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Abstract

Synchrotron-radiation-based computed microtomography (SRμCT) is an established method for 
the examination of volume structures. It allows to measure the x-ray attenuation coefficient of a 
specimen three-dimensionally with a spatial resolution of about one micrometer. In contrast to
conventional x-ray sources (x-ray tubes), the unique properties of synchrotron radiation enable
quantitative measurements that do not suffer from beam-hardening artifacts. During this work the
capabilities for quantitative SRμCT measurements have been further improved by enhancements
that were made to the SRμCT apparatus and to the reconstruction chain. For high-resolution
SRμCT an x-ray camera consisting of luminescent screen (x-ray phosphor), lens system, and
CCD camera was used. A significant suppression of blur that is caused by reflections inside the
luminescent screen could be achieved by application of an absorbing optical coating to the
screen surface. It is shown that blur and ring artifacts in the tomographic reconstructions are
thereby drastically reduced. Furthermore, a robust and objective method for the determination of
the center of rotation in projection data (sinograms) is presented that achieves sub-pixel precision.
By implementation of this method into the reconstruction chain, complete automation of the
reconstruction process has been achieved. Examples of quantitative SRμCT studies conducted at
the Hamburger Synchrotronstrahlungslabor HASYLAB at the Deutsches Elektronen-Synchrotron
DESY are presented and used for the demonstration of the achieved enhancements.

Keywords: quantitative microtomography, synchrotron radiation, SRμCT, center of rotation, tuning-fork

artifact, sinogram, x-ray phosphor, scintillator crystal, luminescent radiation, optical coating, absorbing

backing, backing layer, black backing, reconstruction artifacts, ellipse phantom, friction stir welding,

hydroxyapatite scaffolds, fiberboard, cortical bone



Quantitative Röntgen-Mikrotomographie mit Synchrotronstrahlung

Zusammenfassung

Die Mikrotomographie unter Verwendung von Synchrotronstrahlung (SRμCT) ist eine etablierte
Methode, die die drei-dimensionale Untersuchung des Röntgen-Schwächungskoeffizienten
einer Probe mit einer Ortsauflösung von etwa 1μm ermöglicht. Gegenüber konventionellen
Röntgenröhren ermöglicht der Einsatz der Synchrotronstrahlung quantitative Messungen, die
nicht durch die Strahlaufhärtung (beam hardening) beeinträchtigt werden. Im Rahmen dieser
Arbeit wurden die Möglichkeiten der quantitativen SRμCT-Untersuchung erweitert. Dies konnte
durch Verbesserungen am SRμCT-Aufbau und an der Rekonstruktionskette erreicht werden. Für die
hoch-auflösende SRμCT wurde eine Röntgenkamera, bestehend aus Leuchtschirm, Linsensystem
und CCD-Kamera eingesetzt. Die in diesen Kameras durch Reflektionen im Leuchtschirm ver-
ursachte Unschärfe konnte durch das Aufbringen einer absorbierenden optischen Beschichtung
auf die Leuchtschirmoberfläche deutlich gemindert werden. Es wird gezeigt, dass hierdurch
auch Unschärfe und Ringartefakte in der tomographischen Rekonstruktion drastisch reduziert
werden. Desweiteren wird eine Methode vorgestellt, die es ermöglicht, das Drehzentrum in
gemessenen Projektionsdaten (Sinogrammen) mit Sub-Pixel-Genauigkeit zu bestimmen. Durch
die Implementierung dieser Methode in die Rekonstruktionkette konnte der Rekonstruktions-
prozess vollständig automatisiert werden. Beispiele quantitativer SRμCT-Untersuchungen, die
am Hamburger Synchrotronstrahlungslabor HASYLAB am Deutschen Elektronen-Synchrotron
DESY durchgeführt wurden, werden präsentiert. Anhand dieser Untersuchungen werden die
erzielten Verbesserungen demonstriert.

Manuscript received / Manuskripteingang in TKP:  9. August 2007
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1

Chapter 1

Introduction

X-ray computed tomography (CT) is an established method for cross-sectional and fully three-

dimensional imaging of the internal structure of an object. The first commercial x-ray CT scanner

for medical diagnosis was presented by Hounsfield [81] in 1971. Since then the further develop-

ment of medical CT continued as described in an overview by Natterer and Ritman [109]. Besides

its medical application, x-ray CT has found wide-spread use in industry, e.g., for non-destructive

testing and reverse engineering as well as in many scientific areas. At the microscopic scale CT

is known as microtomography (µCT). The performance ofµCT systems, however, is strongly

limited by the properties of conventional x-ray tube sources, which always require a trade off be-

tween source size (resolution) and intensity (speed). These limitations can be circumvented by the

application of synchrotron radiation as an intense x-ray source.

Synchrotron-radiation-based computed microtomography (SRµCT) was first developed and

applied by Bonseet al. [22], [23] and Flanneryet al. [61] in the mid 1980s. In recent years it

has become available for researchers as a ‘user experiment’ at the continuously growing number

of dedicated synchrotron-radiation laboratories (today about 40 worldwide). SRµCT enables fast,

three-dimensional imaging with about 1µm spatial resolution and has been applied in a wide range

of research studies. The investigated specimens include: bone, teeth, implant materials, small

blood vessels, wood, paper, micro-fossils, rocks, soil, concrete, and metal or polymer foams, to

name only a few examples.

Synchrotron radiation has several fundamental advantages for quantitative CT measurements,

when compared to conventional x-ray tube sources. High intensity and strong collimation of the

synchrotron-radiation beam allow for short scan times and for the application of simple (parallel-

beam) reconstruction techniques. More importantly these characteristics enable the efficient use

of monochromators, which are used to select the photon energy. The photon energy can thus be

optimized for the examination of each sample, and due to the small bandwidth of the resulting

photon spectrum, non-linear effects (beam hardening), that are observed in conventional CT, are

not observed in SRµCT.



2 C 1. I

The determination of quantitative measures from the tomographic reconstructions is known as

quantitative computed tomography (QCT). Here morphological parameters such as distances, ar-

eas, or volumes are extracted from the data or sometimes, simply a precise value of the attenuation

coefficient is determined. With the today available computational power, even more sophisticated

morphological characterization of three-dimensional structures has become possible. Software

packages for three-dimensional image processing and analysis (e.g., ITK, DIPlib, VIGRA, or

MAVI) 1 have become applicable to volumetric data sets of reasonable size and enable, e.g., the

calculation of pore size distributions or the calculation of skeleton models. All these quantitative

CT measurements commonly rely on distortion-free (artifact-free) tomographic reconstructions.

The application of two-dimensional x-ray detectors in SRµCT enables efficient use of the x-

ray flux and allows to reconstruct the three-dimensional volume structure from a single series of

two-dimensional projection images. Today the best x-ray cameras available for SRµCT achieve

spatial resolution of about one micrometer [102]. They consist of a luminescent crystal (x-ray

phosphor) that is lens-coupled to a charge-coupled device (CCD). This type of x-ray camera is

usually also applied in other types of synchrotron-radiation tomography such as phase-contrast

tomography [10], [36] or nano-tomography, which achieves sub-micrometer resolution by the use

of x-ray optical elements such as mirrors, refractive lenses [133], zone plates [156], or Bragg

magnifiers [116],[139]. However, light reflections inside the luminescent crystal cause blur of

a small fraction of light over large distances. This long-range blur, although almost invisible in

the radiographic images, can give rise to blur or even to non-linear effects in the tomographic

reconstruction. Furthermore, inhomogeneities on the surface of the luminescent screen can result

in systematic artifacts (ring artifacts) in the tomographic reconstruction. In this work suppression

of blur in the recorded images is demonstrated physically by application of an optical coating

(black backing) to the luminescent screen and mathematically by correction of the recorded images

(image deconvolution).

With the constantly increasing speed of SRµCT measurements by the application of fast CCD

cameras in combination with high-flux beams (direct wiggler beams [98], direct undulator beams

[44], or beams from monochromators with large bandwidth), the need for fast and automated data

evaluation has become more and more important, but especially the determination of the center of

rotation (position of the sample rotation axis) in the recorded projection data has so far hindered the

automation of the reconstruction. The center of rotation, however, is an important input parameter

for the tomographic reconstruction and must be determined before the reconstructions can be

calculated. The commonly used automated methods were not capable of determining the center

of rotation with the required precision. In this work a robust method for the determination of the

1Examples of 3D image processing and analysis software: ITK - Insight Segmentation and Registration Toolkit,
available online athttp://www.itk.org/. [83]; DIPlib - The Delft Image Processing library, available online at
http://www.ph.tn.tudelft.nl/DIPlib/; VIGRA - Vision with Generic Algorithms, available online athttp:
//kogs-www.informatik.uni-hamburg.de/∼koethe/vigra/; MAVI - Modular Algorithms for Volume Images,
copyright 2004, Fraunhofer Institut für Techno- und Wirtschaftsmathematik, information available online athttp:

//www.itwm.fhg.de/mab/projects/MAVI/ [visited November, 5th 2006].
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center of rotation is presented and compared with two other commonly applied methods (center-

of-mass method, image registration) for both simulated and measured data.

The main goals of this work were to enhance the capabilities of SRµCT for quantitative

measurements and to achieve further automation of SRµCT. The SRµCT apparatus that was

worked on is operated by the GKSS-Research Center Geesthacht at the Hamburger Synchro-

tronstrahlungslabor HASYLAB at the Deutsches Elektronen-Synchrotron DESY. As examples,

four selected studies carried out using SRµCT during this work are presented to demonstrate the

achieved enhancements.

