 0...3 in the north-south direction, k¥ = 0...5
in the east-west direction and 7, = 0 otherwise. That is, wavelengths of about 15°
and larger are considered to be reliably analysed by NCEP, corresponding to 6 and
more NCEP grid points. More elaborate specifications could certainly have been used.
However, some sensitivity experiments indicated that the effect would be somewhat
marginal (see below).

2.4. Results

We demonstrate in Section 2.4a that spectral nudging successfully prevents the re-
gional model from deviating from the given large-scale state. We also show that sig-
nificant deviations take place when the standard approach is used. In Section 2.4b, a
comparison with station data reveals that the spectral control is limited to the largest
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scales, so that the representation of the local time series is indeed improved compared
to the NCEP reanalyses and the REMO standard run. In Section 2.4c, a number of
sensitivity experiments is presented and discussed.

a. Efficiency of Large-Scale Control

We divide the spectral domain into several intervals. We assume that both the regional
and global model have two spectral domains: a large-scale domain, £ and a small-
scale domain, §. The model has different skills in the domains £ and S to realistically
analyze or simulate the real state. Only the results in £ are considered reliable. So
far there is no objective way to identify the interval £, but it is often believed that the
largest wave-number in £ is several mesh-sizes of the model’s grid. Since the global
model and the regional model have different grids, their “reliable” domains, £, and
L,, are different (Figure 2.4). In £, £, the results of the regional model should not
deviate from the global analyses, as the results of £, are considered skillful. Therefore,
for these scales, large values of 7, are adopted. However, in the domain S, L,
significant modifications are expected and wanted, because the regional model has the
role of adding detail in these spatial scales. Accordingly, the nudging term 7, is set to
zero for these scales.

Truncation of
global regional
model

A
energy

‘e Spatical
N Scale w

>
>

»n<

Figure 2.4: Sketch of spatial ranges £ and S of global analyses and regional model.

We measure the similarity of input NCEP fields and output REMO fields at time ¢
by the proportion of spatial variability of the output described by the input:
< (¥(t) — ¥ () >

< W(t)? >

Pt)=1-— (2.4)
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where ¥(¢) is the output REMO field at time ¢, W* the input NCEP field, and < - >
a spatial average. When this averaging is done for scales w € £, L,, we denote the
similarity measure as P,. This number should be close to one, as we do not want to
modify the scales reliably described by the NCEP analysis. However, for the spectral
domain S, £,, we do not request the REMO field to be similar to the input fields, so
that the measure of similarity P,, may be much smaller than 1.

In the present analysis, the set £, () £, is set to comprise zonal wavenumbers up to
k < 5 and meridional wavenumbers j < 3, so that for all (j,k) € L,N L, nj = n°.
The domain S, L, contains 5 < k& < 13 and 3 < j < 10 so that 1), is zero for
these scales . Note that the exact definition of these sets is inconsequential for the
performance of the nudging technique as the numbers P, and P, are diagnostics; in
fact also the diagnostic results are rather insensitive to the details of this choice.

The time series of the similarity measures, P, and P,, calculated for both the
standard run and the spectral nudging run, have been calculated for relative humidity
and temperature as well as for the zonal and meridional wind components at 850 and
500 hPa. As the nudging is applied to velocity only, the effect is strongest in these
variables, whereas the difference is significant but somewhat less dramatic in terms of
temperature or humidity (not shown). For the sake of brevity results are shown only
for the meridional wind at 500 hPa in Figure 2.5: In the spectral nudging run P, hardly
deviates from the ideal value of 1 whereas in the boundary forcing values of less than
1, sometimes as low as 0.6 are obtained (Figure 2.5). P, values between 20% and
40% indicate that REMO considerably modifies the scales that had been insufficiently
resolved by NCEP. P, is mostly somewhat smaller for the standard boundary forcing
run, i.e., controlling the large-scale features in £, has some effect on S, £, as well.

The other relevant measure is the variance for the different spectral domains: The
variances in S, £, are similar in both regional simulations. This is exemplified by
Table 1 listing averaged variances for the different spatial scales for the zonal and
meridional wind components at 850 hPa. The variance in the large-scale domain of
the NCEP analyses (£,) is about reproduced by both REMO runs, while the variances
in the spatial domain well resolved by REMO but less well by NCEP (S5, £,) is
markedly larger in both regional models than in the global analyses. In fact, the simu-
lation with nudging is attaining even larger variances that the standard run.
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Proportion of represented variance

6 hour intervals

Figure 2.5: Measures of similarity P, () (upper curves) and P, (t) (lower curves) for
the meridional wind at 500 hPa for the boundary forcing (red lines) and the
spectral nudging (blue lines) simulation.

Table 1: Averaged variances for the different spatial scales for zonal and meridional
wind components at 850 hPa.

scale/variable units NCEP REMO REMO
m?s~2 | analyses standard nudging
zonal wind
Ly 1072 1.6 1.2 1.6
S,NL, 10°¢ 3.7 7.7 8.1
meridional wind
Ly 1072 1.4 1.3 1.5
S,NL, 10-¢ 2.1 6.5 8.5
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Thus, the desired double effect — a greater similarity in the spectral range £, L,
without a restriction of the variability on the smaller scales — is achieved in the spectral
nudging run.

With the standard boundary forcing, episodes emerge with patterns quite dissimilar
to the driving NCEP analysis. An example is the episode of 9-12 March, which is
marked by low P -similarity for the zonal wind (Figure 2.5). In this situation (Figure
2.6), a persistent high pressure system is placed in the center of the integration area,
blocking the eastward propagation of synoptic disturbances. For example, the low
pressure center initially located over Iceland moves northeast-ward and the trough west
of Ireland moves towards the British Isles and is dissipated there. In the standard run,
this trough is not dissipated as quickly and causes the central European high to be
distorted. In the spectral nudging run, on the other hand, the overall evolution is similar
to that of the NCEP re-analyses, but the details deviate to some extent.

The different evolutions are revealed by the different mean sea-level air pressure
distributions of the boundary forcing run and the NCEP analyses and of the spectral
nudging run and NCEP analysis (Figure 2.7). Clearly, the pressure field in the bound-
ary forcing run deviates on large scales from NCEP. This is particularly striking on 12
March 1993, when over most of the Atlantic negative pressure deviations prevail. In
the spectral nudging run, on the other hand, the differences arise at a smaller spatial
scale. Also the magnitude of the differences in the boundary forcing run, reaching
values of 15 hPa and higher in all maps of 9-12 March, is considerably larger than in
the spectral nudging run, where only a few isolated maxima of about 10 hPa occur.
Also in other variables, large deviations emerge (not shown). In terms of 850 hPa tem-
perature, for instance, large-scale differences up to 10K develop between the NCEP
reanalyses and the standard run, whereas in the spectal nudging the differences are of
much smaller spatial scale with maximum values of 4K. Similarly, in 500hPa geopo-
tential height, differences of up to 300 m appear in the standard run compared to 50 m
in the spectral nudging run.

A comparison with the manually drawn regional analyses of the Berliner Wet-
terkarte confirms that the regional model with boundary forcing only run has gone
astray (Figure 2.8). Some details, like the deepening of the small cut-off low over
Northern Norway, on 11 March with a core air pressure of 1000 hPa in NCEP but 995
hPa in the spectral nudging run is confirmed by the Berliner Wetterkarte. Also the
formation of two separate cyclones over the Atlantic on 12 March is a feature missing
in the NCEP re-analyses but identified by the Berlin meteorologists.

We suggest that the 9-12 March evolution in the standard run takes place because
the interior dynamics is not capturing the blocking situation prevailing in the large
scale state. Since this blocking is hardly encoded in the boundary conditions, the
“outer” state given by NCEP and the “inner” state given by the standard REMO run
become inconsistent. The spectral nudging technique, however, is efficient enough to
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Figure 2.6: An episode with large differences between the standard run and the spectral
nudging run: 9-12 March 1993. Mean sea-level air pressure distribution.
Left column: boundary forcing run; middle: NCEP analyses (input); right:
spectral nudging. Spacing: 5 hPa.

keep the “inner” solution on the right trajectory.

Closer inspection of Figure 2.7 reveals another positive feature of both REMO sim-
ulations, namely the small scale features related to fronts which are absent in the NCEP
analyses but present in the Wetterkarten of Figure 2.8. Thus, the spectral nudging does
not hamper the emergence of small-scale features.

An intercomparison in the frequency domain reveals that nudging dampens the
regional model’s tendency to develop its own low frequency dynamics. Figure 2.9
shows auto-spectra and squared coherence spectra for mean sea-level air pressure at the
station of de Bilt, The Netherlands, for the driving NCEP analysis (blue line) and for
the two REMO simulations (red and green lines). For time periods longer than about
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Figure 2.7: Mean sea-level air pressure differences NCEP minus boundary forcing run
(left) and minus spectral nudging run (right). Spacing 10 hPa.

3 days, the REMO standard run generates additional low frequency variance, which is
suppressed by the nudging. At higher frequencies, both REMO simulations are rather
similar. These findings are supported by the squared coherence spectra between the
NCEP analyses and the REMO-simulations; for time periods of 72 hours and more, a
much higher coherence is obtained for the spectral nudging run than for the standard
boundary control run, whereas for shorter time scales, the coherence drops down and
the regional model develops its own dynamics.

We made an additional simulation with summer conditions and found similar re-
sults, including episodes when the model with standard forcing develops a meteoro-
logically plausible but actually not observed state.
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Figure 2.8: Manually drawn mean sea-level air pressure analyses from Berliner Wet-
terkarte, 9-12 March 1993.

b. Comparison with observational data

The two REMO runs (with standard boundary forcing and spectral nudging) and the
NCEP re-analyses (only mean sea-level air pressure and temperature) were compared
against observed time series of mean sea-level air pressure at a number of Central
European stations. For the time period January - March 1993, also wind observations
from the oil field Ekofisk in the Central North Sea were available; these are compared
to the REMO simulations as well.

For air pressure at the 10 locations, REMO returns a bias of about 1 hPa for
both formulations whereas NCEP has better mean values (Figure 2.10). However, the
spread of errors is considerably smaller in the case of the spectral nudging simulation.

Figure 2.11 displays time series of the meridional and zonal components of the
wind at 10 m height at Ekofisk in the Central North Sea. Actually, the observations
are taken at a higher altitude, and the values are reduced to a standard height of 10 m
through a standard calculation. All three curves coincide relatively well. A remarkable
feature is that in many cases the maxima and minima of the wind components of the
order of 20 m/s are reproduced. A closer inspection reveals intermittently significant
deviations by the standard run and improvements in the spectral nudging run. The 9-12
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Figure 2.9: Spectra of analyzed and REMO simulated mean sea-level air pressure at
the station De Bilt, The Netherlands.
Top: Auto-spectra: The blue line refers to the NCEP analyses, the red line
to the standard REMO run, the green line to the spectral nudging REMO
run.
Bottom: Squared coherency spectra; the red line refers to the coherence
between the NCEP analyses and the standard run, whereas the green line
represents the similarity of the spectral nudging run and the analyses.

March episode emerges clearly in the time series of the zonal wind.

c. Sensitivity experiments

Two additional simulations have been performed with different values of the nudging
coefficient °. In one run, " was doubled (i.e., o = 0.1), in another simulations halved
(a = 0.025). In order to save computer time, the sensitivity experiments were done
only for one month, starting with state of 1 March of the 3-month spectral nudging run
considered so far.

We assess the sensitivity of the simulation to this choice by calculating the mea-
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Figure 2.10: Differences “station data minus simulation” for a series of Central Euro-
pean stations and NCEP, REMO standard and REMO spectral nudging.
The variable considered is mean sea-level air pressure. The center points
represent the mean differences, and the bars indicate the range spanned
by the 10% and 90% percentiles.

sures of similarity P, and P, as defined by (2.4) for scales well resolved by the NCEP
reanalyses and by the REMO simulations only. The time mean measures of similarity,
for the zonal and meridional wind components at 500 hPa, is listed in Table 2 for the
different strengths of spectral nudging (« > 0) as well as for the standard case (« = 0).

Table 2: Time mean measures of similarity for zonal and meridional wind components
at 500 hPa and for different strengths of spectral nudging.

Py P,
wind o «
at 500 hPa | 0.1 0.05 0.025 0 0.1 0.05 0.025 0
zonal 0.996 0994 0991 0931 |0.344 0.325 0.304 0.216
meridional | 0.984 0.976 0.964 0.855 | 0.205 0.239 0.205 0.076

The large-scale control seems to be exerted efficiently also by the other two choices
of o, with markedly higher similarity measures. A more comprehensive study will be
needed for designing an optimal configuration of the nudging technique, but this first
sensitivity analysis indicates that the performance does not depend significantly on the

choice of a.
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Figure 2.11: Time series of meridional and zonal wind components at Ekofisk in the
Central North Sea from January to March 1993. The observed values are
reduced to the standard height of 10m. Broad green line: observations;
light dashed red continuous line: REMO spectral nudging, heavy dashed
black line: REMO standard.