Publications

The method for the determination of the center of rotation was published in [49]. Numerical

calculations on the resolution that can be achieved with the method were recently published in [50].

Several SRµCT studies were performed at HASYLAB during this work in collaboration with

internal (GKSS) and external research groups. Only a selection of these studies is presented in this

work. A number of articles in refereed journals and proceedings that originated from these studies

have been published and are listed below. Publications in HASYLAB annual reports2 are denoted

as reports.

The following studies were performed onnew materials and processes: Material flow in

friction stir welding was investigated (see Section 6.1). Results have been published in [13], [47],

[163], [164], [165] and in the reports [48], [161], [162]. The investigation of the 3D structure

of fiberboard (see Section 6.4) was published in [152] and in the reports [150], [151]. The mor-

phological characterization of porous NiTi alloy used as implant material was performed [123].

Results from the morphometric analysis of polyurethane scaffolds (polymer foams) intended for

the use as biocompatible replacement material were presented in [46] and report [73]. Details

on this study can be found in the PhD thesis of Heijkants [74]. The study of Ti-6Al-4V alloy

metal foams prepared at the GKSS was presented in [13] and report [45]. Further studies so far

presented in reports, included the study of root flaw in friction stir welds [149], the measurement

of the corrosion of Mg alloys [59], [60], [159], the study of cobalt/diamond composites [39], the

impact effects of space debris on Kapton polymers [147], the morphology of bone replacement

materials [141], and the pore structure of Al foam [29].

The following studies were performed onmedical or biological specimens: The functional

morphology of sponges (Tethya species) has been investigated with SRµCT [112], [113] and the x-

ray camera was also used for in vivo x-ray microimaging of the sponges [114]. Preliminary results

of these studies were presented in reports [110] and [111]. The morphological characterization of

biominerals (snails, statoliths, human teeth) was presented in [124] and in report [122]. The gravity

2HASYLAB annual reports are available online at:http://www-hasylab.desy.de/science/annual
reports/main.htm [visited November, 5th 2006].
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sensing organs in jellyfish were visualized and the location of statoliths determined [9]. The bone

structure around dental implants was studied and the SRµCT reconstructions were compared with

the data of conventional CT measurements in [35] and in reports [33] and [34]. Further studies so

far presented in reports included the investigation of the architecture of osteoporotic bone [143],

the investigation on neurological structures in a honeybee head [97], and the pore space analysis

of soil aggregates [118].

The new stations for SR tomography at the HARWI-II beamline of GKSS at HASYLAB,

DESY and the neutron tomography station GENRA-3 at GKSS were presented in [14], [15], [16],

and [17].
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Chapter 2

Instruments and methods:

Microradiography

2.1 Synchrotron radiation source

Under acceleration charged particles emit electromagnetic radiation, which in the case of rela-

tivistic charged particles and acceleration by magnetic fields is called synchrotron radiation. The

emission of synchrotron radiation is the cause of a significant energy loss in accelerators built

for high-energy (particle) physics experiments and limits the achievable particle energies in circu-

lar accelerators. At specific synchrotron radiation laboratories, however, the emitted synchrotron

radiation can be usefully applied and serves as a photon source with excellent properties.

At synchrotron radiation laboratories electrons (or equivalently positrons) are stored in bun-

ches inside a vacuum ring (storage ring) and forced to travel in a closed loop by strong magnetic

fields. This acceleration of the particles perpendicular to their travel direction causes the emis-

sion of synchrotron radiation. As an effect of relativity the radiation is emitted into an extremely

forward-pointing cone of radiation as schematically shown in Figure 2.1. The half opening angle

of the emission cone in the horizontal plane of emissionθx and in the vertical planeθz is approxi-

mately given by

θx ≈ γ−1 (2.1)

θz ≈ 0.565γ−1
(
λ

λc

)0.425

for 0.2 <
λ

λc
< 100 , (2.2)

with the Lorentz factorγ = Ee
mec2 , whereEe is the energy of the electron andmec2 = 511 keV is the

rest energy of the electron. The parameterλc is the critical wavelength given by

λc[Å] ≈ 5.59
R[m]

Ee[GeV]
(2.3)
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Synchrotron-radiation
cone

Storage
ring

Electron bunch

Figure 2.1: Schematic representation of the electron bunches inside the vacuum pipe of the storage ring.
The bunches travel with a velocity close to the speed of light. Upon acceleration by ring magnets, the
electrons emit synchrotron radiation into a strongly forward-peaked cone.

and separates the photon spectrum into two parts of equal power. HereR is the bending radius of

the electron orbit. The very small divergence described byθx andθz of the photon beam makes

synchrotron radiation the brightest known source for x-rays.

Wigglers and undulators are employed for a further amplification of the generated intensity.

These so-called ‘insertion devices’ are periodic magnetic structures that are placed in straight

sections of the storage rings and cause an oscillation of the electron beam. The wiggler and

undulator parameter is defined as

K = λ0 B0
e

2πmec
= 0.0934λ0[mm] B0[T] (2.4)

with λ0 the field period andB0 the maximum of the magnetic flux. The maximum angular devia-

tion θw of the electron motion from the electron orbit is given by

θw = Kγ−1 . (2.5)

The distinction between wigglers and undulators is made by theK parameter. Devices withK > 1

are called wigglers, while devices withK < 1 are called undulators.

The bending in undulators is weak, whereby emission from the subsequent wiggler periods

occurs coherently and the emitted radiation becomes quasi monochromatic. Radiation from bend-

ing magnets and wigglers has a broad intensity spectrum. A small energy band from the radiation

is typically selected by single crystals using Bragg reflection. E.g., for the Si(111) reflex of si-

licon in symmetric Bragg geometry the bandwidth is∆E/E ≈ 1.33× 10−4 (taken from Authier

[3]). Larger bandwidth can be achieved by the application of tempered crystals, bent crystals, or

multilayer devices as monochromator crystals.

More details on the generation of synchrotron radiation by bending magnets, wigglers, and

undulators can, e.g., be found in the books by Wille [158] and Jackson [87].
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2.1.1 DORIS III of HASYLAB

The measurements presented in this work were carried out at the DORIS storage ring of the

Hamburger Synchrotronstrahlungslabor (HASYLAB) at the Deutsches Elektronen-Synchrotron

(DESY). DORIS1 was built between 1969 and 1974 as an electron-positron storage ring for colli-

sion experiments at particle energies of 3.5 GeV. HASYLAB was opened in 1980 for the applica-

tion of synchrotron radiation for research. While in the beginning DORIS was used only one third

of the time as a radiation source, from 1993 on the storage-ring solely served that purpose under

the name DORIS III.

Today HASYLAB has 42 experimental stations and DORIS III is operated with positrons (e+)

of energy 4.45 GeV that circulate in the ring in usually five packets (bunches) as schematically

shown in Figure 2.1. The circumference of the ring is∼300 m, the bunch length at DORIS is

∼120 ps and the distance between two bunches in 5-bunch mode is∼193 ns. During operation the

storage ring current and thus the beam intensity decays exponentially from typically 140 mA to

90 mA within the run duration of about 8 hours.

2.1.2 Beamlines W2 and BW2

All measurements presented in this work were carried out at HASYLAB beamlines BW2 and

W2, which both are wiggler sources. The measurements at beamline W2 that are presented were

performed before refurbishment of the beamline and installation of a new wiggler in 2005. The

old setup of beamline W2 will be referred to in the text as ‘W2 (old HARWI)’.

The technical parameters ofbeamline BW2were described by Drubeet al.[51].2 The double-

crystal monochromator shown schematically in Figure 2.2(a) is set up in a fixed-exit Bragg geom-

etry and uses the Si(111) reflex. The first monochromator crystal in use at beamline BW2 has to

withstand the heat load of the incident white beam. The high-heat-load monochromator design

that was described by Schulte-Schreppinget al. [134] is used for adaptive compensation of the oc-

curring mechanical crystal bowing. A pair of gold-coated mirrors is available at the BW2 beamline

for total reflection of the beam and can be introduced as a low-pass filter. The mirrors were not

applied for the measurement presented in this work. Due to the exponentially decaying beam

current, the heat load constantly changes over time, which in turn effects the crystal bending and

thus the beam profile. Therefore, the beam profile is constantly measured for normalization of the

recorded projection images. The monochromator parameters are adjusted during the measurement

if necessary.

The technical details of the wiggler atbeamline W2 (old HARWI) have been described by

Graeff et al. [67]. At this beamline a double-crystal monochromator in Laue geometry shown in

1DORIS – Doppel-Ring-Speicher (‘double storage ring’)
2Data of HASYLAB beamline BW2 is available online at:http://www-hasylab.desy.de/facility/

experimental stations/BW2/BW2 new.html [visited June, 10th 2006].
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(b) W2 (old HARWI)

(a) BW2

SR source

SR source

Si(111)

Si(111)

Si(111)

Si(111)

(c)

Figure 2.2: Scheme of the monochromator setup at HASYLAB wiggler beamlines BW2 and W2 (old
HARWI). (a) Beamline BW2: fixed exit Si(111) double-crystal monochromator in Bragg geometry. (b)
Beamline W2 (old HARWI): fixed exit Si(111) double-crystal monochromator in bent-Laue geometry. (c)
Overview of stations at DORIS III.