2.5. Conclusions

In the present paper we have tested the “spectral nudging” technique, introduced by
Waldron et al. (1996) into regional weather forecasting, in regional climate simula-
tions. The spectral nudging” concept deviates from the classical approach as the
problem is not considered to be a boundary value problem in the grid point domain,
but a downscaling problem. That is, the information which is processed in the model
is not so much the state specified at the areal boundaries but at the large-scales. In a
generalized sense, this is again a boundary problem, but this time formulated in the
spectral domain.
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The purpose of the paper was not to delineate the optimal configuration of spec-
tral nudging, but to demonstrate the concept, its feasibility and its potential. Our key
argument for the success of the spectral nudging technique is the observation that the
nudging technique prevents the regional model to go astray for limited times, gener-
ating internal states inconsistent with the driving fields. We have demonstrated that
this uncontrolled wandering is not merely a theoretical problem of the regional model
forced from the boundaries, but really takes place (see also Rinke and Dethloff (2000)).
At the same time, the spectral nudging forcing does not impede the regional model’s
ability to develop regional and small scale features superimposed on the large-scale
driving conditions.

Different purposes of models require different formulations. When dynamical as-
pects are to be addressed, such as the dynamics during the genesis of a storm, the spec-
tral nudging should not be used, as it modifies the dynamics inasmuch as it introduces
additional forcing terms into the momentum equation. Also, when a significant two-
way-coupling is expected to take place, as in the case of the life cycle of a hurricane,
the spectral nudging will not be adequate. When, however, specifications of regional
climate statistics are needed, such as in paleoclimatic and historic reconstructions and
climate change applications, our technique should be preferred as it generates weather
streams consistent with the large-scale driving fields.
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Abstract

For more and more applications in coastal and offshore engineering numerical sim-
ulations of waves and surges are required. An important input parameter for such
simulations are the wind fields. They represent one of the major sources for uncer-
tainties in wave and surge simulations. Wind fields for such simulations are frequently
obtained from numerical hindcasts with regional atmospheric models. The skill of
these atmospheric hindcasts depends among others on the quality of the forcing at the
boundaries. Furthermore, results may vary due to uncertainties in the initial condi-
tions. By comparing different existing approaches for forcing a regional atmospheric
model it is shown that the models sensitivity to uncertainties in the initial conditions
may be reduced when a more sophisticated approach is used that has been suggested
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recently. For a specific, although somewhat brief test period it is demonstrated that
an improved hindcast skill for near surface wind fields is obtained when this approach
is adopted. Consequences of the reduced uncertainty in the wield fields for the hind-
cast skill of subsequent wave modelling studies are demonstrated. Recently this new
approach has been used together with a regional atmosphere model to produce a 40-
year wind hindcast for the Northeast Atlantic, the North Sea and the Baltic Sea. The
hindcast is presently extended to other areas and the wind fields are used to produce
40-year high-resolution hindcasts of waves and surges for various European coastal
areas.

3.1. Introduction

Many applications in coastal and offshore engineering as well as in ocean modelling
or for climate impact studies require detailed knowledge of the prevailing wind, wave
and/or surge conditions at specific locations. Often such information is hardly avail-
able, either due to incomplete observational records or even due to a complete lack
of observational data. In such cases hindcasts obtained from numerical models have
become a frequently used tool as they may provide at least the best possible guess of
the environmental conditions that may have been observed at given time and location.
Therefore, hindcasts are often considered to be a substitute reality (Ewing et al. (1979),
The WASA-Group (1998)).

In many cases hindcasts are performed with the objective to reproduce specific
events; that is, limited time periods are modelled in order to obtain information on
e.g., the wind, wave and surge conditions within a particular storm that, for instance,
may have caused large damages in particular areas. Examples of such hindcasts are
the simulation of the so-called Halloween storm in 1991 (Cardone et al. (1996)) or the
simulation of the wave conditions that caused the abandonment of five yachts in the
1998 Sydney to Hobart yacht race and forced a further 66 boats to retire from the race
(Greenslade (2001)).

More recently, however, hindcast simulations have also been performed for longer
time periods covering many decades of years (Giinther et al. (1998), Cox and Swail
(2001), Soares et al. (2002)). The objective of these simulations is twofold: On the one
hand they provide relatively homogeneous data records that are sufficiently long and
that have sufficiently high spatial resolution in order to be used for design purposes
or other statistical analyses. (For instance, the European project HIPOCAS [Hind-
cast of Dynamic Processes of the Coastal Areas of Europe] was set-up to provide a
40-year high-resolution data base of wind, waves and surges for European coastal ar-
eas (Weisse and Gayer (2000), Feser et al. (2001), Soares et al. (2002), Weisse et al.
(2002))). Here the phrase relatively homogeneous refers to the fact that homogeneity
has been improved by using a frozen state-of-the-art numerical model, but that there
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are still remaining sources of inhomogeneity such as increasing density of observations
that may be used for data assimilation (Swail et al. (1998), Swail and Cox (2000)). On
the other hand such hindcast simulations are used as substitute reality in order to assess
trends in storm, wave and surge conditions that may have occurred in the recent past
(Giinther et al. (1998), Wang and Swail (2001), Wang and Swail (2002), Debernhard
et al. (2002)).

The conclusions that can be drawn from hindcast simulations depend to a large
extent on the quality of the wave and surge hindcast which in turn depends critically
on the quality of the driving wind fields. For instance, for a fully developed sea wave
heights approximately scale with the square of the wind speed (Tolman (1998)) which
implies that an error of about 10% in the driving wind speed will result in an error of at
least 20% in the hindcast wave height. This is confirmed by other independent studies
which showed that uncertainties in the wind field have a large impact on predicted
waves (Teixeira et al. (1995), Holthuijsen et al. (1996)).

Wind fields to force numerical wave and surge hindcasts can be obtained in several
ways and from different sources. For multi-decadal simulations, however, additional
requirements regarding the quality of the wind fields have to be made. For instance, the
wind fields should be free of any artificial trends. They should be homogeneous in time
in order not to violate the statistics that may be obtained from the wave/surge model
simulations. Furthermore, for coastal applications the spatial and the time resolution
of the wind fields should be high enough to resolve the relevant topographic features
of the coastline in order to obtain appropriate wave/surge model simulations.

So far, the number of wind data sets fulfilling these requirements is rather limited.
Presently relatively homogeneous wind fields can be obtained, for instance, from the
so-called re-analyses projects (Kalnay et al. (1996), Gibson et al. (1996)) for the past
15 to 40 years. In these projects global atmospheric circulation models (GCMs) have
been used for re-analyzing observational data back in time for some decades using a
frozen state-of-the-art data assimilation scheme together with an enhanced observa-
tional data base which additionally comprises observations which were not available
in real time. In this way, global atmospheric data sets are generated that are consid-
ered to be much more homogeneous than any other global products available so far.
Presently such global re-analyses have typical spatial resolutions of about 200 km and
wind fields are provided every 6 hours.

While such global re-analyses provide a useful product for a variety of studies
(e.g., climate studies), their spatial and temporal resolution remains too coarse for
many environmental applications, such as ocean or wave modelling in coastal areas.
Cox et al. (1995) have suggested an approach called interactive objective kinematic
analysis (IOKA) to obtain high-quality and high-resolution wind fields from global or
coarse resolution weather analyses or re-analyses. The approach is based on a manual
interaction with an objective analysis system and has been proven to provide good
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results for many wave modelling studies (Swail and Cox (2000), Caires et al. (2002)).

Due to the intensive manual part IOKA may become prohibitively expensive and
time consuming. In addition, many applications such as surge modelling (Flather et al.
(1998)) or the reconstruction of atmospheric transports (von Storch et al. (2002)) do
require dynamically consistent fields of e.g., surface pressure, near-surface and upper
level wind fields and/or temperature which are not provided by IOKA.

Therefore attempts have been made recently to use high-resolution regional atmo-
spheric models (RAMs) driven by the re-analysis products at their lateral boundaries
in order to obtain multi-decadal regional (wind) hindcasts that simulate the regional
features in more detail (Feser et al. (2001)). While the simulation of Feser et al. (2001)
focuses on the North and Baltic Sea, similar simulations are being performed now for
other European coastal areas (Soares et al. (2002)).

A problem with such simulations is the internal model variability inherent in the
RAMs (hereafter referred to as inherent model uncertainty); that is, small uncertainties
in the initial conditions may sometimes accumulate to large differences during the in-
tegration. In other words, if two simulations are performed with only slightly different
initial conditions the results of the two integrations may differ to a large extend after
some time. While this behaviour is well-known for GCMs it has been acknowledged
only recently for RAMs (Ji and Venrnekar (1997), Rinke and Dethloff (2000), Weisse
et al. (2000), Weisse and Schneggenburger (2002)).

For forecasting purposes the uncertainty resulting from this behaviour is usually
assessed using ensemble simulations (Molteni et al. (1996)). For hindcast simulations
the assimilation of observed data may help to keep the model trajectory closer to the
observations. For RAMs von Storch et al. (2000) suggested a method that could help
to reduce the inherent model uncertainty in case that no further observational data are
available for assimilation. They called this method spectral nudging. 1t is based on the
idea that the trust or the confidence in the data derived from GCM simulations depends
on the spatial scale; that is, features with horizontal scales smaller than a few hundred
kilometres are usually not or at least less well resolved by the GCMs while large scale
features such as the planetary scale circulation are well represented. In the spectral
nudging approach suggested by von Storch et al. (2000) this additional information is
fed into the RAM simulation. The spectral nudging approach may thus be considered
as a simple approach to “assimilate” those scales of the global re-analysis in which one
has the highest confidence. Details are given in von Storch et al. (2000).

The objective of this paper is twofold: Keeping in mind the importance of the qual-
ity of the wind fields for wave and surge model simulations we first investigate whether
the spectral nudging approach is indeed capable of reducing the inherent model uncer-
tainty in RAM hindcasts. This has not been addressed in von Storch et al. (2000). We
then examine whether an improved hindcast skill can be obtained compared to hind-
casts that use the conventional approach (that is, when spectral nudging is not used).
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We focus primarily on the uncertainty for wind fields. Additionally, we investigate
the consequences for wave hindcasts driven by RAM winds. The paper is structured
as follows: In section 2 we briefly describe the RAM and the wave model used for
our study. Additionally, the experiments that have been performed are described. Sec-
tion 3 is dedicated to the analysis of the model results and to the comparison with
observations. Our results are assessed and discussed in section 4.

3.2. Models and Experiments

3.2.1. The Regional Atmosphere Model

For the wind hindcasts the regional atmosphere model REMO was used. The model
is described in detail in Jacob et al. (1995) and Jacob and Podzun (1997). The model
and the model set-up are identical to that used by von Storch et al. (2000) for the
implementation of spectral nudging. The model is based on the primitive equations
and is formulated for a grid-point and terrain-following hybrid coordinate system. The
prognostic variables are surface pressure, horizontal wind components, temperature,
specific humidity and cloud water. Furthermore, a soil model is included to account
for variations in soil temperature and water content.

For our experiments we use the same model domain as described by von Storch
et al. (2000) (cf. their Figure 1). The integration area covers Europe and large parts of
the Northeast North Atlantic. The model operates on rotated spherical coordinates in
order to achieve a minimum distortion of the grid boxes. The horizontal resolution in
all simulations is 0.5° x 0.5° and a time step of 5 minutes was chosen.

3.2.2. Experiments with the Regional Atmosphere Model

Two sets of ensemble simulations for January 1993 were carried out. In the first set of
integrations the boundary conditions were forced upon the REMO using the conven-
tional approach (CTR). In the second set of integrations the spectral nudging technique
was used (SPN). Within each set, the experiments differ slightly in their initial condi-
tions to account for the internal variability of the RAM (Weisse et al. (2000), Rinke
and Dethloff (2000), Weisse and Schneggenburger (2002)). For each set 6 experiments
were performed starting successively on 26, 27, 28, 29, 30, and 31 December 1992 at
0:00 UTC. In the following the analysis is presented for the period 1 to 31 January
1993.

In all experiments REMO was driven by the NCEP re-analyses (Kalnay et al.
(1996)). New boundary conditions were provided every 6 hours. The spatial reso-
lution of the NCEP re-analyses is approximately 210 km (1.875° x 1.875°). Since
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Table 3.1: Wave model set-up.

Coarse Grid Fine Grid

Southernmost latitude 38.00°N  51.00°N
Northernmost latitude 77.00°N  56.00°N
Westernmost longitude 30.00°W  -3.00°W
Easternmost longitude 45.00°E  10.50°E
longitudinal resolution 0.75° 0.10°
latitudinal resolution 0.50° 0.05°
time step 900 s 180 s

REMO operates on rotated spherical coordinates the coverage of the REMO model
domain with NCEP grid boxes is inhomogeneous. The highest improvement in spa-
tial resolution is achieved in the southern part of the integration area. On average, the
horizontal resolution is enhanced by a factor of 1:16 (von Storch et al. (2000)).

3.2.3. The Wave Model and Experiments

The wind fields obtained from the REMO experiments have been used to produce
ensemble wave hindcasts using the third generation wave model WAM as described
in The WAMDI-Group (1988). The model has been set-up as a nested system with
a coarse grid covering the North Sea and large parts of the Northeast North Atlantic.
The fine grid nested within the coarse grid covers the North Sea south of 56°N. For all
wave model simulations the horizontal resolution is about 50 km for the coarse grid
and 5.5 km for the fine grid. Details of the set-up can be obtained from Table 3.1.
Further details are provided in Soares et al. (2002).

Using this set-up we have performed 12 experiments with the wave model WAM
for the period 1 to 31 January 1993. For all simulations the wave model was initialized
with a wind dependent spectrum as described in Giinther et al. (1991). The simulations
differ only in the wind fields applied. For the first 6 simulations we have used the 6
different wind fields that were obtained from the 6 REMO integrations that utilized
the CTR approach. For the other 6 wave hindcasts the 6 different wind fields obtained
from the REMO SPN simulations were applied. This way all differences in the wave
model simulations may be interpreted as resulting from the variations in the driving
wind fields only.
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3.3. Results

3.3.1. Inherent Model Uncertainty

In this section we want to investigate the variability that emerges in the REMO and the
wave model simulations as a result of only small differences in the initial conditions of
the atmospheric simulations. This variability is hereafter referred to as inherent model
uncertainty (IMU).

In order to assess the IMU, for each realization £ within an ensemble (CTR, SPN)
the root-mean-square distance r with respect to the ensemble mean obtained from all
members of the same ensemble was computed as a function of time

=1

ra(t) = J % S (@) — < wi(t) >)2. G.1)

Here ¢ represents time, « = 1...M are the grid points in the model domain, and
< ... > denotes ensemble averaging. For the RAM simulations = denotes sea level
pressure (SLP) while for the wave model simulation x represents significant wave
height (Hs).

The magnitude of the IMU as a function of time is illustrated in Figure 3.1. It
can be inferred that both, periods with rather low (e.g., between 11 and 16 January)
and periods with rather high IMU (e.g., between 5 and 8 January) do occur. Further
it can be obtained that the internal variability is largest for the CTR ensemble while
it appears to be strongly reduced for the SPN ensemble. We therefore conclude that
the spectral nudging approach is in principle capable of reducing the IMU in hindcast
simulations with regional models in case no further observational data are available for
assimilation.

3.3.2. Differences in Hindcast Skill

The second question to address is whether the hindcast skill is in principle being im-
proved for the SPN simulations. As a first step we investigated whether there are
any systematic differences between the two ensembles. Therefore we computed the
root-mean-square distance 7 between the ensemble means of the SPN and the CTR
integrations

1 M
T(t) = JH (< uyilt) > — < my(t) >)2 (3.2)
i=1

Here < y;(t) > represents the ensemble average of the SPN simulations (SLP or
Hs), < z;(t) > denotes the ensemble mean of the CTR experiments (SLP or Hs,
respectively) and 2 = 1... M are the grid points in the model domain.
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Figure 3.1: Root-mean-square (rms) distance for SLP in hPa (top) and Hs in m (bot-
tom) between the individual realizations of the SPN ensemble and their
ensemble mean (green solid curves) and between the individual realiza-
tions of the CTR ensemble and their ensemble mean (red dashed curves).

The result of this exercise is shown in Figure 3.2. It can be inferred that system-
atic differences between both ensembles do occur. Comparing the magnitude of these
differences with the variations between the individual realizations of the CTR ensem-
ble (Figure 3.1) reveals that most of the time the systematic differences between the
ensemble means are larger than the IMU within the CTR ensemble. In addition, the
temporary high internal variability within the CTR ensemble indicates that temporary
large deviations between the model results and the observations must be expected since
it is not a priori clear which model trajectory is going to be realized if only one integra-
tion is performed. This both suggests that systematic differences in the hindcast skill
between both ensembles do occur.

For the SPN approach the IMU was remarkably reduced in our simulations (Fig-
ure 3.1). However, the question remains whether the hindcast skill in the SPN sim-
ulations was improved compared to the CTR experiments. To elaborate on this we
compared our results with observed wind and wave data from two locations (Ekofisk,
56.5°N 3.2°E; Scharhorn, 54.0°N 8.4°E). For both locations hourly wind data for
January 1993 were available. In addition, for Ekofisk also hourly wave data have been
available.
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Figure 3.2: Root-mean-square (rms) distance for SLP in hPa (top) and Hs in m (bot-
tom) between the ensemble means of the SPN and the CTR ensemble.

Figure 3.3 and 3.4 show the observed together with the simulated wind speed
and wind direction for January 1993 at Ekofisk and Scharhorn. In general, a relatively
good agreement between the observations and the simulations can be inferred for both,
the conventional and the spectral nudging approach although some events, such as
for example the wind speed of more than 30 ms~! at 23:00 UTC on 13 January at
Scharhorn, are neither reproduced by the SPN nor by the CTR simulations.

The increased IMU for the CTR simulations around 7 January (Figure 3.1) can
also be recognized for the wind speed and wind direction at Ekofisk and Scharhérn. At
Ekofisk most of the CTR simulations underestimate the observations by up to 9 ms™?.
The wind direction varies between about 150° and 230° and deviates from the observed
direction by up to 100° (Figure 3.3a,b). At the same time the wind speed is overesti-
mated by up to 10 ms ! at Scharhérn (Figure 3.4a). Compared to that the simulations
using the SPN approach perform remarkably better (Figure 3.3c,d and 3.4c,d). Addi-
tionally, the variability among the individual realizations is strongly reduced for the
SPN experiments.

For wind speed the differences in hindcast skill between the CTR and the SPN sim-
ulations are elaborated in more detail in Table 3.2 in which several skill measures for
the individual realizations are presented. It can be obtained that compared to the CTR
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and wind
direction in degrees (b, d) at Ekofisk. The upper two panels (a, b) show the
CTR, the lower two panels (c, d) show the SPN simulations.
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Figure 3.4: Observed (black) and simulated (red) wind speed (a, ¢) in ms~! and wind
direction in degrees (b, d) at Scharhorn. The upper two panels (a, b) show
the CTR, the lower two panels (c, d) show the SPN simulations.
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Table 3.2: Bias B in ms~!, root-mean-square error R in ms~!, and correlation C' be-

tween the wind speed obtained from the £ = 1...6 simulations using the
conventional (CTR) or the spectral nudging (SPN) approach and the ob-
servations at Scharhorn (54.0°N, 8.4°E) and Ekofisk (56.5°N, 3.2°E). In
addition, the Brier Score BS = 1 — R%,y Rg5 is provided.

CTR, SPN, CTR, SPN,
Scharhorn ScharhOrn Ekofisk Ekofisk

k B R ¢C B R CBS B R C B R (C BS

0.17 3.39 0.70 -0.12 2.56 0.83 0.43 0.69 3.59 0.81 1.00 3.18 0.85 0.22
0.21 3.40 0.70 -0.16 2.62 0.83 0.40 0.71 3.59 0.81 1.07 3.21 0.85 0.20
0.25 3.48 0.69 -0.12 2.53 0.84 0.47 0.70 3.54 0.81 1.07 3.18 0.85 0.19
-0.05 2.94 0.78 -0.09 2.53 0.84 0.26 0.85 3.41 0.82 1.01 3.19 0.85 0.13
0.04 3.19 0.75 -0.09 2.54 0.83 0.37 0.85 3.46 0.82 1.02 3.18 0.85 0.15
0.15 2.82 0.79 -0.01 2.46 0.84 0.24 0.85 3.33 0.83 0.97 3.17 0.85 0.09

AN NN

integrations the root-mean-square error between the simulated and the observed wind
speed was reduced significantly for all SPN simulations. Also the correlation between
the observations and the simulations is higher for the SPN experiments. For the bias
the picture is not that clear. However, the bias is rather sensitive on how the obser-
vations have been reduced to 10 m height. For Scharhorn the impact may not be that
dramatic since the observations were taken at 11 m height above ground. At Ekofisk,
however, the anemometer height was 85 m and the details of the algorithm used to
reduce the wind speed to 10 m height may become important. We also computed the
Brier-Score BS defined as

BS =1— RipyRor g, (3.3)

where R? denotes the root-mean-square error for the nudged and the control simulations
respectively (Table 3.2). Any positive value of B.S thus implies an improved hindcast
skill for the SPN compared to the CTR simulations. For instance, a Brier-Score of
0.20 indicates that the mean-square error has been reduced by 20%. Thus, according
to Table 3.2 at both stations each SPN realization is performing better than its CTR
equivalent.

As the wave model results depend strongly on the driving wind fields the con-
clusions drawn from the atmospheric fields hold also for the wave fields. Figure 3.1
clearly shows the enhanced uncertainty in those wave model simulations that use wind
fields from the REMO CTR simulations. This uncertainty is strongly reduced when
wind fields from the SPN integrations are used. The differences in hindcast skill for
the significant wave height at Ekofisk are shown in Table 3.3. For Scharh6rn no wave
height observations were available. As for the wind speed it can be obtained that for the
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Table 3.3: Bias B in m, root-mean-square error /2 in m, and correlation C' between the
wave height obtained from the £ = 1...6 wave hindcasts using either the
wind fields from the REMO CTR or the REMO SPN simulations and the
observations at Ekofisk (56.5°N, 3.2°E). In addition, the Brier Score BS is

provided.
CTR SPN

B R (C B R (C BS
1 0.60 1.23 0.87 0.60 1.03 0.91 0.30
2 0.62 1.25 0.87 0.63 1.05 0.91 0.28
3 0.61 1.24 0.87 0.63 1.04 0.81 0.29
4 0.61 1.21 0.88 0.61 1.05 0.91 0.25
5 0.62 1.22 0.88 0.61 1.03 0.91 0.29
6 0.62 1.19 0.88 0.59 1.04 0.91 0.23

SPN simulations the root-mean-square error is reduced and the correlation is increased
compared to those obtained for the CTR experiments. Also for the wave heights, the
Brier score indicates that an improvement in hindcast skill was obtained when winds
from the SPN ensemble were used to drive the wave model.

3.3.3. Differences at 7 January

We found that in our simulations the highest IMU and the largest differences between
the CTR and SPN simulations occurred around 7 January. We, therefore, would like
to illustrate the synoptic conditions that are responsible for these differences.

The increased wind and wave height variability in the CTR integrations is asso-
ciated with, and can be explained by, variations in the atmospheric conditions around
7 January. Figure 3.5 shows the SLP for 00:00 UTC 7 January 1993 for two CTR simu-
lations which show a rather good (upper left) and a rather poor (upper right) agreement
with observations together with the SLP for a SPN simulation (lower left) and the SLP
obtained from the routine analysis performed by the German Weather Service (DWD)
(lower right). In general there appears to be a reasonable agreement among all simu-
lations and the DWD analysis. However, details differ and a closer inspection reveals
pronounced differences in this overall agreement. For instance, the high pressure sys-
tem over the Iberian peninsula has a core pressure of about 1035 hPa in the DWD
analysis. While this is well represented in all SPN simulations the position and the
strength of this high pressure system varies largely in the CTR simulations where core
pressures of more than 1040 hPa are found. Furthermore, in the DWD analysis strong
pressure gradients prevail over the Eastern Baltic Sea. While such strong pressure
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gradients may be found in only some of the CTR experiments they are reasonably re-
produced in all SPN simulations. For the North Sea the differences in pressure gradient
and thus in wind speed at Scharhorn and Ekofisk may be inferred from the differences
in position of the 1015 and the 1020 hPa contour line. Again the SPN simulations show
on average a better agreement with the DWD analysis and the uncertainty between the
individual realizations is strongly reduced.

In order to demonstrate this in more detail Figure 3.6 and 3.7 show again the IMU
for the REMO and the wave model simulations for the North Sea area where Ekofisk
and Scharhorn are located. For the CTR ensemble large differences in the position of
the 1015 and the 1020 hPa contour line are obtained that are related to strong variations
in the horizontal pressure gradients at Ekofisk and Scharhorn. These variations in the
pressure gradient together with variations in the position of the pressure centers are
finally responsible for the observed differences in the simulated wind speed described
above. For the SPN ensemble these differences are hardly visible. The similar holds
for the wave model hindcasts (Figure 3.7). The uncertainty in the wind speed and wind
direction obtained from the REMO CTR experiments leads to strong variations in the
observed wave height. These variations are remarkably reduced when the wind fields
from the SPN simulations are used.

3.4. Summary and discussion

Many applications in offshore and coastal engineering require numerical simulations
of waves or surges. Wind fields are an important input parameter for such simulations
and they represent at the same time a major source of uncertainty. In this study we
investigated whether this uncertainty may be reduced if a recently proposed approach
by von Storch et al. (2000) is used for the production of the wind hindcasts and if the
hindcast skill in these simulations could be improved. Further, the consequences of
the improved wind hindcasts for wave model simulations were demonstrated.