Figure 2.2(b) was used for the tomography measurements. The monochromator comprised of two

asymmetrically cut silicon crystals using Bragg reflection at the Si(111)-plane with the reflection

plane tilted by 35.26o with respect to the crystals’ surface normals. The crystals were 112×22 mm

in total size and their active part was 0.6 mm thick and 11 mm high. The crystals could be bent

for vertical focusing and were set to a defocussed position for the tomography measurements,

whereby a vertical beam size of about 4 mm was obtained at the sample position. The principle

of the bent monochromator crystals was described by Illinget al. [85]. Crystal bending relaxes

the Bragg condition, whereby the energy bandwidth of the beam is increased asδE/E ∝ T/ρ,

whereT is the crystal thickness andρ is the bending radius (compare Illinget al. [85, Equation

(3)]). Hereby, a significant increase in the photon flux is obtained. The heat-load problem for the

first monochromator crystal in Laue geometry is much less eminent than for the Bragg geometry.

Efficient cooling becomes at the same time more difficult and was provided from the upper and

lower side of the crystal (compare Lohmannet al. [99]).

Table 2.1 summarizes the parameters of beamlines BW2 and W2 (old HARWI). Also, the

integrated flux from the wiggler and the flux for photon energies of 10, 20, and 40 keV was

calculated using XOP3 and is given. Note that the horizontal and vertical source sizes of the

positron beamσx andσz given in Table 2.1 generally differ from the effective source size that is

seen from the sample position. The effective source size depends on the positron beam path and

the optical elements of the beamline. A pinhole measurement was carried out at beamline BW2 to

3XOP 2.1 - X-ray Oriented Programs. Authors: Manuel Sanchez del Rio and Roger J. Dejus. The software is online
available at:http://www.esrf.fr/computing/scientific/xop/ [visited July, 1st 2006]
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Table 2.1: Source characteristics of beamlines BW2 and W2 (old HARWI).

Parameter Unit BW2 W2 (old HARWI)

Positron energyEe GeV 4.45
Positron current mA 140 – 70
Source size (hor.)σx

d mm 2.220 1.797
Source size (vert.)σz

dmm 0.509 0.514

Wiggler period cm 14.0 24.0
Number of periods 28 (56 poles) 10 (20 poles)
Wiggler gap (variable)mm 45 30
B0 T 0.69 1.26
K 9.0 28.2
L m ∼35 ∼35
Ec

a keV 9.1 16.6
Total powera W/mA 23 48
Integrated fluxa,b ph/s/mm2 5.5× 1015 2.0× 1015

Flux at 10 keVa,b,c ph/s/mm2/(0.1% BW) 1.7× 1012 6.1× 1011

Flux at 20 keVa,b,c ph/s/mm2/(0.1% BW) 1.0× 1012 5.9× 1011

Flux at 40 keVa,b,c ph/s/mm2/(0.1% BW) 3.4× 1010 1.4× 1011

Monochromator (MC) double-crystal double-crystal
Si(111), Bragg, Si(111), bent Laue,

in vacuum in vacuum
MC-to-sample dist. ∼10 m ∼5 m

Beam size (typ.) mm 10× 3 20× 4
Energy range keV 8 – 24 15 – 60
aCalculated with XOP (see text).
bFlux at sample position through a central 1× 1 mm aperture at 100 mA ring current.
cBW is the bandwidth given by the full width of the half maximum of the flux spectrum.
dValues from:http://www-hasylab.desy.de/facility/doris/beamsizes.htm [visited June, 10th 2006].

estimate the influence of source size and beam divergence on the tomography measurements and

showed that this influence is negligible (compare Appendix D.7).

2.2 Microtomography apparatus

The microtomography apparatus that was used for this thesis was originally designed and

constructed in the group of Prof. Bonse at the University of Dortmund. Operation and further de-

velopment of the apparatus continued at HASYLAB/DESY and since 2003 at the GKSS outstation

at HASYLAB/DESY. A description of the original setup was presented by Bonse and Busch [23]

and in the PhD thesis of Beckmann [11]. The implementation of a fast horizontal sample trans-

lation stage was described by Crostacket al. [38]. Also during this work, several enhancements

to the apparatus have been made, one of which is the implementation of a continuously rotating

sample stage (see Section 2.2.1).
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Figure 2.3: CAD 3D model of the tomography apparatus. The front covers have been made transparent
to allow for the view onto the apparatus interior: luminescent screen holder (blue), objective (orange), and
CCD camera (red). The x-ray beam (yellow) and the luminescence light (green) have been inserted into the
drawing. The rotation axis can slide on the rails (light blue) for the measurement of reference images. The
two CANbus/bluetooth interfaces (black) have replaced cable connections. Drawing by J. Fischer.

Figure 2.3 shows a CAD 3D model of the microtomography apparatus. The apparatus mainly

consists of a two-dimensional x-ray detector (x-ray camera), that is described in detail in Section

2.2.2, and the sample manipulator stage with the sample rotation axis. Furthermore, it contains

several translations, rotations, and sensors that enable the alignment of rotation axis, detector, and

sample. The sample rotation axis is oriented vertically. Prior to the measurement samples are

glued to sample holders, which are then attached to the bottom of the sample stage. This geometry

allows to investigate samples in a liquid medium, which is essential for interferometric phase

contrast microtomography, for which the apparatus was originally designed (see Beckmannet al.

[10] and Bonseet al. [24]). For attenuation contrast tomography the liquid medium is sometimes

used to prevent biological samples from drying.

The apparatus is used for measurements in the photon-energy range from 8 to about 80 keV,

which allows for the examination of low-density components as polymers as well as high-density

components of higher atomic number. The resolution of the CCD-camera in the horizontal plane

(1536 pixels) defines the typical size of the tomographic reconstruction grid of 1536×1536 pixels.

The maximum field of view of the x-ray camera and, correspondingly, the maximum sample di-

ameter that can be investigated is∼15 mm (or∼30 mm in ‘360deg mode’, see Appendix D.2). The

minimum field of view of the x-ray camera has a width of∼2.3 mm. Smaller samples can be inves-

tigated with reduced number of pixels. A detailed description of the alignment and measurement

procedure is given in Appendix D.



2.2. M  11

2.2.1 Mechanical components

While the camera remains locally fixed with respect to the synchrotron radiation beam, the

sample manipulator stage provides the sample rotation needed for realization of different projec-

tion anglesθ as well as the horizontal translation of the sample to an out-of-beam position that is

needed for the measurement of reference images. The entire rotation axis is driven by a stepper

motor on rails from the in-beam-position to an out-of-beam position. The in-beam position is de-

fined by the contact point of a motor-driven micrometer screw with a metal plate. Adjustment of

the micrometer screw is used for positioning of the rotation axis (center of rotation) relative to the

detector. Normally, the center of rotation should be in the center of the recorded images (compare

Appendix D.2). This allows to make optimal use of the detectors field of view, i.e., examination

of samples with a maximum sample diameter.

Sample rotation (rotation axisθ) is provided by a selected goniometer, model 410 by supplier

Hans Huber AG4, that is equipped with an extra translation along the rotation axis. The translation

along the rotation axis (z-direction) is used for sample positioning for scanning the sample in

stacked scans (see Appendix D.2). The precision of goniometer rotation is typically described

by eccentricity and wobble. Eccentricity, also called concentricity, defines the deviation of the

center of rotation from its mean position. Wobble is defined as the angular deviation of the axis of

rotation over one revolution. The specification of our goniometer is: eccentricity<2µm, wobble

<0.002o = 3.49× 10−5 rad.

An xy-translation stage mounted below the goniometer allows to center the sample with re-

spect to the rotation axis. In order to free the xy-translation from cables that prohibit continuous

rotation, a cable-free rotation platform has been designed and implemented recently. The details

have been described by Fischeret al. [60]. The rotation platform carries the motor controllers for

the xy-translation stage and rotates together with the goniometer. The motor controllers are CAN-

bus devices5 that are controlled via a cable-less CAN-Bluetooth/Bluetooth-CAN bridge. Power is

provided via sliding contacts to the rotation platform.

A slit system and an x-ray shutter (not shown in Figure 2.3) are installed at the entrance of the

x-ray apparatus. The slit system reduces the x-ray beam in size to the field of view of the camera

to avoid stray radiation, while the x-ray shutter protects the sample during CCD readout from the

incident beam and, thereby, reduces the accumulated dose to the sample.

4Online: http://www.xhuber.com/en/positioning/circle/400/410/410.htm [visited November, 5th
2006].

5CAN-stepcon-1h controllers supplied by ESD Electronics, Hannover, online:www.esd-electronics.com [visi-
ted November, 5th 2006].
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2.2.2 X-ray camera

This section describes the design of the high-resolution, lens-coupled x-ray camera that has

been used throughout this work. Its main components are: luminescent screen,6 lens system, and

CCD camera. A summary of the component characteristics in tabular form is given in Appendix G.

We shall limit our discussion to the applied type of x-ray camera. Different detector concepts

for x-ray microradiography have been developed and were reviewed by Gruneret al. [70]. Mar-

tin and Koch [102] summarized recent developments in x-ray imaging with micrometer spatial

resolution including a discussion on potential scintillator materials.