The sensitivity of the simulated wind fields, and thus the uncertainty in the simu-
lations depending on the initial conditions, was assessed using ensemble simulations
for the period January 1993. In one ensemble the conventional approach was utilized
in which the model is driven by boundary conditions at its lateral boundaries only.
In the other ensemble the recently proposed spectral nudging approach (von Storch
et al. (2000)) was used in which additional information regarding the large scale at-
mospheric circulation is fed into the RAM. It was shown that most of the time the en-
semble variability appears to be small for both ensembles. However, for some periods
the ensemble variability (uncertainty) was strongly increased in the control ensemble
while it remained small in the spectral nudging integrations.
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Figure 3.5: SLP in hPa for two REMO CTR (upper panel) and one REMO SPN (lower
left panel) realizations at 00:00 UTC 7 January 1993 together with the SLP
obtained from the routine analysis of the German Weather Service (lower
right). The two solid black points in each panel indicate the positions of
Ekofisk (northernmost point) and Scharhorn (southernmost point).
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Figure 3.6: SLP in hPa obtained from the REMO CTR (left) and the REMO SPN
(right) simulations at 00:00 UTC 7 January 1993. Shown are the 1015 hPa
(solid) and the 1020 hPa (dashed) contour lines from all 6 REMO CTR
(left) and all 6 REMO SPN (right) simulations. Note that the differences
are hardly visible for the SPN simulations. The two solid black points indi-
cate the positions of Ekofisk (northernmost) and Scharhorn (southernmost
points).

In these situations there are several atmospheric states about equally likely to oc-
cur in the CTR integrations. Accordingly, the regional atmospheric model shows very
different results for only slightly modified initial conditions. In the perspective of nu-
merical multi-decadal hindcasts or historical reconstructions only the trajectory closest
to the observed state is desired. For the CTR realizations, it is not clear whether this
trajectory is going to be realized if only one integration can be performed. Using the
SPN approach this uncertainty is strongly reduced.

For the examples shown in this paper it could be further demonstrated that for the
SPN simulations the hindcast skill was improved for both, the winds and the wave
model results. For multi-decadal hindcasts with regional atmospheric models ensem-
ble simulations for the entire simulation period are not feasible. Our results suggest
that for such hindcasts the SPN approach could provide an alternative to keep the mod-
els trajectory closer to the observed one in case no further data for data assimilation are
available. Based on this experience the approach has recently been utilized by Feser
et al. (2001) to produce a high-resolution wind hindcast for the North Sea, the Baltic
Sea and the Northeast Atlantic covering roughly the past 40 years. Feser et al. (2001)
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Figure 3.7: Total Hs in m for the WAM CTR (upper) and the WAM SPN (lower) simu-
lations at 00:00 UTC 7 January 1993. Shown are the 1.5 m (solid) and the
2.0 m (dashed) contour lines for all 6 WAM CTR (upper) and all 6 WAM
SPN (lower) simulations.

provided their wind fields hourly at a spatial resolution of about 50 x 50 km. Com-
parison of simulated and observed wind fields indicated that this way a reasonable and
high resolution hourly wind data set covering many years could be produced (Weisse
and Gayer (2000), Soares et al. (2002), Weisse et al. (2002)). Presently, the approach
is used to produce further multi-decadal wind hindcasts for other areas. Furthermore,
these wind fields are used to produce multi-decadal simulations of waves and surges
for a number of European coastal areas (Soares et al. (2002)).

Although the additional computational resources required for the spectral nudg-
ing are minor compared with enhanced data assimilation schemes, data assimilation
should be favoured in case additional observational data are available that have not
been assimilated in the global analyses. In addition, our conclusions are based on the
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analysis of a short time period only. Further tests over a larger data set are required
to fully assess the improvements obtained from the SPN approach. Furthermore, the
improvement in hindcast skill that can be obtained by using the SPN approach for
multi-decadal hindcasts strongly depends on how often periods of enhanced IMU do
occur and on the typical duration and spatial extend of such events. From the material
presented here we may not conclude on the frequency and the typical spatial scale of
such events. Further analysis of longer ensemble simulations is required to fully as-
sess this topic. There are, however, a few recent studies which indicate that such events
may occur a little more frequent: Rinke and Dethloff (2000) investigated the sensitiv-
ity of a regional arctic climate model to its initial conditions and found that due to the
weaker lateral boundary control compared with mid-latitude RAMs a pronounced sen-
sitivity of the Arctic simulations to uncertainties in initial conditions occurred. They
concluded that changes in the monthly mean atmospheric structures caused by internal
processes were in the same order as those induced by inaccurate physical parameteri-
zations. Weisse et al. (2000) and Weisse and Schneggenburger (2002) investigated the
sensitivity of a coupled regional atmosphere-wave-model to different sea state depen-
dent roughnesses and initial conditions. They found that the sensitivity to modified
momentum flux parameterizations was in the same order of magnitude as the internal
variability caused by modified initial conditions. Further, they reported prolonged pe-
riods of enhanced internal model variability, some of which lasted several days up to
almost a month. A similar result was found by De Zolt (pers. comm. 2000) who ran a
regional atmospheric model for the Mediterranean for the year 1996.

Summarizing, the spectral nudging approach appears to be capable to reduce the
IMU without squeezing the realistic small scale variability and to improve the hind-
cast skill for surface winds. Based on the analysis of wind speeds at Ekofisk and
Scharhorn it is concluded that some indications do exist that the spectral nudging ap-
proach should be favoured instead of the conventional approach for such applications
as multi-decadal hindcasts. Further studies are, however, needed to investigate the
frequency of events with high internal model variability in integrations using the con-
ventional approach. Spectral nudging may be seen as a sub-optimal and indirect data
assimilation technique (von Storch et al. (2000)), depending on the quality of the global
forcing fields. Here we have shown that it may represent a useful approach for regional
multi-decadal hindcasts and climate reconstructions for which limited computational
resources and no further observational data for assimilation are available.
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Abstract

A two-dimensional discrete spatial filter was developed. It serves as a means to clas-
sify meteorological fields on a limited area grid according to their spatial dimensions
by filtering certain wave number ranges. Thereby it performs an isotropic spatial scale
separation of the atmospheric fields. A general algorithm was developed, which al-
lows the construction of a filter that closely approximates a specific isotropic response
function. The filter is simple in the construction and easy to apply while giving reason-
able results. The method allows for considerable flexibility in choosing this specific
response. This way, low-, band- and high-pass filters are obtained. Examples show
an effective scale separation of atmospheric fields on limited area grids which can be
used for process studies, model evaluation or comparisons.
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4.1. Introduction

Limited area models (LAMs) for the atmosphere are used for simulating the regional
climate (Giorgi et al. (2001)). The spatial gridding of these regional climate models
(RCMs) currently ranges from about 50 to 10 kilometers and time periods of up to
several decades have been simulated. However, the question if RCMs provide added
value compared to global analyses (such as the NCEP re-analysis; Kalnay et al. (1996))
or global models of lower resolution is still only partly answered. We believe this
is mainly due to the lack of a convenient tool to properly describe the added value
- namely a filter procedure that compares the performance of the global analysis or
model with that of the regional model on large and medium-to-small spatial scales.
In this paper, we suggest to use digital filters for the separation of components of a
limited spatial field with different spatial scales. The spatially filtered fields may then
be used for model validation, diagnostic purposes, or comparisons between the global
coarse-grid data and the regional model refinement.

When identifying the added value of RCM simulations, we suggest the application
of the downscaling paradigm which states that smaller scale dynamics may be under-
stood as being conditioned by large scale variability and physiographic regional detail
(von Storch (1995)). In doing so, we consider the large scales described properly by
the global analyses or global climate models. On the other hand, the global models
and analyses have little skill at scales smaller than a few grid points, e.g., a few hun-
dred kilometers. On these scales, we expect the added value of RCMs. In the present
paper, we deal with the problem how to achieve conveniently and efficiently this scale
separation.

Spatial filters are rarely used for the evaluation of RCM output, in particular not in
the context of regional climate simulations with a RCM. One approach, used in LAM
forecasting and evaluation, is to expand a limited field in a 2-d Fourier series, and to
rebuild a filtered field by recombining only Fourier components with relevant scales
(Errico (1985), Stamus et al. (1992)). This Fourier concept was also incorporated
into the spectral nudging or large-scale forcing concept by Waldron et al. (1996), von
Storch et al. (2000) and Miguez-Macho et al. (2004), which keeps the large-scale part
of a regional model solution close to the forcing global field in the model interior.
Bettge and Baumhefner (1980) introduced digital filters using classical ideas proposed
by Shuman (1957) and Shapiro (1970).

In the present paper, we provide an algorithm to construct two-dimensional digital
filters for the spatial scale separation of limited area fields (Sections 4.5 and 4.6).
Examples of such filters are presented and their utility is demonstrated (Section 4.7).
Before doing so, we want to discuss alternatives to our approach.

The most straightforward approach is Errico’s approach to decompose the two-
dimensional field into a series of sinusoidal harmonics in x- and y-directions, as men-
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tioned above. This approach has the distinctive advantage that the scale separation is
very accurate. However, the harmonic analysis suffers from the erroneous description
of spatial ’trends” (non-sinusoidal components of the spatial fields, such as linear or
higher polynomials) as being composed of “waves”. The harmonic analysis works
fine if the considered field is periodic. However, LAM output is almost never periodic
and often exhibits a trend; for instance, in winter, air pressure is often lower over the
ocean and higher over land. We demonstrate the problem of subjecting a “trend” to
harmonic analysis by a synthetic example of a pure spatial trend without any wave
components (Figure 4.1a). This linear trend (shown as dots) can be decomposed into
sine and cosine waves as shown in Figure 4.1a. If this spatial trend is filtered with a
Fourier low-pass filter (lowest four wave contributions of Figure 4.1a were retained
in this example), the resulting curve (blue dashed curve in Figure 4.1b) replicates the
overall trend but adds significant large-scale wave components - in particular at the
margins. One might argue that in LAM applications the overshooting in the marginal
zone would not matter, since it would affect only the sponge zone which is normally
not considered. However, there is also a false identification of short wave contributions
by the high-pass spatial filter (red dashed curve in Figure 4.1b; shortest four wave con-
tributions of Figure 4.1a were retained) which is not limited to the sponge zone but
which occurs also in the interior. The discrete cosine-filter method suggested by Denis
et al. (2002) is better in describing spatial trends, but it also maps all variability on
wavy components, so that any recombination of a subset of these components, which
is needed for formulating a filter, may generate artificial wavy contributions.

Errico (1985) had noticed the problem of spatial trends and has suggested to sub-
tract linear functions; in the following we extend his approach by considering not only
linear but also quadratic polynomials (Section 4.2).

Digital filters (e.g. Shuman (1957), Shapiro (1970), Shapiro (1975)) have the ad-
vantage that they operate with a finite ”support base”, e.g. the filtered value at some
location is a function of the values in a neighbourhood of that location and not, as in
case of harmonic analysis, of all locations. The disadvantage is that the scale separa-
tion is less effective than with a Fourier filter, since the response function of a digital
filter is smooth and not a step-function as in the case of a Fourier filter. That is, for
a low-pass filter, the long waves will not exactly be retained but only approximately;
similarly, a high-pass filter will not completely remove all contributions of long waves
- which is a problem, when the intensity of short waves is much smaller than those of
long waves. Digital filters usually lead to a loss of data at the margins of the domain,
as the determination of a filtered value needs data in a symmetric neighbourhood of
that point. However, with RCMs this is not a problem, as such models are run with a
sponge zone within which little added value is expected. Thus, if the filtering neigh-
bourhood is not wider than the sponge zone, a scale separation for the entire relevant
interior domain can be achieved.
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Usually, digital filters are one-dimensional, and are applied to two-dimensional
fields by first applying it in one direction and then in the other. Bettge and Baumhefner
(1980) used such a one-dimensional digital band-pass filter for obtaining a scale-
separation of limited area atmospheric fields. They applied the 1-2-1 low-pass filter
operator presented by Shuman (1957) and created band-pass filters by repetition and
differences. Another one-dimensional digital filter, a high-order, high-pass implicit
filter, was used by Raymond (1989). Such filters are, unfortunately, not isotropic and
their filter characteristics are not really flexible. Therefore a method for the flexi-
ble construction of two-dimensional isotropic discrete filter was required. The filter
weights are obtained by solving an approximation problem.

2-d-wavelets (e.g. Yano et al. (2001), Desrochers and Yee (1999), Jameson et al.
(2002)) may be a promising, alternative approach. However, so far their application in
scale separation used in regional climate modelling is very limited. For our limited area
model application with terabytes of data a fast filtering approach is essential. In general
the image decomposition in fast wavelet algorithms is made with a dyadic resolution
factor (Daubechies (1992), Starck et al. (1998)). If, as in our case, special wave num-
bers are of interest as cut-off frequencies they usually are not matched directly by the
dyadic resolution approach. To achieve the separation into certain wave-number bands
a post-processing of the wavelet with the multi-resolution analysis (Mallat (1989),
Mallat (1998)) is necessary, which costs extra computing time, both in terms of deter-
mining the wavelet transform and the back transformation. We suggest that wavelets
are not a viable alternative to our digital filters which are computationally simple and
adapted to the specific wave-number band.
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Figure 4.1: Fourier decomposition of a spatial trend (a) and low- and high-pass
Fourier-filtered spatial trend (b). The x-axis denotes the grid points of the
LAM.
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4.2. Pre-processing: Subtraction of two-dimensional poly-
nomials

Before filtering, the meteorological fields in our study were ‘pre-processed’, whereby
two-dimensional polynomials were subtracted. This serves two purposes:

e Fourier expansions of fields on regionally limited grids suffer from the fact that
the non-periodic components are falsely represented by “waves”. By identifying

the dominant non-periodic components P, we may conceptually express the 2-d
LAM fields as

f(zy) = PF(x,y) + Ly(z,y) + My(z,y) + Ss(z,y) @.1)

Here, Pf( represents the polynomial of £-th order of the two-dimensional field
f, Ly its large-scale wave component, M the medium-scale wave component
and Sy the short-scale wave component of f.

When the P;-component is disregarded, the non-periodic contribution falsely
compounds the wavy components on all scales. Thus, the inclusion of PJ{{ leads

to a better separation and description of components.

e Practically, the separation into the three wave components L, M and S is ob-
tained by a digital filter. Such filters operate fine if the variance of the wave
numbers to be suppressed is not much larger than the variance which is supposed
to be retained. This is always the case with low-pass filters, when high wave
number variance is eliminated - high wave numbers have always smaller vari-
ance than low wave numbers. There is usually also not a problem for medium-
pass filters. However, high-pass filters are usually negatively impacted, as the
elimination of low-pass components is not perfect and minor remnants of low-
wave number variability remain - and minor remnants are comparable to high
wave number contributions in terms of variance. An example for this is given in
Errico (1987). The subtraction of polynomials can help to ease this problem, as
this operation reduces the variance of the large-scale.

Equations for the polynomial subtraction are given in appendix 4.10. Figure 4.2 shows
the K=1 and K=2 polynomials fitted to the wind speed on December 3rd, 1999, 6 p.m.,
and the total wind speed field as well as after subtraction of the K=1,2 polynomials.
In contrast to the linear K=1 polynomial, the fitted quadratic polynomial exhibits a
marked non-linear pattern, describing higher wind speeds over the North Atlantic and
a gradual increase towards southern latitudes and continental areas. The wind speed
field in the bottom of Figure 4.2 is rather noisy. Thus the subtraction of the polynomials
is not changing the overall character of the spatial wind speed distribution, but the NW-
SE asymmetry is eliminated. We suggest to subtract the quadratic polynomials for data
to be band- or high-pass filtered. The polynomial subtraction was applied to all band-
and high-pass filtered fields shown in section 4.7.
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Figure 4.2: Top: K = 1, 2-polynomials P! and P? fitted to the wind speed field (m/s)
at a height of 10 m on December 3rd, 1999, 6 p.m. (storm ‘Anatol’).
Bottom: Full wind speed field for the same date, and after subtraction of
the K = 1, 2-polynomials i.e., v — P} and u — P2,

4.3. Selection of pre-specified wave numbers

The idea was to construct an almost isotropic filter. Thus, it is meaningful to select all
wave numbers with the same or similar two-dimensional wave number k* = \/k? + [?
and to assign the same response x(k*).

A low pass filter is generated by requesting ~(k*) = 1 for all £* below a small
wave number, for instance 5, and x(k*) = 0 for all wave numbers £* larger than a
large number, say 20. In the intermediate range, the response is expected to smoothly
transform from 1 to 0. It is advisable that the two regions with specified responses are
not covering the entire domain; instead a band of unspecified responses should be used
in an in-between region.
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Similarly high-pass and band-pass filters can be constructed. For a band-pass filter
three parameters have to be selected, a region with zero responses for small and large
wave numbers, and a response of one for medium wave numbers.

4.4. Filter weights

The filter array must be quadratic and symmetrical with respect to the zonal and merid-
ional directions, and also with respect to both diagonals. Thus, only a few filter weights

[

are to be determined - in the sketch marked by “x” while those determined by symme-
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try are given by “o”, for instance in a filter with 9 and with 25 weights:
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Apart from the central point, which is weighted by the central filter weight ag o, N
points to the left (top) and N points to the right (bottom) are used, such that 2N + 1
points are considered in either direction. For a LAM domain of 81 x 91 grid points we
chose filters with NV = 8 points, so that their spatial extension is (2N + 1)x(2N + 1)
= 17x17 points.

The symmetric conditions are a,,,, = G—mn = Am,—n = A_yy,—p = Gy m ; Whereby
n,m denote rows and columns, respectively. Thus, the filter weights a,,,, look like the
following in case of a filter with 25 weights:

G292 Q21 A-2p0 G-21 A_22 Q22 G211 QA20 A21 Aa22
aG_1,—2 G111 G_10 GG-11 QA-12 21 A11 G10 411 A21
ag,—2 ap,—1 Qg,0 .1 ag,2 =1 G20 G10 Aapo aA1,0 G20 4.2)
a1,—2 a1,—1 ai1,0 ai,1 ai,2 21 A11 G10 411 a2
A2 2 A2 -1 a20 21 2.2 Q22 G211 QA20 A21 Aa22

The resulting filter weights for a low-, band- and high-pass filter are shown in Figure
4.3. The low-pass filter weights (Figure 4.3 a) show a homogenous structure with high-
est values in the middle of the weighting area and decreasing values further away from
the filter base point. This will result in a large mean value and therefore a low-pass
filtered field. The band-pass filter weights (Figure 4.3 b) include several transitions
between positive and negative values and thereby the mean value will be filtered and
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only the smaller structures will remain. This is even stronger enforced for the high-
pass filter weights (Figure 4.3 c¢) which comprise a yet higher number of changes in
sign. Thus, only the smallest structures will pass this filter.
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Figure 4.3: Filter weights for a low-pass (a), band-pass (b), and high-pass (c) filter. ag
is in the centre; representation as in equation (4.2). The axes denote grid
points of the LAM. Filters were chosen with N = § points, so that their
spatial extension is (2N + 1)x(2N + 1) = 17x17 points.

4.5. Response function

We assume a 2-d periodical function f which can be expanded into Fourier compo-

nents:
K

flay)= Y ayeltath (4.3)

k,l=—K

with the Fourier coefficients a;; = a* _; because f(x,y) is a real function. k and 1
are the zonal and meridional wave numbers, respectively. The arguments x and y vary
between 0 and 27. The filtered function f is given by:

f(z,y) = apf(z,y) + A+ B+C (4.4)
with
N
A = Zano[f(a:,y—i—ﬁ)—i-f(x,y—ﬁ) (45)
n=1
N
B = Y am[f(z+iy+0)+ fle+ny—n)
n=1

+f($_ﬁ’7y+ﬁ)+f($_ﬁvy_ﬁ’)]
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N n-1

C = 3% aunlf(@+i,y+m) + flz+ i,y — i)

n=2m=1
—{—f(.’L'—ﬁ,y—{—’l”h)-Ff(.’L’—ﬁ,y—ﬁl)
+fx+m,y+n)+ flz+1m,y—n)

with the convention 7 = n-27/L and m = m 27 /L. L is the number of grid points,
which are counted by the integers n and m. The transformation from n to 7 is required
as we have written (4.3) for functions defined on the interval [0, 2r|. The filter weights
are denoted by a,,,,,. A represents the central row and column of matrix (4.2), B the
diagonals and C' the remaining elements. Further detailed calculation steps are given
in appendix 4.11.

The filtered function may also be expanded into a Fourier decomposition

K
flay) = 3 Ge (4.6)
kjl=—L
with &y = a* ), = &, = &_ . The response function is given by
Kk, 1) = an/am 4.7
By concatenating the various contributions in (4.4), the response function « can be
written as in the following for wave numbers £,/ = - K, - K +1...—1,0,1... K —
1, K:
N
k(k,1) = aop+ Y [2an0(cos(kn) + cos(I)) + 4ay, ncos(kn)cos(In)]
n=1
N n—1
+43 > apm [cos(ki)cos(lm) + cos(Ii)cos (k)] (4.8)
n=2m=1

The constants 2 and 4 in (4.8) account for the multiple use of the filter weights in one
filtering step. The response functions are shown in Figure 4.4 for the low-pass (a),
band-pass (b), and high-pass (c) filters with the filter weights of Figure 4.3. The wave
number ranges were chosen as in the following for the low-pass filter:

k(k*) =1forall k* < 6 and x(k*) =0 for all k* > 11 ;

for the band-pass filter:

k(k*) =0 forall k* < 6, k(k*) =1 for all k* > 8 and < 16, and x(k*) =0 for all k* >
18 ;

and for the high-pass filter:

k(k*) =0 for all £* < 21 and x(k*) = 1 for all k* > 26

for a filter of 17 x 17 grid points used for a LAM domain of 81 x 91 grid points.
The response functions show a well-defined wave number range where the response is
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Figure 4.4: Response functions for the low-pass (a), band-pass (b), and high-pass (c)
filters with the filter weights of Figure 4.3. The axes show the zonal wave
numbers k (x-axis) and the meridional wave numbers | (y-axis).

close to 1 and a smooth transition to response values of about 0. The transition area
can be selected quite narrow as can be seen for the band-pass filter (b) which results in
a rather sharply defined filter.

Some cases of overshooting of the response function occurred when the areas of re-
sponse values of 1 and 0 were chosen in a way that the transition area in between
was too narrow, so that only a small number of unspecified responses resulted. Over-
shooting can be identified by locating large positive or negative values in the response
function which are far beyond the value of O or 1. In that case the response function
showed very irregular patterns compared to the smooth patterns shown in Figure 4.4.
To prevent overshooting it is advisable that the regions with specified responses are
not covering the entire domain and that they are well separated so that there is enough
space for unspecified responses.

4.6. Optimal discrete filters

Equation (4.8) is linear in the coefficients ag g, a1, @20, a2 - .. ay,1. If the filter has
the width 2N + 1, then (N + 1) - (N + 2)/2 coefficients need to be determined. This
can be done by specifying responses x(k, 1) at a variety of wave numbers, so that a set
of linear equations is obtained

~

(k1) = agp+ 2a10(cos(k1) + cos(11)) + 4ay cos(k1)cos(i1)
N n—1
+4> " |2a,0(cos(kn) + cos(Ii)) + > anm4 {cos(ki)cos(lr)

n=1 m=1
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+cos(ln)cos(km)} + 4ay, ,cos(kn)cos(ln)] 4.9)

When we introduce the notation Ay = ag o, A> = a1, A3 = a11, and

Apn+1)/2414m = Gpyn  forn>2andm =0...n (4.10)
and
Mg, = 1
Mg nny1)/241 = 2{cos(kn) + cos(ln)} forn > 1
Mg p(ni1)2414m = 4 {cos(kn)cos(lin) + cos(ln)cos(km)}
form=1...n—1 andn > 2
Mg nni1) /24140 = 4cos(kn)cos(ln) forn >1
4.11)

equation (4.9) may be rewritten with K = (k,[):
(N+1)-(N+2)/2

=1

One option is to select as many wave numbers with specified responses as the num-
ber of weights (N + 1) - (N + 2)/2. In that case, a linear set of equations with an
invertible matrix emerges. We have tried this out, but unsatisfactory results emerged -
the solution for the two-dimensional response function « is a superposition of waves,
and fixing « at a number of selected wave numbers creates a two-dimensional £ which
fits exactly the specified responses at a few locations, but between these locations un-
acceptable overshooting phenomena emerged, in particular when band- and high-pass
filters were constructed.

Therefore, the response is specified at more wave numbers than there are filter
weights. Then, the set of linear equations is over-determined. An approximate solution
is obtained by minimising

(N+1)-(N+2)/2 2
Z (“(K) - Z MK,jAj) (4.13)

K j=1
The filter weights solution for this problem is given by

A=(M"M) " MR (4.14)
with the matrix M with (N + 1) - (N + 2)/2 columns (dimension of A) and as many
rows as wave numbers have been selected with given responses (dimension of £).

Please note that the sum of the filtered plus the polynomial pieces does not equal the
total. The individual filtered pieces are not orthogonal to each other. That is, the
variances of the different contributions do not add exactly to the total variance. This
would be a nice property to have, but for the specific purpose in mind, namely the
characterization of phenomena on different scales, this is not really needed.
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4.7. Applications

The results of a regional model run (Feser et al. (2001)) for Western Europe forced with
the NCEP reanalyses (Kalnay et al. (1996)) were filtered with the presented filter for 3
wave number ranges. The quadratic polynomials (section 4.2) were subtracted before
applying the band- and high-pass filters. A first example for the storm ‘Anatol’ can be
seen in Figure 4.5. It shows the unfiltered (a), low-pass (b), band-pass (c), and high-
pass filtered (d) wind speed fields at a height of 10 m for the 3rd of December 1999,
6 p.m., for Western Europe when the storm was centred over the north-eastern tip of
Denmark with a low pressure core of 956 hPa. The low-pass filtered field (b) shows the
smoothed field and displays only the very large scales. The band-pass filtered data (c)
lacks the large-scale information and shows land-sea interactions on the regional scale
but also regional wind speed structures over the North Sea connected with the intense
low-pressure system. The high-pass filtered part (d) displays the smallest scales with
largest values almost exclusively in the coastal zones for this wind speed example. An
effective scale separation was achieved.