The x-ray camera is shown schematically in Figure 2.4. The impinging x-rays are absorbed

in the luminescent screen, and a fraction of the absorbed x-ray energy is converted into visible

light. This process is called luminescence.7 The light distribution generated in the luminescent

screen is imaged by a lens system onto a charge-coupled device (CCD) camera. The magnification

factorm is determined by the screen-to-lens and lens-to-CCD distance and can be calculated from

the formulas of lens imaging. A continuous range of optical magnification factorsm in the range

m= 0.7 – 6.0 can be realized by translation of lens and CCD camera along the optical axis of the

system. The edge length of a CCD pixelτCCD = 9µm thus corresponds to an effective pixel size

(sampling distance) of between 1.5µm for m = 6.0 and 12.8µm for m = 0.7 on the luminescent

screen. This corresponds to a field of view between 2.3 × 1.5 mm and 19.7 × 13.2 mm for the

x-ray camera.

The x-rays from the synchrotron radiation source can be considered to be parallel, and they

enter the luminescent screen under normal incidence. Therefore, the light intensity distribution

can be regarded as a two-dimensional image that decays exponentially in intensity in the third

dimension with increasing distance from the crystal surface. For a thick crystal, which is much

thicker than the attenuation lengthµ−1, the radiation is almost entirely absorbed, and the average

plane of light generation is at a distance below the crystal surface that is equal to the attenuation

length.

Luminescent screen, lens system, and CCD camera are mounted in in-line geometry, i.e., the

center of all components lies on the same optical axis. Therefore, penetration of high energy x-rays

through the system onto the CCD is possible and must be avoided. The direct interaction of x-rays

with the CCD would result in an undesired massive local creation of charge carriers (bright pixels)

and might harm the CCD. However, at energies of up to 60 keV the attenuation length of CdWO4

is still below 350µm. The direct x-rays will thus be almost entirely absorbed in the luminescent

crystal or in the lens system. When a relevant amount of high energetic radiation entered the

6The terms ‘luminescent screen’, ‘phosphor’, or ‘scintillator’ are often used for the x-ray luminescent materials
applied in x-ray imaging. Some authors use the term ‘x-ray phosphor’ when the application requires a powder screen,
and the term ‘scintillator’ when a single crystal is applied [20, Chapter 8].

7Note, the general term ‘luminescence’ and ‘luminescent screen’ is used in this work to avoid wrong use of the
terms ‘fluorescence’ or ‘phosphorescence’, which describe specific physical processes. The difference has been pointed
out by Blasse [20, Appendix 3].



2.2. M  13

CCD camera with
optical shutter

lens system
with aperture

luminescent
screen

x-rays

entrance
window

light-tight,
black housing

Figure 2.4: Scheme of the x-ray camera: The incident x-ray beam is absorbed by the luminescent screen
and partly converted into visible light. The lens system (objective) images the luminescent light onto the
CCD camera, where an inverted image is created. Translation of lens and CCD camera along the optical
axis allows to set the optical magnification factorm.

lens system over a longer period, the development of haze on the objectives was observed, which

might influence the point spread function of the system (see Appendix B.1 with Figure B.1). For

measurements at photon energies above 60 keV the CCD must be protected from the incident x-

ray beam. For this purpose a mirror system and an absorber can be installed in the gap between

the luminescent screen and the lens system (see Beckmannet al. [12]).

The whole system is assembled in a case with blackened surfaces, in order to protect the system

from external light sources and to minimize straylight. The otherwise transparent luminescent

screen is protected against light by the layer of black lacquer paint that was introduced in this

work (see Chapter 4) and additionally by black Kaptonr foil. The so formed x-ray entrance

window is largely transparent for x-rays of photon energy above 8 keV.

As luminescent screenCdWO4 single crystals of different thickness (0.080 – 1.0 mm) were

used during this work. The CdWO4 crystals have polished surfaces and are optically clear. They

are mounted in a specially fabricated crystal holder that ensures parallel orientation of the crystal

relative to the system’s optical axis. The luminescent screens can be exchanged quickly together

with the entire crystal holder. It was observed that the crystals develop surface defects upon

continuous x-ray exposure over several days. Presumably, these defects are induced by chemical

reactions with the surrounding air, but the mechanism of defect creation has not been identified

yet. For protection of the crystals a new holder was designed that allows for the application of a

scavenging gas. Helium, which is available at the beamlines, is used for this purpose. In this work

a light-absorbing coating was introduced that is directly applied to the luminescent crystals for the

suppression of internal reflections. The optical properties of the backing layer of black lacquer

paint will be discussed in detail in Chapter 4.

As lens system, either of two objectives (photographic lenses) from Nikon with focal lengthes

of 35 mm and 50 mm, can be mounted in the x-ray camera. The objectives are operated in retro-
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focus position, i.e., the side that normally faces the photographic film now faces the luminescent

screen. Apertures inside the objectives are used to control light flux and resolution. The aperture

opening is described by the f-number (designated byk, while f is the focal length) and adjusted

to obtain an optimum trade off between collected light intensity and spatial resolution.

TheCCD camera(model: KX2, Apogee Instruments) has an active area of 1536×1024 pixels

with a pixel size of 9× 9µm. An optical iris shutter is part of the camera and protects the CCD

from exposure during readout. To suppress thermal noise the CCD is operated at -15oC. Cooling

is provided by a Peltier element inside the camera and an external water cooling circuit. The

camera digitizes with 14 bit resolution at a rate of 1.3 MHz and with a true dynamic range of 12.7

bits. The gain factor of the CCD is fixed atg = 5. The exposure time of the CCD camera can be as

low as 0.03 seconds and is typically chosen in the range between 0.2 and 10.0 seconds. Readout of

a full-frame CCD image requires∼1.2 seconds. The CCD camera allows for the selection of sub-

frames and enables on-chip binning. With on-chip binning the accumulated charge contained in

several CCD wells (pixels) is combined before digitization. Both sub-frame selection and binning

reduce the readout time accordingly. The influence of binning on the tomographic reconstruction

is discussed in Section 3.3.4. The necessary calibration of the recorded CCD images is discussed

in Appendix D.5.

2.3 Statistical characteristics of the x-ray camera

Quantum efficiency (QE), detective quantum efficiency (DQE), and dynamic range (DR) de-

scribe the statistical characteristics of imaging systems. These quantities are closely related to the

quality of the recorded images, which is typically characterized by noise level and signal-to-noise

ratio (SNR) in the images. We shall first define all of these quantities in Section 2.3.1. Thereafter,

in Section 2.3.2 we derive the quantum efficiency of our x-ray camera from the efficiencies of the

individual components and processes. The derived efficiencies are used to express the DQE in

Section 2.3.3 and noise, signal-to-noise ratio (SNR), and dynamic range (DR) in Section 2.3.4.

2.3.1 Definitions

The noise level is used to describe statistical fluctuations of a noisy signals and is defined as

σ =

√
(∆s)2 =

√
(s− s)2 , (2.6)

wheres is the average of the signal and(∆s)2 is the signal variance. The relative error in the

measurement of signals is described by the signal-to-noise ratio defined as

SNR=
s
σ
. (2.7)
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The quantum efficiency (also: responsive quantum efficiency [40]) of a system is defined as

the ratio

QE=
Nout

Nin

, (2.8)

whereNout andNin are the average number of events at the output and at the input of the system

andNout, Nin are quantized signals. For a detectorNout has to be understood as the number of

counted (detected) quanta. The quantum efficiency links the input with the output numbers in

quantity but not in quality.

To describe the change of signal quality the detective quantum efficiency8 (DQE) of a system

is introduced as

DQE=
SNR2

out

SNR2
in

. (2.9)

Here SNRout and SNRin are the signal-to-noise ratios of the incoming signal and the outgoing (or

detected) signal respectively. The DQE describes the degradation of the signal-to-noise ratio by

the system. An ideal detector has DQE= 1, whereas any real detector introduces noise in the

measured signal and has DQE≤ 1. The quantum efficiency defined in Equation (2.8) can be much

higher than unity at the same time.

For example, an input signal that is Poisson distributed with averageNin and variance(∆Nin)2 =

Nin has a signal-to-noise ratio SNRin given by SNR2
in = N

2
in/Nin = Nin. For the signal-to-

noise ratio of the output signal we know from the definition of the DQE in Equation (2.9) that

SNR2
out ≤ Nin, as if it was due to a Poisson-distributed signal with less quanta than the original

signal. For this reason SNR2 is also referred to as the noise equivalent quanta (NEQ), since for

any distribution it gives the equivalent average number of quanta, a Poisson process of the same

signal-to-noise ratio would have.

So far, we have described the signal in every pixel of an image individually and neglected

possible correlations. However, the DQE for an imaging system can also be introduced more gen-

erally as a function of spatial frequency DQE(u, v). For a system like ours, with amplification and

scattering (blur), the DQE(u, v) was theoretically calculated by Rabbaniet al. [126, Eqs. (39,41)].

The DQE(u, v) describes correlations that are introduced into the noise of the output signal, due to

the amplification in the system. For our systems, with low amplification [γ ≈ 0.01, see Equation

(2.12)], the correlation introduced by the system is negligible. Therefore, we omit the introduction

of this quantity and describe the system by the scalar DQE introduced above, which is related to

its frequency-dependent counterpart by DQE= DQE(0,0).

The capacity of a detector limits the signal quality that can be obtained in a single measure-

ment. The dynamic range (DR) of the detector system can be defined as

DR =
smax

s(SNR=1)
, (2.10)

8According to Dainty [40], the concept of DQE was first proposed by Rose in 1946.
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Table 2.2: Contributions to the quantum efficiency of the x-ray camera.

Description Symbol Value Definiton

Absorption efficiency for x-rays εabs ∼1.0 Eq. (2.15)
Luminescence photons per absorbed x-rayνlum (∼272)a Eq. (2.16)
Transmission efficiency, luminescent screenεt,ls 0.84 Eq. (2.20)
Light collection efficiency εcoll (∼2.33×10−4)b Eq. (2.17)
Transmission efficiency, objective εt,ob j 0.93 App. G
Transmission efficiency, CCD cover glass εt,cov 0.90 Eq. (2.20)
Spectrally-weighted CCD efficiency εccd 0.22 Eq. (2.21)

X-ray camera quantum efficiency 9.80×10−3 Eq. (2.13)
aCalculated for x-ray photons of energyE0 = 20 keV.
bCalculated forf = 35 mm,m= 1, andk = 3.56.

and describes the number of resolvable quantization steps of the detector. Heresmax is the max-

imum signal that can be recorded before the detector goes into saturation, ands(SNR=1) is the

signal with SNR= 1, i.e., the smallest resolvable signal. For systems with signal-independent

noise levelσ the dynamic range, thus, simplifies to

DR =
smax

σ
, (2.11)

which corresponds to the SNR of the maximum signal. The noise of the detector system alone,

e.g., the electronic readout noise of a CCD chip, is often signal independent. In this case, the

DR is well defined by Equations (2.10) and (2.11). Ifσ depends on the signal, e.g., when the

photon noise is understood as part of the camera system, the DR defined in Equation (2.10) gives

an optimistic estimate of the number of resolvable quantization steps. Other definitions of the DR

exist that are sometimes used in this case.

The dynamic range can be specified in different forms. It is often given as the ratio in Equation

(2.10), the value in Dezibel as 20 log10(DR), or in units of bits (exponent of two) as log2(DR) =

log10(DR)/ log10(2). Values are given in Appendix G for the CCD of our x-ray camera.

2.3.2 QE of the x-ray camera and its components

The average number of electronic charge quantaN that are detected by the CCD, when the

average ofN0 x-ray photons are impinging, is given by

N = εccdεt,covεt,ls εt,ob j εcoll νlum︸                            ︷︷                            ︸
γ

εabsN0 . (2.12)

Here the factorsεccd, εt,cov, εt,ls, εt,ob j, εcoll, νlum, andεabs are the quantum efficiencies of the indi-

vidual processes that take place inside the x-ray camera. An overview of all processes that will be

described in detail below is given in Table 2.2. The quantityγ that is defined in Equation (2.12)
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gives the average number of detected luminescence photons per absorbed x-ray and is a charac-

teristic system parameter. We will be able to express the signal-to-noise ratio and the detective

quantum efficiency of our system as a function of the two parametersγ andεabs below.

The quantum efficiency was defined in Equation (2.8) as the ratio of output to input events.

From Equation (2.12) we thus obtain for the quantum efficiency of our x-ray camera

QE=
N

N0

= γ εabs , (2.13)

which is simply the product of the quantum efficiencies of the individual processes. A large

number of generated luminescence photonsνlum and a high photon collection efficiencyεabs can

result in a QE above unity. This will, however, not necessarily result in increased signal quality as

is further discussed in Section 2.3.4.

Note that the QE in Equation (2.13) is given for the average number of collected charge quanta

in the CCD and not for the CCD output signal. The average CCD output signalNADU in units of

the analog-to-digital converter units (ADU) is related to the number of charge quantaN through

NADU = g−1N , (2.14)

whereg is the CCD gain factor in units of [e−/ADU].

The quantum efficiency of the x-ray camera was calculated for a typical camera setting at

photon energyEph = 20 keV and with magnification factorm = 1. The resulting efficiencies

are given in Table 2.2. The quantum efficiency of the x-ray camera for this setting is QE≈

9.80× 10−3 ≈ 1%. Together with the CCD gain factor ofg = 5 this results in an average CCD

signal of 0.002 ADU per incident x-ray photon.

We will now derive the quantum efficiency for individual processes of the x-ray camera.

Absorption and conversion efficiency of the luminescent screen:εabs and νlum

The quantum efficiency of the luminescent screen for x-ray-to-light conversion is characterized

by two parameters, the absorption efficiency for x-raysεabs inside the screen and by the average

number of light quantaνlum generated in the luminescent process per absorbed x-ray photon. The

quantum efficiency is given by the product of the two parameters.

The absorption efficiency is given by the probability for photoelectric absorption of x-ray

photons in the luminescent screen. It is (neglecting other interaction mechanisms as elastic or

Compton scattering, compare Appendix A) given by

εabs= 1− exp(−µtotd) , (2.15)

whereµtot is the total attenuation coefficient of the luminescent screen material andd is the screen
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Figure 2.5: Attenuation lengthµ−1
tot in CdWO4 as a function of photon energy, withµtot the total attenuation

coefficient. The absorption edges are labeled with the corresponding electron shells and their binding
energies in units of keV. Data calculated from the tables of Plechatyet al. [119].

thickness. The absorption efficiency is close to unity, as long asd > µ−1
tot, where the inverse of the

attenuation coefficientµ−1
tot is the attenuation length. The attenuation length is a strong function of

the (x-ray) photon energy, which is plotted for CdWO4 in Figure 2.5.

Example:For a photon energy of 40 keV and a screen thickness ofd = 200µm the attenuation

length becomesµ−1
tot ≈ 100µm and the resulting absorption efficiency isεabs≈ 1− e−2 ≈ 0.86.

An x-ray photon of energyE0 generates on the averageνlum luminescence photons (visible

light) with an average energy ofElum. The conversion efficiencyεconv of the luminescent screen is

defined through the equation

νlum = εconv
E0

Elum
. (2.16)

Experimentally determined values for the conversion efficiency of CdWO4 have been dis-

cussed by Busch [31] and a recent comparison of scintillator materials for medical imaging was

presented by van Eijk [146]. Busch used the valueεconv=0.034 in his calculations. The crystal

supplier Saint-Gobain specifies the light yield for CdWO4 asνlum = x/[keV] with x in the range

12 to 15. For comparison Busch’s valueεconv=0.034 and assuming 500 nm luminescent radiation,

which corresponds to the photon energyElum = 2.5 eV, results inx = 13.6, and is thus in the same

range. The value cited by van Eijk differs slightly and corresponds tox = 20.0. Nagornaya [107]

recently reported a similar value ofx = 19.5 for high-quality CdWO4 single crystals with low

absorption. We shall use the valueεconv=0.034 given by Busch as an estimate for the following

calculations.
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The probability distribution of the number of generated photons is discussed by Moses [105].

For simplicity we will assume the variance of a Poisson distributed signal in the calculation of the

detective quantum efficiency.

Light collection efficiency: εcoll

Only a small fraction of all luminescence photons generated inside the luminescent screen

enter the aperture opening of the objective. In addition to the geometrical limit the high refractive

index of the luminescent crystal further reduces the collection efficiency. This is due to the increase

in the divergence of the luminescent light, as the light leaves the crystal.

The accepted fraction of light was calculated by Busch [31] assuming an isotropic angular

distribution of luminescence photons. The gap between luminescent screen and objective was

assumed to be filled with air, with refractive indexn ≈ 1. Busch’s result is correct except for a

missing factor of two. The corrected calculation is presented in Appendix C.1 of this work.

The resulting light collection efficiency [Equation (C.5)] is given by

εcoll ≈

[
1

4nls

m
k(m+ 1)

]2

, (2.17)

wherem is the magnification factor,nls is the refractive index of the luminescent screen andk is

the f-number of the objective given byk = f /D, with the focal lengthf and the pupil diameterD.

Equation (2.17) can also be expressed in terms of the numerical apertureA [Equation (C.8)] as

εcoll ≈

(
A

2nls

)2

. (2.18)

The numerical aperture is defined asA = n sinα, wheren is the refractive index in the space

between object and lens andα is the half-opening angle of the light cone that is accepted by the

aperture. For typical settings of our system the numerical aperture is small and the collection

efficiencies in the above equations are valid approximations. The exact forms of both formulas are

given as Equations (C.4) and (C.7) in Appendix C.1.

The higher the magnification factorm in Equation (2.17), the higher is the collection efficiency

εcoll, which may be somewhat counterintuitive. This effect is due to the fact that for increas-

ing magnification the objective comes closer to the luminescent screen, whereby the numerical

aperture increases. Note that at the same time the flux (photons/area/time) decreases with the

magnification factorm asm−2. Thus, the measured intensity per pixel will decrease as expected.

The measurements presented in this work were mostly carried out with the 35 mm objective

and with aperture openings corresponding to either f-numberk = 3.56 ork = 4.76. The collection

efficiency for these two settings and for the extremal magnification factorsm = 1 andm = 6 for

this objective have been calculated and are given in Table 2.3.
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Table 2.3: Calculated light collection efficiencies.

Magnification f-number Numerical aperturea Collection efficiencyb

m k A εcoll

1.0 3.56 0.070 2.33× 10−4

6.0 3.56 0.119 6.85× 10−4

1.0 4.76 0.052 1.30× 10−4

6.0 4.76 0.089 3.83× 10−4

aAccording to Equation (C.6).
bAccording to Equation (2.17) withnls = 2.3 for CdWO4.