The band-pass and high-pass filtered fields show anomalies from the large-scale
field, therefore the values are positive and negative around the zero-point. The white
‘frames’ around the filtered fields are a result of the digital filter’s weighted average
operation around a base point, which can not be calculated in the direct vicinity of the
LAM’s boundaries due to a lack of grid points. Therefore the points close to the lateral
boundaries (in our example 8 rows and columns of grid points which is equal to the
sponge zone width of the LAM we used) have a value of zero.

Another example of the filter application is given in Figure 4.6. It shows precip-
itation fields for the storm Anatol, accumulated for December 3rd, 1999. Again, the
unfiltered (a), low-pass (b), band-pass (c), and high-pass (d) filtered fields are shown.
The low-pass and the band-pass filtered data display the frontal precipitation related to
the intense low-pressure system on their respective scale. Also the high-pass filtered
precipitation is most intense in the vicinity of the storm’s cloud systems.

Figure 4.7 shows the mean sea level pressure field for the storm ‘Anatol’. The
storm centre over the north-eastern tip of Denmark can be seen both in the unfiltered
and low-pass filtered fields (a and b). The band-pass filtered data (c) depicts anomalies
around the low-pressure core and over the North Atlantic. For calculating the high-
pass filtered field (d) not only the polynomials were subtracted, but also the low-pass
filtered field (whereby the polynomials were subtracted as well). This was necessary
because the spectrum of the mean sea level field drops off rather sharply so that the
remnants of large-scale features in the high-pass filtered field Sy are comparable to the
small-scale features. Therefore, the large-scale contribution is suppressed explicitly
before high-pass filtering by calculating f — Pf* — L, PE- Then, this reduced field

is filtered. Because of the double filter application the spatial extension of the data is
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Figure 4.5: 10m wind speed fields (m/s) for the storm ‘Anatol’ on December 3rd, 1999,
6 p.m., of a LAM simulation: (a) Unfiltered, (b) low-pass filtered, (c) band-
pass filtered, and (d) high-pass filtered data.
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Figure 4.6: Precipitation fields (mm) for the storm ‘Anatol” accumulated for December
3rd, 1999, of a LAM simulation: (a) Unfiltered, (b) low-pass filtered, (c)
band-pass filtered, and (d) high-pass filtered data.
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Figure 4.7: Mean sea level pressure (hPa) for the storm ‘Anatol’ for December 3rd,
1999, 6 p.m. of a LAM simulation: (a) Unfiltered, (b) low-pass filtered,
(c) band-pass filtered, and (d) high-pass filtered data.
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decreased, now there are 16 instead of 8 rows and columns of zero value around the
filtered data. The largest anomalies can be seen North of the low pressure core and
over the North Sea.

Since the main purpose of this paper is to present the method of spatial two-
dimensional discrete filtering and not the application of it we will not go into further
detail here. For further studies the filter may be used as a tool to compare such fields
for model evaluation, for process studies on different spatial scales or to show the
resolvable scales of the LAM.

4.8. Summary and Conclusions

In this paper we have presented a method to construct isotropic digital filters suited
for scale separations of atmospheric fields on limited area grids. There are several
methods to do scale separations, like Fourier filtering, the discrete Cosine transform or
digital filters. We suggest to use near-isotropic two-dimensional digital filters because
these filters operate with a finite basis, can be constructed flexibly and are easily im-
plemented and run with little computation cost. Our method allows the construction
of filters for a broad range of applications and for data on homogeneous, limited area
grids. A wave number range of interest has to be selected and the according response
values can then be calculated automatically using an approximation method. The filter
weights are then calculated by a matrix inversion.

In our example, we constructed several isotropic discrete filters for differing wave
number ranges, to isolate the large, medium, and small scales of limited area atmo-
spheric fields. Applications of the filters produced reasonable results.

As a next step we will apply these filters for model evaluation purposes, to study
processes on a limited area domain or to advance with the question of added value of
regional models.
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4.10. Appendix: Polynomial fit

4.10.1. Formal presentation of problem

We want to expand a discrete set of numbers z;; on a rectangular grid of points (4, j)
withs =1...n, and j = 1...n, into a polynomial of order K, i.e.,

r4+q<K
Tij = Z (I,rq’éTjQ + €ij (415)

r,q=0

a are the polynomial coefficients which are to be determined and r and q are the indices
which number serially the polynomial terms. e represents a remainder, the square of
sums Y, ; €5; is assumed to be minimum. The sum is made up of (K + 1)(K + 2)/2
terms.

This expression (4.15) means for

K=0: Lij :Cl()0+€l'j

K=1: = ago + 10t + Ao1J + €5
K=2: = ago + a10 + agi® + agrj + ag2j> + ai1ij + €
etc.

The expansion (4.15) may be rewritten as

K
k=0
with
K-k
Ty = apgis* (4.17)
q=0

For example:

K=1: Ty = ago + ap1J
11 = a0t

K=2: Ty = ago + aprg + a02j2
11 = ayoi + anrij

T2 = CLQ()Z'2

For a given field z;;, we want to determine optimal coefficients a,, so that

2

K
€= Z lxij — Z Tk] = min (4.18)
k=0

ij
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4.10.2. Solution of minimum problem

The minimum of (4.18) is derived by first calculating derivatives with respect to the
quantity to be determined, and then finding zeros of these derivatives, i.e.,

0é
da,,

=0 4.19)
= =1"44, and thus

Oarq
03 0 X
= E 5 \Lij — E T,

da,g 7 da,g

s ( ZTA> (5|

= 2ZZT;€Z J —22@91 41

. o T
Itis —82 k— O —
rq

2

ij k=0
or for all pairs (r, q):
K K-
Z Z Qs Z q) == Zl‘ijirjq (420)
k=0 =0 ij

Setting this derivative to zero results in a set of linear equations for all (K + 1)(K +
2)/2 coefficients a,,. Thus, the problem is reduced to a conventional matrix inversion
problem. A minor technical challenge is to properly map the two-dimensional index
(r,s) on a 1-dimensional index.
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4.11. Appendix: Response function of 2-d digital filter

To determine the response function ~ of the filter, (4.3) is inserted in (4.4). Because of
e’ + e~ = 2¢os(x), the terms A, B and C can be rewritten as:

N K
A = Z o ( Z ak,lel(kx+1y) |:€7,k:n + 677,k:n + 6zln + 67,ln:|)
n=1

k,l=—K

N K
= 2> anp ( S e ) (cos (ki) + cos(lﬁ)))
n=1

El=K

K N
= ) (2 > ano(cos(kn) + cos(lﬁ))) oy et B+ )

kl=—K \ n=1

N K
B = Zann ( Z ak’lel(kw-l-ly) [ezkn-l-zln _|_e—zkn—zln _|_ezlcn—zln +e—zkn+zln])
n=1 kil=—K

N K
= > amm ( ST ettt [eikﬁcos(lﬁ) + e‘““%os(ln)])
n=1

kl=K

K N _
= > <4 > anncos(kn)cos(ln)> oy e ket ty)

ki=—K \ n=1

and
N n-1 K ) ) ) ) )
C = Z Z - Z Oékvlez(kaz+ly) [6zkn+zlm +6zknlem
n=2m=1 kl=—K

+6—ikﬁ+ilm +€—ikﬁ—ilm +eikm+ilﬁ +eikm—ilﬁ

+e—ikm+ilﬁ +6—ikm—ilﬁ]

N n-1 K . o
= 3 N aum > ayeitrrivg [elk”cos(lm)
n=2m=1  ki—K

+e"*cos(lm) + e Meos(li) + e_ikmcos(lﬁ)]

K N n-1
= ) <4 >N anmlcos(kn)cos(lin) + cos(lﬁ)cos(krh)]) oy e Rty

kl=—k \ n=2m=1
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Abstract

Regional climate models (RCMs) are a widely used tool to describe regional scale cli-
mate variability and change. However, the added value provided by such models is not
well-explored so far, and claims have been made that RCMs have little utility (Butler
(2003)). Here, it is demonstrated that RCMs are indeed returning significant added
value. Employing appropriate spatial filters, the scale-dependent skill is examined of a
state-of-the-art RCM (with and without nudging of large scales) by comparing its skill
with that of the global reanalyses driving the RCM. This skill is measured by pattern
correlation coefficients of the global reanalyses or the RCM simulation and, as a ref-
erence, of an operational regional weather analysis. For the spatially smooth variable
air pressure the RCM improves this aspect of the simulation for the medium scales if
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the RCM is driven with large scale constraints, but not for the large scales. For the
regionally more structured quantity near-surface temperature the added value is more
obvious. The simulation of medium-scale 2m temperature anomaly fields amounts to
an increase of the mean pattern correlation coefficient of up to 30%.

5.1. Introduction

Regional climate models are a widely used tool to derive regionally specific informa-
tion about the statistics of weather (i.e., climate), trends and possible future changes.
Such models feature an atmospheric limited area model combined with a description of
the thermodynamics of the upper soil levels (e.g., Giorgi et al. (2001)) plus, possibly,
other components of the Earth System (e.g., marginal seas, lakes). They are forced by
time variable conditions along the lateral atmospheric boundary, sometimes also with
large-scale constraints in the interior. These constraints are taken from either global
model scenarios (e.g., Christensen and Christensen (2003)) or from global reanalyses
(e.g. Feser et al. (2001)). Simulations lengths are several decades of years.

The purpose of regional climate modelling is to provide additional detail beyond
the resolution of global reanalyses or global climate simulations. The enhanced spatial
resolution of a RCM is thought to allow for a better description of the atmospheric dy-
namical processes, which lead to the formation of meso-scale features (such as fronts
or meso-scale disturbances (e.g., Denis et al. (2002)). The dependency of the smaller
scales on the larger scales is considered to be better described (‘“downscaling” von
Storch (1995)). Another benefit is that the influences of the physiographic detail, such
as surface vegetation characteristics, coastlines, or complex topography, are better cap-
tured (e.g., Jacob and Podzun (1997)). Thus, the theatre of regional weather is con-
sidered to be made up from two main influences, namely the large-scale atmospheric
state and the regional physiographic detail.

The global analysis or simulation is assumed to reliably describe the dynamics of
the large scales. The RCM should be better than the global analysis or simulation on
medium spatial scales (600 km and less). Thus, the expected added value of regional
climate modelling is mainly on these medium scales (e.g. Laprise (2003)).

The concept of scale-separation is used to analyse limited area model (LAM) re-
sults on different scales. It can serve as a tool for model evaluation or to explain the
connection between weather phenomena with varying size. The concept was also in-
corporated into the spectral nudging or large-scale forcing concept by Waldron et al.
(1996) and von Storch et al. (2000), which keeps the large-scale part of a regional
model solution close to the forcing global field in the model interior. In the past, LAM
fields were mainly looked upon as a whole not separated into different spatial scales to
study processes, to predict the regional climate or to resolve regional weather details
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at a high resolution. Whenever filters were applied, this was generally done to filter
in time. In this work the use of a spatial filter is proposed in order to separate the
LAM results into several independent spatial scale bands. The individual fraction of
the regional model in adding value to the global model solution can thus be estimated.
An explicit comparison with the forcing global model and observational reference data
can assess the regional models simulation quality.

5.2. Models used for comparisons

In the following the hypothesis will be tested that the regional models describe the
phenomena on both, large and medium, scale bands better than the driving large-scale
state. To do so, the case of an extended simulation is considered with the regional
climate model REMO (REgional MOdel, Jacob and Podzun (1997)) forced with global
6-hourly NCEP (National Centers for Environmental Prediction) reanalyses (Kalnay
et al. (1996)) from 1958-2002, which are given on a horizontal grid of about 2°.

REMO is a grid point model featuring the discretized primitive equations in a
terrain-following hybrid coordinates system. The prognostic variables are surface air
pressure, temperature, horizontal wind components, specific humidity and cloud water.
The physics scheme applied is a version of the global model ECHAM4 physics of the
Max-Planck-Institute for meteorology adapted for the regional model. The integration
area has a horizontal spherical grid spacing of 0.5 (~ 47 - 55 km in zonal direction,
~ 55 km in meridional direction) and 81 x 91 grid points. The region considered is
western Europe, extending about 4300 km longitudinally and 5000 km latitudinally.
In the vertical 20 hybrid model levels are adapted to the orography close to the sur-
face. The time step of the calculation is 5 minutes. A more detailed description of the
multi-decadal simulation is given in Feser et al. (2001).