Note that the f-number values imprinted on the aperture ring of the objectives are in principle

not valid for operation of the objective in retrofocus position. The f-number is specified for the

entrance pupil of the objective. Nevertheless, the f-number can be used as a good approximation

also for the exit pupil (entrance pupil for retrofocus operation), as long as the numerical aperture

A is small.

Optical transmission efficiencies:εt,ls, εt,ob j, and εt,cov

Part of the generated luminescent radiation is lost through absorption and reflections, which

can be described by the transmission efficiency of the individual optical components. Self-absorption

in the thin luminescent crystal and absorption in the optical path are assumed to be small and are

neglected in the following. However, reflections at optical surfaces must be taken into account.

The reflectivity at an optical surface between two media with refractive indicesn, n′ can be

calculated from the Fresnel equations. For unpolarized light under normal incidence, which is a

good approximation for small aperture settings, the reflectivityρ is given by [25]

ρ =

(
n′ − n
n′ + n

)2

(2.19)

and the transmittance isεt = 1− ρ. For material-to-air surfaces it isn′ = 1 and, thus, the transmis-

sion efficiency for a single surface is

εt = 1−

(
n− 1
n+ 1

)2

. (2.20)

The luminescent light generated inside the luminescent screen traverses several optical sur-

faces, before it reaches the CCD-camera:

• Part of the light is reflected at the surface of the luminescent screen. From Equation (2.20)

and the refractive index of CdWO4 (nls ≈ 2.3) we calculate a transmission efficiency of

εt,ls = 0.84. Here normally incident radiation was assumed, which serves a good approx-
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Figure 2.6: The CCD quantum efficiency overlayed to the emission spectrum of CdWO4. The CCD quan-
tum efficiency has been reproduced from ‘KAF-1600 performance specifications’, Eastman Kodak Com-
pany. The emission spectrum has been reproduced from a data sheet by the crystal supplier Saint Gobain
(available online at http://www.detectors.saint-gobain.com/).

imation for a large range of angles. [Compare the plot of reflectivity at the crystal-to-air

surface as a function of incidence angle in Figure 4.6(a).]

• The lenses in the objective are covered with anti-reflective coatings. The objective transmis-

sion efficiency at 500 nm isεt,ob j = 0.932 for the 35 mm andεt,ob j = 0.958 for the 50 mm

objective respectively.

• The CCD camera itself is protected by an entrance window of glass. The corresponding

transmission efficiency through both window surfaces isεt,cov ≈ 0.90, when for the refractive

indexn = 1.55 is assumed.

Spectrally-weighted CCD efficiency

In the charge-coupled device (CCD) of the CCD camera luminescence photons are converted

into charge carriers. By the absorption of photons electrons in the CCD are promoted from the

valence band to the conduction band of the semiconductor material. This process can occur for

photon energieshν = hc/λ > ∆E, where∆E is the bandgap of the semiconductor. For silicon it is

∆E ≈ 1.1 eV and accordingly the wavelength must beλ . 1000 nm in order to create an electron-

hole pair. Thus, for the central part of the CdWO4 luminescence spectrum (400 – 700 nm) either

one or no electron-hole pair is created per impinging luminescence photon.

The absolute quantum efficiency (sensitivity)S(λ) of the CCD describes the average number

of charge carriers created per incident luminescence photon as a function of photon wavelengthλ.

The functionS(λ) for our CCD is plotted in Figure 2.6 overlayed to the emission spectrumW(λ) of

CdWO4. The spectrally-weighted detection efficiencyεccd of the CCD is obtained by convolution
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of S(λ) with the emission spectrumW(λ) of CdWO4 according to

εccd =

∫ ∞
0

S(λ) W(λ) dλ∫ ∞
0

W(λ) dλ
. (2.21)

This spectrally-weighted detection efficiencyεccd is equal to the matching factor used for the de-

scription of light-source-photodetector combinations by Giakoumakis [64] except for a constant

factor.9 From the plots in Figure 2.6 we can estimate that for our screen/CCD combination the

spectrally-weighted detection efficiency isεccd ≈ 0.22.

2.3.3 DQE

The DQE defined in Equation (2.9) of the x-ray camera can be calculated from the known

statistical properties of the involved processes (given by the elements of Table 2.2) using the

variance theorem. The calculation is presented in Appendix C.2. The number of luminescence

photons generated from a single absorbed x-ray photon is assumed to obey Poisson statistics with

the average valueνlum. Moreover, it is assumed that the number of incident quantaN0 is Poisson

distributed with averageN0 and variance(∆N0)2 = N0. From the calculation the system’s detective

quantum efficiency is finally obtained [Equation (C.24)] as

DQE=
SNR2

SNR2
0

=
εabs

1+ γ−1
, (2.22)

whereγ is the average number of detected (not generated) luminescence photons per absorbed x-

ray defined in Equation (2.12) andεabs is the luminescent screen’s absorption efficiency for x-rays

from Equation (2.15). SNR is the signal-to-noise ratio of the charge quanta that are generated in

the CCD.

The DQE of the x-ray camera in Equation (2.22) is a function of only two parameters. We

shall discuss the dependencies. The DQE is limited by the absorption efficiency of the scintillator

εabs, to which it is directly proportional. This limit is independent of theγ value. The dependency

onγ in the limits of high and lowγ values can be approximated by

DQE≈

 εabs for γ � 1

γ εabs for 0 ≤ γ � 1
. (2.23)

For γ > 1 the DQE converges rapidly againstεabs. This means that there is no relevant enhance-

ment of the DQE forγ � 1, i.e., when much more than one luminescence photon is detected from

the shower of luminescence photons created by one x-ray.10 In the limit of smallγ the camera DQE

9Giakoumakis calculates the matching factor by replacingS(λ) in Equation (2.21) with the normalized spectral
sensitivitys(λ), which has a maximum value of unity.

10This is not necessarily true for the frequency-dependent DQE discussed in Section 2.3.1. Limited detector resolu-
tion may cause a spatially-correlated detector signal. In this case the DQE at high frequencies increases withγ.
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is approximately given by the quantum efficiency QE in Equation (2.13). This approximation can

thus be used for our camera with DQE≈ QE≈ 1%.

2.3.4 Noise, SNR, and DR

The variance of the number of collected charge quantaN is derived in Equation (C.28) as

(∆N)2 = N (1+ γ) + n2
el , (2.24)

whereN is the average number of recorded charge quanta,γ is the average number of detected

luminescence photons per absorbed x-ray defined in Equation (2.13), andnel is the readout noise

in units of electrons. Digitization noise has been neglected here. The noise level is given by the

square root of(∆N)2. From the above equation and the definition of the signal-to-noise ratio in

Equation (2.7) directly follows the signal-to-noise ratio of our system [Equation (C.29)]:

SNR=
N√

(∆N)2

=
N√

N (1+ γ) + n2
el

. (2.25)

Note that aγ value of around or above one will reduce the SNR in the images significantly.

Ideally, it should beγ ≈ 1 to achieve an optimal combination of SNR and QE. For our detector

it is γ � 1 and we can set 1+ γ ≈ 1. Then SNR is determined by the Poisson statistics of the

collected charge quantaN for largeN and by the readout noise for smallN.

In order to calculate the dynamic range of our x-ray camera according to the definition in

Equation (2.10) we need to calculate the signal with SNR= 1. From Equation (2.25), withγ � 1

andnel = 15 for our x-ray camera, we find that SNR= 1 is reached for an average signal of

N ≈ nel. Thus, we obtain

DR ≈
Nmax

nel
. (2.26)

Here Nmax is the CCD full well capacity in electrons andnel is the readout noise in electrons.

The derived DR is signal-independent, as if photon noise would not be understood as part of the

system. The same DR is obtained for the CCD alone. For CCD cameras with adjustable gaing

and in order to understand the variation of DR as a function ofg the dependence ofnel on g and

the digitization noise must be introduced into Equation (2.26). Note that the dynamic range of

the x-ray camera also depends on the homogeneity of the x-ray beam profile. If the imaged beam

profile is inhomogeneous, the full dynamic range will only be available at the local maximum of

the beam profile. The dynamic range for other pixels is limited by the local beam intensity. Hence,

the beam profile in a measurement should be as flat as possible.

Numerical values:For our x-ray camera, we haveγ ≈ 1%,nel = 15, and a maximum signal of

Nmax= 214 × 5 = 81 920. The minimum noise level is obtained forN = 0 in Equation (2.24) and

is given by the electronic readout noise asσmin = nel = 15. The noise level in the maximum signal
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is σmax ≈
√

Nmax ≈ 286, which is dominated by photon noise. The corresponding relative errors

described by the signal-to-noise ratio are SNRmin = 0 and SNRmax ≈ 286. The dynamic range in

Equation (2.26) of the CCD and thus of the x-ray camera is DR≈ 81.920/15≈ 5461.

2.4 Spatial system response of the x-ray camera

Imaging systems are often described by the concepts of linear systems theory. Assuming

that the response of the imaging system to an input signal is linear and shift invariant (LSI), the

output can be calculated from the input by convolution. The convolution kernel that describes the

spatial system response is the system’s point spread function (PSF). Reversely, when the PSF is

known, it may be used for correction of blur in the recorded images using deconvolution techniques

(compare Section 2.5.3).

Measurement of the PSF or the related MTF (see Section 2.4.1 below) is required for the full

characterization of the spatial system response. The PSF describes the system response to a delta-

peak shaped input signal, i.e., it describes the image that is recorded for a point-like source. Such

a source can be realized only approximately and is not well suited for direct PSF measurements,

also because of its limited intensity and the limited dynamic range of the detector. Therefore, the

PSF is typically derived indirectly from images of objects with simple, well known structure (e.g.:

slits, edges). The measurement of edge profiles with our system and the calculation of the PSF

from the measured edge profiles is described in Appendix D.1. The derivation of simple resolution

parameters from the measured data is presented in Section 2.4.3.

The spatial resolution of the applied type of x-ray camera is limited by diffraction, depth of

field, spherical aberrations, and energy spread in the luminescent screen. Approximative resolution

limits for these effects are discussed in Appendix B.

2.4.1 Response function in real and in frequency space (PSF/MTF)

In microtomography, we measure the imagei(x, y) that is given by

i(x, y) = s(x, y) ∗∗ o(x, y) =
∫ ∞

−∞

∫ ∞

−∞

s(x−x′, y−y′) o(x′, y′) dx′dy′ , (2.27)

where s(x, y) is the point spread function (PSF), the functiono(x, y) describes the object, and

the symbol∗∗ designates two-dimensional convolution. Since we deal with intensities here, all

functions in real space are real functions. We define the point spread function such, that it is

normalized to unity, i.e., ∫ ∞

−∞

∫ ∞

−∞

s(x, y) dx dy= 1 . (2.28)

This means that the integral intensity in the images is unchanged by the convolution operation,

which describes a system with efficiency of unity. We could introduce the system efficiency as an
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additional factor into Equation (2.27). However, this is not necessary for our applications, since

we are not interested in absolute quantities in our measurements.

From the convolution theorem we know that convolution of two functions in real space can be

expressed as multiplication in Fourier space. Thus Equation (2.27) becomes

I (u, v) = S(u, v) O(u, v) (2.29)

in Fourier space, where we have used the corresponding capital letters for the Fourier transforms.

The Fourier transformS(u, v) of the point spread function is called optical transfer function (OTF).

This generally complex function can be split into amplitude and phase as

S(u, v) = M(u, v) ei Ψ(u,v) , (2.30)

whereΨ(u, v) is called the phase transfer function (PTF) and

M(u, v) =
|S(u, v)|
S(0,0)

= |S(u, v)| (2.31)

is the modulation transfer function (MTF) of the system. Note that the second equality holds

because of the normalization of the PSF in Equation (2.28), which givesS(0,0) = 1. It can be

shown that theM(u, v) describes the reduction in contrast11 for a sinusoidal signal with spatial

frequencyu, v.

The PSFs(x, y) is generally assumed to be radially symmetric and can be described by a one-

dimensional representations(t) that only depends on the radial distancet. In this case the Fourier

transformS(u, v) will be radially symmetric too, and can be written as a functionS(w) of the radial

spatial frequencyw. The one-dimensional representation of the object transfer function can again

be split into amplitude and phase as

S(w) = M(w) ei Ψ(w) , (2.32)

whereM(w) andΨ(w) are representations of the radially symmetric MTF and PTF. The func-

tions s(t) andS(w) still are two-dimensional functions (in polar coordinate representation) and

are not (!) each others one-dimensional Fourier transforms. Their relation is discussed in the

following section.

In the case of a real and radially symmetric point spread functions(t), that is typically assumed,

the two-dimensional Fourier transformS(w) is real, too.12 Thus it isS(w) = M(w), and the MTF

fully describes the system response in this case.

11Contrast is universally defined asC = ∆s/s, where∆s is the signal difference ands is the average signal back-
ground.

12Any real even function has a real even Fourier transform.
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2.4.2 Edge spread function and line spread function (ESF/LSF)

The edge spread function (ESF) is the spatial system response to an edge-shaped input signal,

while the line spread function (LSF) is the response to a line-shaped input signal. Both, the ESF

and the LSF are two-dimensional functions that are constant along the direction parallel to the

edge or line. Thus, both ESF and LSF have one-dimensional representations. We will show, that

the LSF is the derivative of the ESF and, furthermore, that the LSF is the projection of the PSF.

Without loosing generality we shall define a line objectoL(x, y) and an edge objectoE(x, y)

with orientation parallel to they-axis as

oL(x, y) = δ(x) (2.33)

and

oE(x, y) = oE(x) =

 0 for x < 0

1 else
. (2.34)

Both functions are independent ofy.

The line spread function is defined as the system’s spatial response to the line object given by

LSF(x) = s(x, y) ∗∗ oL(x, y)

=

∫ ∞

−∞

∫ ∞

−∞

s(x−x′, y−y′) δ(x′) dx′dy′

=

∫ ∞

−∞

s(x, y′) dy′ , (2.35)

wheres(x, y) is the point spread function defined in Equation (2.27). The line profile described by

LSF(x) is equal to the projection of the point spread function iny direction, as can be seen from

the last line of Equation (2.35).

The spatial system response to the edge function is given by

ESF(x) = s(x, y) ∗∗ oE(x, y)

=

∫ ∞

−∞

∫ ∞

−∞

s(x−x′, y−y′) oE(x) dx′dy′

=

∫ ∞

−∞

oE(x′)
∫ ∞

−∞

s(x−x′, y−y′) dy′ dx′

= oE(x) ∗ LSF(x) , (2.36)

where∗ designates one-dimensional convolution. For the derivative of the ESF inx-direction

(across the edge profile) we find

d
dx

ESF(x) =
d
dx

[oE(x) ∗ LSF(x)] = δ(x) ∗ LSF(x) = LSF(x) , (2.37)

where we have used the fact that the derivative of a convolution product of two functions may be
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given by the convolution of either function with the derivative of the other. The application of the

derivative to the edge functionoE(x) gave the delta functionδ(x). Hereby, we have shown that the

derivative of the ESF in thex-direction for any value ofy gives the LSF.

The above derivation can be generalized for arbitrarily oriented edges and lines that run

through the coordinate center. We now introduce a rotatedst-coordinate system (as used in the

next chapter), with thet-direction parallel to thex-axis for rotation angleθ = 0. Thet-direction

shall be perpendicular to the line or the edge. We will writesθ(t) for the point spread function in

rotated coordinates and LSFθ(t) for the line spread function for a line that is tilted by angleθ with

respect to they-axis. Equivalently we introduce the expressions ESFθ(t) and Sθ(w).

For the line and edge rotated by angleθ and with the new coordinates Equation (2.35) becomes

LSFθ(t) =
∫ ∞

−∞

s(x, y) ds, (2.38)

and Equation (2.37) becomes
d
dt

ESFθ(t) = LSFθ(t) . (2.39)

The function LSFθ(t) is the projection of the point spread functionsθ(t) as a function oft andθ.

LSFθ(t) is called the Radon transform ofsθ(t). The Radon transform and inversion formulas for the

Radon transform will be presented in detail in the following chapter on tomographic reconstruc-

tion. Using these inversion techniques it is possible to determine the two-dimensional point spread

functions(x, y) from a series of edge profile measurements LSFθ(t) recorded under variation of the

edge angleθ.

From the Fourier-slice theorem (that will also be introduced in the next chapter) we know that

Sθ(w) = F 1[LSFθ(t)] , (2.40)

whereF 1 denotes the one-dimensional Fourier transform.Sθ(w) can be identified with the Fourier

transformed projectionsPθ(w) in Equation (3.8). Thus, the PSF can be reconstructed from edge

profile measurements using tomographic reconstruction techniques.

For a radially symmetric point spread function the edge spread function is independent of

the projection angleθ. In this case the spatial system response can be described by a single

edge profile. We shall assume a real and radially symmetric point spread functions(t), for which

Sθ(w) = S(w) is real and independent of angle. Thus, it is MTF(w) = S(w) independent of angle

and we have

S(w) = F 1[LSF(t)] . (2.41)

SinceS(w) is real, it is equal to the system’s MTF, i.e.,M(w) = S(w). Thus, the one-dimensional

representation of the MTF describes the PSF uniquely.

Equation (2.41) will be used for the determination of the MTF from a single edge profile.
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Reconstruction of the PSF from the single edge profile is possible using the filtered backprojection

technique that is introduced in the next chapter or using a Hankel transform.13

2.4.3 Measures of spatial resolution

The point spread function fully describes the spatial system response of an LSI system. How-

ever, sometimes, it is more convenient to describe the system resolution by a single parameter.

Reduction of the PSF to a single value requires the assumption of a model. If, e.g., the PSF is

assumed to be a two-dimensional Gaussian function, then it can be described by its full width at

half maximum uniquely. For the description of our camera, such a model is not well suited. The

point spread function of our x-ray camera exhibits a strong intensity drop over a short range and,

simultaneously, slowly decreasing intensity in the tails. Such a PSF clearly can not be described

by a Gaussian function. The sum of several Gaussian functions would give a better approximation;

but the shape of the LSF in Figure 4.4(c) and (d) can not be well described by Gaussian functions,

which fall of more rapidly in the logarithmic representation than the determined LSF.

Several resolution parameters are used in this work. The spatial frequencyf10, at which the

MTF of the system falls below 10% is often used to calculate the characteristic length

a10 =
1

2 f10
(2.42)

as a measure of resolution. This resolution measure is rather sensitive to high-frequency compo-

nents. When the MTF stays above 10% for values up to the Nyquist frequencyfNyq, this measure

is no longer well defined. In this case, we would setf10 = fNyq, which givesa10 = 1/(2 fNyq) = τ,

with the sampling distanceτ. However, this situation was not observed for our system.