The LAM was forced with 6-hourly NCEP reanalyses over the whole integration
period from 1958 to 2002. The horizontal grid size of the reanalyses is about 1.875¢
longitudinally and latitudinally (T62 Gaussian grid). Because of the rotated spherical
grid used by the LAM, its coverage with NCEP grid-boxes is inhomogeneous with
maximum resolution improvement in the southern part of the integration area. One
LAM simulation was done in the conventional set-up with lateral and surface forcing
only, another one with additional “nudging of large scales” (von Storch et al. (2000)).
Nudging of large scales keeps the simulated state close to the driving state at larger
scales, while allowing the model to freely generate medium-scale features consistent
with the large-scale state. This is achieved by adding nudging terms in the spectral
domain for the horizontal wind components above 850 hPa with maximum strengths
for low wave numbers at the top model level.
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The LAM results were compared to the NCEP reanalyses at different spatial scales.
To transfer the coarse grid reanalyses to the 50 km grid used by the RCM, the reanal-
yses atmospheric fields were horizontally interpolated according to a 16 point formula
as explained in Doms et al. (1995). The sea level pressure (SLP) is computed follow-
ing Doms et al. (1995) by first calculating an extrapolation of the temperature 7™ at the
height of the LAMs orography using the temperature 7 g of the lowest model level:

pS
PKE
whereby p; is the unreduced surface pressure and py g is the pressure at the lowest
model level.
Then, the temperature 7T's;, at sea level and the mean temperature gradient -y are com-
puted.

R
T* = Txp + 0.0065— Ty p(—— — 1) (5.1)
9

P,
Tsp =1T" + ’YE (5.2)
with the orography ®, = ¢ * z, and y = 0.0065%.
SLP is then computed as:

P,
RT™

vP,

YD (o
R + 0.333( )°1} (5.3)

RT™

[1-0.5

psz = ps exp{

Accordingly, the 2m temperature was calculated using the horizontally interpolated
reanalyses temperature fields.

As a reference data set analyses of Germany’s National Meteorological Service
(DWD) are used. They were calculated with the “Europe Model” of the DWD on a
rotated spherical grid with hybrid model levels and were available every 6 hours. The
same rotated North pole and model grid was used as in the LAM simulation so that a
straightforward comparison was possible.

5.3. Filter application

To analyse the above described simulation data an isotropic digital filter was used
(Feser and von Storch (2005)). It is able to separate the LAM’s model results into dif-
ferent spatial scales by filtering certain wave number ranges. The digital 2-dimensional
filter uses a footprint of 17 x 17 grid points to determine large-scale, medium-scale
and small-scale features from a field of 81 x 91 grid points. The filter weights are
determined so that the 2-d-response function is approximately isotropic and for pre-
determined wave number ranges close to one or close to zero. In this context only the
low pass and the medium pass filters are used.

The filter parameters were chosen as explained in Feser and von Storch (2005), see
their Figure 4 of the filter response function. For the low-pass filter a wave number
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range of 0 to 6 was chosen, which means that weather phenomena larger than about
700 km can pass this filter. The medium-pass filter was set to only let pass wave
numbers 8 to 16 which corresponds to scales of about 550 km to 250 km. These wave
number ranges were selected to describe the scales that should be best resolved in the
global model (low-pass filter), and the scales that are assumed to be best resolved in
the LAM (medium-pass filter).

5.4. Temperature and sea level pressure comparisons

Both the RCM simulations and the NCEP reanalyses are compared to operational high-
resolution regional analyses, which have been constructed for routine regional weather
forecasts by the DWD. The DWD analyses are considered as a “true” reference. It is
expected that the RCM compares to the reference about as well as the driving NCEP
reanalyses for large scales; on the medium scales, however, a significantly improved
performance of the RCM is assumed.

Two variables are considered, namely the spatially smooth air pressure and the
spatially heterogeneous air temperature at or near the surface. The DWD temperature
data are available from 1992 to 1999, for SLP only in 1994, 1995, 1998 and 1999.
The data of the LAM, the NCEP reanalyses and the DWD analyses were filtered and
compared at the two spatial scale ranges described before.

The percentage ratio of standard deviations of low-pass filtered 2m temperature
DWD analyses to NCEP reanalyses for summers 1992 to 1999 is shown in Figure 5.1
(a) and the percentage ratio of standard deviations of low-pass filtered 2m temperature
DWD analyses to the regional model run for the same period in (b). The ratio between
the analyses and NCEP is mostly above 100 percent, indicating higher near-surface
temperature variability in the DWD analyses, especially over the North Atlantic with a
factor of up to 1.5. The ratio between DWD and LAM shows smaller values, they range
from 80 to 120 percent apart from a small area at the south-eastern tip of Greenland.
Even though a slightly higher agreement can be seen between the low-pass filtered
LAM and the reference data than between NCEP and the reference data, this is not the
scale which should be the best resolved one of the LAM, the one where most added
value could be assumed. Therefore the following Figures will focus on medium-scale
filtered data.

Figure 5.2 shows the ratio of standard deviations of medium-pass filtered 2m tem-
perature DWD analyses to NCEP reanalyses in percent for summers 1992 to 1999 (a)
and the ratio of standard deviations of medium-pass filtered 2m temperature DWD
analyses to the regional model run, again in percent, for summers 1992 to 1999 (b).
Obviously the more highly resolved analyses show a much higher variability in the
near-surface temperature than NCEP, up to a factor of 4.4. All values are above 100



Chapter 5. Detectability of added value in limited area model results 95

[
80 90 100 110 120 130 140 150 80 90 100 110 120 130 140 150

Figure 5.1: Ratio of standard deviations of low-pass filtered 2m temperature DWD
analyses / NCEP reanalyses in percent for JJA 1992 to 1999 (a) and ratio
of standard deviations of 2m temperature DWD analyses / LAM simulation
in percent for JJA 1992 to 1999 (b).

percent and hence the variability of the DWD analyses is higher at every grid point than
the NCEP variability. The comparison of the LAM and the DWD results shows high
agreement. The variability in the near-surface temperature is about the same in both
simulations with only few areas of slight discrepancies. Figure 5.3 shows the same as
Figure 5.2, but now for winter. A similar pattern can be seen, with high variability for
the analyses and much smaller values for the coarser NCEP reanalyses. The variability
is up to a factor of 3 higher in the analyses than in the reanalyses. Again, the LAM
simulation is much closer to the reference data set than the global forcing data.

Figure 5.4 shows the ratio of standard deviations of medium-pass filtered SLP
DWD analyses to NCEP reanalyses in percent (a) and the ratio of standard devia-
tions of medium-pass filtered SLP DWD analyses to the LAM simulation in percent
(b) for winter 1998/1999. The low pass filtered field was subtracted from the data
prior to applying the medium-pass filter as explained in Feser and von Storch (2005)
for achieving a better scale separation. An irregular pattern can be seen with many
values above 100 percent. Large regions especially in southern Europe have larger
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Figure 5.2: Ratio of standard deviations of medium-pass filtered 2m temperature DWD
analyses / NCEP reanalyses in percent for JJA 1992 to 1999 (a) and ratio of
standard deviations of 2m temperature DWD analyses / LAM simulation
in percent for JJA 1992 to 1999 (b).

SLP variability in the NCEP reanalyses than in the reference data whereby adjacent
regions show the opposite combination. The reason for this effect is unknown. The
comparison of DWD analyses and the LAM run shows mostly values around 100 per-
cent. The ratio for the summer months (not shown) depicts the same sort of pattern,
but the values are slightly larger.

5.5. Regional details

The modelled fields, unfiltered, low pass or medium pass filtered are compared to the
DWD reference with the “pattern correlation coefficient” (pcc, it is to be interpreted as
a conventional correlation coefficient but this time across space) Ppy p(z) with x =
NCEDP, sn and nn. “NCEP” represents the NCEP reanalyses, “sn” the RCM simulation
with nudging of large scales and “nn” the same without nudging of large scales. The
results shown so far all dealt with “sn”. The RCM simulation x is considered to be
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Figure 5.3: Ratio of standard deviations of medium-pass filtered 2m temperature DWD
analyses / NCEP reanalyses in percent for DJF 1992 to 1999 (a) and ratio
of standard deviations of 2m temperature DWD analyses / LAM simulation
in percent for DJF 1992 to 1999 (b).

an improvement over NCEP if A, ycgp = Ppwp(2) — Ppwp(NCEP) > 0. The
pattern correlation coefficient of two spatial fields a and b with grid values a; and b; is
formally the same as the sample correlation coefficient of a pair of time series:

i(a; — a)(b; — b)
V(Sila; —a@)? - Si(bi — b)2)

Here, @ and b are the spatial means of a and b. The denominator features the spatial
standard deviations of a and b.

Pa(b) =

5.4

In this article, the reference a is given by the DWD analyses, while the role of the
second field b is taken over by the NCEP reanalyses, and the RCM simulations with
(sn) and without (nn) nudging of large scales. Unfiltered fields and filtered fields are
compared with each other.

Figure 5.5 shows time series of pcc’s for two sample seasons. The dependency
of the RCM results on the large-scale forcing is apparent in the pressure pcc’s; large
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Figure 5.4: Ratio of standard deviations of medium-pass filtered SLP DWD analyses
/ NCEP reanalyses in percent for DJF 1998/1999 (a) and ratio of standard
deviations of medium-pass filtered SLP DWD analyses / LAM simulation
in percent for DJF 1998/1999 (b).

differences between NCEP and the DWD analyses coincide with even greater differ-
ences between the RCM simulations and the DWD analyses for the unfiltered and the
low-pass filtered fields. This effect is reduced by applying the nudging technique.

For the spatially smooth pressure fields the added value of the RCM simulations is
limited to the medium scales and to the simulation with nudging of large scales. For
air temperature anomalies, the pcc’s of the medium-pass filtered and unfiltered fields
are for the RCM simulations always higher than for the global reanalyses. Because of
high fluctuation in pcc especially for the NCEP reanalyses, a running average with a
length of 4 was applied for better readability of the figure. The largest added values
are apparent again for the medium scales where the regional models were expected to
give the best results. For the pcc of the low-pass filtered fields the conventional RCM
simulation shows a deterioration compared to the NCEP reanalyses. By contrast, when
applying nudging of large scales a small added value is achieved (note that the nudging
is towards the NCEP reanalyses, not towards the DWD analyses).
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Figure 5.5: Left column: 6-hourly time series of SLP pattern correlation coefficients
(PCC) for winter 1998/1999; and right column: Time series of 2m temper-
ature anomalies PCC for summer 1998. Top: for full fields, middle: for
low pass filtered fields, bottom: for medium pass filtered fields.
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These findings are substantiated by Table 5.1, which is listing the mean pcc
Ppwp(NCEP) for full and anomaly fields (i.e., deviations from the time mean fields).
Also, the differences Ay, ncpp and A, ncrp are listed. Positive differences are
given in bold; statistically significant differences are marked with an asterisk.

The mean improvement in SLP for the regional model is 1.4% for winter and 4.1%
for summer in case of nudging of large scales. No added value is provided for the
standard RCM simulation. A similar result is obtained for the SLP anomalies, i.e., for
deviations from the long term mean.

The result is much more encouraging for air temperature. Simulations with nudg-
ing of large scales return significant added value in both seasons for all spatial scales.
When anomalies are considered, large-scale pcc increases by 5.5% and 6.3% in DJF
and JJA, and the medium-scale pcc by 21.5% and even 30.4%. Without nudging of
large scales, no added value is obtained for large scales, but there is a significant in-
crease in terms of medium-scale pcc.

It is emphasised that this analysis describes only one measure of added value.
There may be other useful such measures, and it may be that also in case of the con-
ventional set-up a more pronounced added value emerges from such a measure.

5.5.1. Case studies for selected weather situations

To get an idea of the different patterns that are associated with high and low pcc val-
ues some examples were calculated for near-surface temperature and SLP. Figure 5.6
shows an example of high similarity between the LAM results and the DWD analy-
ses. Shown are anomalies of medium-pass filtered 2m temperature fields for August
30, 1998, 6 a.m.. The upper left panel shows the DWD reference data, the upper right
panel the NCEP reanalyses, the lower left panel the LAM results with nudging of large
scales and the lower right panel the LAM temperatures for the conventional run. Also
plotted are contour lines of unfiltered SLP. This example is a case of better perfor-
mance of the LAMs than NCEP. The medium-scale temperature anomalies pcc’s are
88.1% for the LAM with nudging of large scales and 80.9% without nudging. NCEP
has a pcc of 9.6% for this date. NCEP shows deviations in the temperature pattern for
the Mediterranean area as well as for Scandinavia, England, and Ireland in compari-
son with the analyses. The LAM results are closer to the DWD temperature pattern for
these regions. The pressure fields do not show large deviations between the different
simulations.

Figure 5.7 is an example for higher SLP pcc values for the NCEP reanalyses than
for the LAM results. Again, anomalies of medium-pass filtered 2m temperature are
plotted, this time for June 22, 1998, 6 p.m.. The pressure field of the reanalyses is
closer to the DWD data than the regional simulations. The LAM results show devi-
ations compared to the operational analyses, especially the one without nudging of
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Table 5.1:

Time mean pattern correlation coefficients Ppy p(NCEP) (in %) of pairs
of DWD and NCEP analysed regional fields (middle column), and mean
differences when NCEP is replaced by REMO simulation with (A, ncep)
and without (A, ycrp) nudging of large scales (two right columns). Posi-
tive numbers, given in bold, indicate an improvement over the NCEP reanal-
yses, negative values a deterioration. 95%-significant deviations are marked
by a *.

“Unfiltered” refers to unfiltered fields, “low pass”, and “medium pass” to
filtered fields.

Full fields
var | season field Ppowp(NCEP) | AsuncEp | Dnn.NcEP

SLP | DIJF unfiltered 99.4 -0.7* -2.2%
low pass 99.6 -1.0* -3.4*

medium pass 91.3 1.4%* -1.1%

SLP | JJIA unfiltered 98.0 -2.0% -8.0%*
low pass 98.5 -2.6%* -11.6*

medium pass 84.2 4.1* -0.6

T DJF unfiltered 96.0 1.0%* 0.5*
low pass 95.8 0.8* -0.8%

medium pass 76.9 3.6%* 1.5%

T JIA unfiltered 95.8 1.4% 0.5*
low pass 96.3 0.8* -1.0*

medium pass 65.4 10.4%* 6.1%

Anomaly fields
| var | season | field | Powp(NCEP) | Ay ncep | Aunncep |

SLP | DIJF unfiltered 99.1 -0.9 * -2.9%
low pass 99.3 -1.3* -4.2%

medium pass 89.6 1.0%* -2.0*

SLP | JJA unfiltered 98.3 -1.9% -8.9%
low pass 98.6 -2.7% -12.9*

medium pass 84.9 2.6% -3.0*

T DJF unfiltered 70.7 9.8* 6.2%
low pass 79.2 5.5% -0.5%

medium pass 27.0 21.5% 15.5%

T JJA unfiltered 70.2 13.2* 7.8%
low pass 80.2 6.3* -2.5%

medium pass 36.0 30.4* 24.3*
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Figure 5.6: Anomalies of medium-pass filtered 2m temperature (K) fields (shaded) and
unfiltered SLP isobars (hPa): a) DWD, b) NCEP, ¢) LAM,,,, d) LAM,,,, for

August 30, 1998, 6 a.m..
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Figure 5.7: Anomalies of medium-pass filtered 2m temperature (K) fields (shaded) and
unfiltered SLP isobars (hPa): a) DWD, b) NCEP, ¢c) LAM,,,, d) LAM,,,, for
June 22, 1998, 6 p.m..
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large scales. The pcc values for the unfiltered SLP fields are 98.2% for the NCEP re-
analyses, 97.2% for the LAM with and 60.7% for the LAM without nudging of large
scales. For the LAM simulation without nudging of large scales the influence of the
pressure field on the temperature pattern can be seen for Sweden and the northern
Baltic Sea area as well as for the eastern boundary of the integration domain. A high
pressure system of 1030 hPa was simulated by the regional model that was nonexistent
in the operational analyses. The medium-scale temperature anomalies pattern hence
looks quite different from the DWD data in this area. For the southern part of the in-
tegration domain both LAM simulations are much closer to the operational analyses
than NCEP. The medium-scale temperature anomalies pcc is 29.2% for the NCEP re-
analyses, 57.7% for the LAM with and 36.8% for the LAM without nudging of large
scales. Even though the SLP pattern was best described by the reanalyses, the high-
resolution temperature field was not well interpreted by them. It is reasoned that these
are dynamically induced regional temperature details that could not be resolved by the
coarse-resolution global reanalyses and that additional information could be added by
the RCMs on the spatial scale that was considered.

5.6. Summary and Conclusions

An isotropic digital spatial filter was applied to evaluate and analyse LAM results sep-
arately at different spatial scales. The idea is that regional models mainly add detail
at the specific scale they were constructed for, which means that for detection of an
added value a scale separation of the model results is reasonable. Ratios of standard
deviations of filtered near-surface temperature and SLP fields between regional model
simulations or global reanalyses and an operational analysis were calculated. Hereby,
the LAM showed larger variability than the global reanalyses and its values were com-
parable to those of the reference data set. The result was more distinct for the more
regional quantity near-surface temperature than for the larger scale SLP. As a means
for the skill of the individual simulations, pattern correlation coefficients were com-
puted between the models and the reference analyses. For SLP, an added value can
be found for the regional model simulation in case of nudging of large scales for the
medium-pass filtered results. For the standard RCM simulation this is not possible
with the presented method. Since SLP is a rather large-scale quantity the focus is put
on near-surface temperature in order to detect an added value on the medium scales.
The pattern correlation coefficients between the regional model results and the ref-
erence data are higher than the global reanalyses pattern correlation coefficients for
the unfiltered and the medium-pass filtered temperature fields. With nudging of large
scales an improvement also for the large scales could be achieved. Consistent with the
concept of downscaling, an improvement in the representation of large scales is asso-
ciated with an improvement of the simulation at the medium scales. When the role of
the physiographic detail is less important, as in case of air pressure, the overall added
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value is small; in that case, the RCM has hardly a chance to improve the large-scale
field, as the only relevant factor available is the driving reanalyses. The situation is
different in terms of air temperature, because the regional dynamics of this variable
depends strongly on the physiographic detail. Therefore, the RCM is capable of im-
proving the simulation not only of the medium-scale temperature fields but also of the
large-scale field. By comparing the results for full fields and for anomaly fields, it is
found that the added value is not mainly related to an improvement of time mean fields
but is apparent in the anomalies as well. A maximum improvement is given for tem-
perature anomalies at the medium scales; the regional model run with nudging of large
scales gives a pattern correlation coefficient that is on average more than 30% higher
than the pattern correlation coefficient of the global reanalyses. The results show that
the main achievements of a RCM can be seen at smaller spatial scales while only little
added value is given at the larger scales which are already well resolved in the global
forcing model. Therefore it is proposed to use spatial filters to look at the regional
model results separated into different spatial scales in order to detect additional infor-
mation given by the high-resolution model. The analysis of RCM results separated
into different spatial domains presented in this work revealed significant added value
on the regional scale.
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Chapter 6

Summary and Conclusions

The first, fundamental advancement in regional climate modelling was the develop-
ment of the sponge zone by Davies (1976). It was developed to overcome the noise and
instabilities which were produced by the inconsistencies between the regional model’s
solution and the driving boundary conditions. The installation of the sponge zone ef-
fectively solved this deficiency. Subsequently, another, sometimes serious, issue con-
cerning regional modelling arose. For certain weather conditions or model regions
with a low exchange rate with the surrounding model boundaries, the regional model
tends to develop several, equally probable solutions. This is noteable in ensemble
studies that show intermittently large deviations between the ensemble members for
these periods. For hindcasts this is problematic, as only the solution closest to reality
is desireable. A new regional modelling refinement approach to solve this problem is
presented in this work, namely the nudging of large scales. The large-scale solution of
the regional model is kept close to the driving large scales of the global model. This
way, hindcast deviations not provoked by regional features, but by differing large-scale
weather conditions, are reduced.

Following the idea of looking at model results at certain spatial scales to improve
the model’s performance, a new way of scale-separated model results analysis for de-
tection of added value emerged. Both methods are based on the concept of spatial
scale separation, stating that each climate model has an area of well-resolved spatial
scales and an area of smaller spatial scales that can not be resolved by the model.
The overlapping areas between the driving global model or reanalysis and the regional
model are the ones of interest. First, the model results at the well-resolved large scales
overlapping area of both the global and regional model should be similar, at least for
climate hindcasts and possibly also for scenarios and regional forecasts. Second, the
overlapping area of insufficiently-resolved global model scales and well-resolved re-
gional model scales is the area where the regional model is superior to the global
model and added value should be located on these scales. The technique of spatial
scale separation introduced in this thesis allows for advanced application and analy-
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sis of regional climate modelling. It combines the nudging of large scales and the
spatial filtering technique for analysis of limited-area model results, and improves the
detection possibilities of added value in regional modelling.

To assure that both regional and global simulations are alike on the large scales,
the spectral nudging method was developed. It performs a scale separation and adds
nudging terms to the regional model solution for low wave numbers that have to be
specified according to the confidence level that is put in the global model. So far,
mainly horizontal wind components were nudged starting at a height of 850 hPa to
avoid disturbance of regional surface processes. Nudging of temperature or moisture
would be promising if the quality of the driving model can be assured for these vari-
ables. The nudging coefficient increases in strength with height up to the highest model
level. The nudging terms then pull the regional model solution in the direction of the
global model results for the selected large scales only. The regional scales are left
unchanged.

Ensembles of regional model simulations were computed, five with and five with-
out using spectral nudging. It was demonstrated that nudging of large scales led to
improved wind and wave fields in the regional climate hindcast. In most cases the
ensemble variability was small for both forcing approaches. However, for certain peri-
ods the variability increased dramatically for the ensemble using the standard bound-
ary forcing while remaining small for the spectral nudging ensemble. Comparisons
with station data confirm that the hindcast skill was improved by using nudging of
large scales. The model’s trajectories were in this case, on average, closer to the data
gathered at the analysed locations than the standard boundary-only forced ensemble.

The design of nudging of large scales and the concept of scale separation led to
the idea of analysing climate model results at the scales they were designed for in
order to enhance the detectability of valuable information added by the model. The
assumption is that regional models mainly add detail at the specific scale they were
constructed for, which means that for an added value detection a scale separation would
lead to more explicit results. Spatial discrete, and isotropic filters were developed
to work with a general algorithm with considerable flexibility in the choice of the
appropriate filter response function. When a wave number range of interest has been
selected, an approximation method leads to automatically computed response values.
Effectively scale-separated atmospheric model fields can be used for model evaluation,
comparisons or process studies, as well as for locating added value.

The added value provided by regional models has not been well-explored and fur-
ther studies are needed. By applying isotropic spatial filters, the scale-dependent skill
of a limited-area atmospheric climate simulation was examined. A comparison of ra-
tios of standard deviations between regional model simulations or global reanalyses
and a reference regional operational analysis of filtered near-surface temperature and
sea level pressure was calculated. The computations revealed larger variability as well
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as better agreement with the operational analyses for the regional model simulations
than for the global model. Pattern correlation coefficients (pccs) between the reference
analysis and the model simulations were calculated to test the skills of the individual
model. For the rather large-scale quantity sea level pressure, an added value on the
smaller scales could be detected for the regional simulation using spectral nudging.
For near-surface temperature the pccs between analysis and regional model simula-
tions were higher than for the global model, especially on the smaller scales. Nudging
of large scales also increased the large-scale similarity between analysis and regional
model to a higher value than that of the pccs between analysis and global model. The
added value was not only related to an improvement in the time mean fields, it was
also found in the anomalies.

This thesis addressed the topic of scale separation in regional modelling. The
intention was to encourage further applications and research on both improved model
performance by advancing the spectral nudging approach and on progress with the
relatively unexplored detection of added value in regional modelling. The work was
intended to give new thought-provoking insights for further analysis, validation, and
use of regional climate models.

For future applications an interesting approach would be to use spectral nudging for
the Big Brother Experiment (Denis et al. (2002), BBE). For the BBE, a large domain
(Big Brother) is computed with a regional model, then low-pass filtered and then used
as input for a smaller domain (Little Brother) to compute another simulation with the
same regional model. Both high-resolution simulations can then be compared and
sensitivity studies can be calculated. The advantage is that both simulations use the
same model’s physics and differences can then be mainly attributed to errors associated
with the nesting and downscaling technique. However, the large simulation domain
needed for the Big Brother can lead to great differences between the driving global
model and the regional model at the large scales. This may also happen for weather
conditions with low exchange rates between the model boundaries and the interior.
Spectral nudging might help to reduce the deviations between Little and Big Brother
that were caused by these effects.

While the nudging of large scales has been well established in a number of studies
(Miguez-Macho et al. (2004), Kang et al. (2005), Kanamaru and Kanamitsu (2005)),
new applications should be explored. Additionally, for example, for regional weather
forecasts, spectral nudging might lead to improvements. For weather forecasts, usually
ensembles are computed repeatedly, differing only slightly in their initial conditions.
When the ensemble members converge, a reliable forecast can be given. The nudging
of large scales might reduce the variability that is caused solely by deviations between
driving analyses and regional forecast model at the large scale. Thereby the conver-
gence of ensemble simulations may happen at an earlier stage. But this remains to be
proven by applying spectral nudging to numerical regional weather forecast models.
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For detecting the added value of regional modelling, spatial scale separation of
model results is expected to give clearer results than the analysis of total, unfiltered
model fields. The first encouraging findings were presented in this thesis. For sea
level pressure an added value was extracted at the medium scales for a regional model
simulation with nudging of large scales. A maximum improvement was found for
near-surface temperature anomalies at the medium scales. The pattern correlation
coefficient between a spectrally nudged regional model simulation and observational
analyses was on average more than 30% higher than the pattern correlation coefficient
between the driving global reanalyses and the reference analyses. More model vari-
ables and simulations should be analysed in detail to advance with the research on
added value of regional modelling.
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