Another resolution measure was used by Kochet al. [96]. It defines the resolution as the

full width that covers 50% or 90% of the integrated (symmetrized) PSF. In particular the 90%

integrated PSF value is more appropriate for the characterization of the long tails in the PSF.

2.5 Projection images

The radiographic projection imagesi(x, y) from the x-ray camera are not projections in the

mathematical sense. We have to calculate projection imagesp(x, y) from the recorded radiographs

that are used as input for the tomographic reconstruction.

The fundamental interaction mechanisms of x-rays with matter are presented in Appendix A.

For sample diameters of below 1 cm correspondingly low photon energies are applied in the mea-

surement, and we can therefore assume that attenuation is dominated by photoelectric absorption

13For a rotationally symmetric function PSFs(t), the functionss(t) andS(w) are related by a Hankel transform,
which is equivalent to a two-dimensional Fourier transform with a circular symmetric kernel.
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(compare Section A.3). The observed x-ray flux behind the object [Equation (A.4)] is given by

Φ = Φ0 exp

(
−

∫
µ(s′) ds′

)
, (2.43)

whereΦ0 is the incident x-ray flux and the integral in the exponential function describes the

projected attenuation coefficient. The equation has to be understood as a two-dimensional function

that describes the projected attenuation at each point in our images. The projected attenuation

coefficient is the integral inside the exponential function. We shall define

p =
∫
µ(s′) ds′ , (2.44)

which has to be understood as a three-dimensional functionpθi (t j , zh) of the position (t j , zh) of

each camera pixel and the projection angleθi . Then we can calculate the projected attenuation as

p = − ln
Φ

Φ0
. (2.45)

The calculation of projection images with our x-ray camera is realized as follows: We record

radiographic images of the samplei, reference images of the beam profiler and dark images with

no illuminationd. The projected attenuation imagep is calculated from these as

p = − ln
(i − d)/ti

(r − d)/tr
, (2.46)

whered is an average dark image, andti andtr are the exposure times for recording the images

i andr respectively. The calculation of projection images according to Equation (2.46) during a

tomographic scan is described in detail in Appendix D.4. The calibration and correction of CCD

images is described in Appendix D.5.

2.5.1 PSF for the projection

We have introduced the concept of the detector PSF for the description of the spatial detector

response in Section 2.4.1. The PSF describes blur in the recorded images. Can we also apply

the detector PSF for the description of blur in the projection imagesp that are calculated from

the recorded images? We shall discuss, in which cases this is possible and, furthermore, in which

cases non-linear effects can appear.

The projected attenuation imagep is calculated according to Equation (2.46). We shall assume,

that the radiographic imagei and the reference imager are dark image corrected and recorded with

identical exposure timesti = tr in the following. Then Equation (2.46) simplifies to

p = − ln
i
r
. (2.47)
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Blur in the imagesr andi is described by the detector’s point spread functions. Thus, we can

rewrite the measured projection more explicitly as

p = − ln
s∗∗ (r0 e−p̂)

s∗∗ r0
, (2.48)

wherer0 is the unblurred reference image, ˆp is the true attenuated projection, and the radiographic

imagei was explicitly written asr0 exp(−p̂). The symbol∗∗ designates two-dimensional convo-

lution. We shall assume that the reference image is homogeneous and that all detector pixels have

the same sensitivity. In this case the reference image can be treated as a constant factorr0 and

Equation (2.48) simplifies to

p = − ln
(
s∗∗ e−p̂

)
. (2.49)

If the argument of the logarithm in Equation (2.49) fulfills the condition

s∗∗ e−p̂ = e−s ∗∗ p̂ , (2.50)

then Equation (2.49) simplifies to

p = s∗∗ p̂ . (2.51)

Thus, the detector’s point spread functions describes the blur in the calculated projection

images, when the condition in Equation (2.50) is fulfilled or, equivalently, when the expressions

of Equations (2.49) and (2.51) are equal.

The following calculation shall demonstrate, in which cases the expressions in Equations

(2.49) and (2.51) are approximatively equal. We introduce

p̂(x, y) = p̂(x0, y0) + p̂′(x, y) , (2.52)

wherep̂(x0, y0) is the projected attenuation for any arbitrary point (x0, y0) andp̂′(x, y) describes the

deviation fromp̂(x0, y0), which by definition is zero at the point (x0, y0). Starting with substitution

of p̂(x, y) into Equation (2.49), we calculate

p(x, y) = − ln
[
s∗∗ e−p̂(x0,y0)−p̂′(x,y)

]
(2.53)

= p̂(x0, y0) − ln
[
s∗∗ e−p̂′(x,y)

]
(2.54)

≈ p̂(x0, y0) − ln
[
s∗∗ (1− p̂′(x, y))

]
(2.55)

= p̂(x0, y0) − ln
[
1− s∗∗ p̂′(x, y)

]
(2.56)

≈ p̂(x0, y0) + s∗∗ p̂′(x, y) (2.57)

= s∗∗
[
p̂(x0, y0) + p̂′(x, y)

]
(2.58)

= s∗∗ p̂(x, y) , (2.59)

where we obtain the expression of Equation (2.51) in the final Equation (2.59). Here we have made
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the only assumption thatx = p̂′(x, y) is small with 0≤ x� 1. In this case the exponential function

in Equation (2.54) can be approximated bye−x ≈ 1− x. The distributivity of the convolution and

s ∗∗ 1 = 1 is used to obtain Equation (2.56). Using the approximation ln(1− x) ≈ −x for small x

we obtained Equation (2.57).

We have now shown thats(x, y) approximately describes the point spread function for the

attenuated projection images at any point (x0, y0), when the variation ˆp′ in the attenuated projection

is small (and the reference image is flat). In fact one can further show that the variation ˆp′ must

be small over the range of the PSF only.

In which cases is the variation ˆp′ small? If the projected attenuationp is small everywhere

then as a direct consequence the variation ˆp′ will be small everywhere. Therefore, in the case

of low absorbing objects withp � 1, the point spread function of the detector can be used as

the point spread function of the attenuated projection. But the requirement onp can be further

reduced. Only the variation ˆp′ must be small over the extend of the point spread function at each

point (x0, y0). This means that the point spread function of the detector can be used as the point

spread function for the attenuated projection if the gradient of ˆp is sufficiently small. Fortunately

the gradient in the projections is usually less strong than in the tomographic slice itself (with

the exception of straight edges). Therefore, the detector PSF describes the PSF of the projected

attenuation well in most situations.

For non-homogeneous x-ray beams (reference imager not flat), we must think in terms of

intensity. Typically, the variation of the intensity in the recorded images is relatively low over

distances of only a few pixels. Hence, blur in this range cannot produce non-linear effects in

the projection and will not produce artifacts other than blur in the reconstruction. A problem is

imposed by long-range contributions (long tails) to the detector PSF. They can spread intensity

into regions, where the value of the attenuated projection is high (for strongly absorbing objects)

and ideally only little intensity should be recorded. The relative change in the recorded intensity

can thus be large. The blur from bright into dark regions of the image will generally result in the

underestimation of the integral projected attenuation coefficient (zeroth-order moment). Thus, the

spatial extension of the PSF limits the usefully applicable dynamic range of the detector, since low

intensity values cannot be recorded correctly in the presence of a relevant amount of blur.

2.5.2 Noise in the projection

Noise in the radiographic images and in the reference images propagates into the projected

attenuation images. We are interested in the measurement of the projected attenuation coefficient

with optimum signal-to-noise ratio. Furthermore, we would like to know, whether the logarithm

operation in the presence of noise can result in a shift of the measured projected attenuationp

relative to the true attenuation value. A shift can be expected, since the logarithm function in the

calculation ofp is a non-linear function. Both questions can be answered by calculation of the

measured average projected attenuation〈p〉 as a function of the true projected attenuation ˆp and
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the variance〈∆p2〉, with ∆p = p − 〈p〉. The calculation is presented in Appendix C.3. We will

summarize the results here.

In the calculation of the variance it is assumed that the measured attenuated intensity is de-

scribed by the random variableN and that the measured reference intensity is described by the

random variableN0, with 〈N〉 = 〈N0〉exp(−p̂). Both N andN0 shall obey Poisson statistics and

can be identified with the number of charge quanta recorded in a CCD pixel. CCD readout noise

and noise in the averaged dark image are neglected. The variance of the projected attenuation

coefficient is then obtained as [Equation (C.42)]

〈∆p2〉 ≈
1
〈N0〉

(
ep̂ + 1

)
, (2.60)

which is a valid approximation in the limit of〈N〉 � 1 and〈N0〉 � 1. The noise described by

〈∆p2〉 will enter into the tomographic reconstruction. It is further found thatp is measured with

an optimum signal-to-noise ratio forp ≈ 2.218, which corresponds to the minimum of the relative

varianceR(p) = 〈∆p2〉/〈p〉2. When noise in the referenceN0 can be neglected, the optimum

signal-to-noise ratio is obtained forp = 2.

Therefore, it is common practice in SRµCT measurements to select sample thickness and

photon energy such that the simple conditionp . 2 is fulfilled for all sampling points (if possible).

Note that in the presence of detector blur this typically assumed optimum condition withp . 2

must be questioned. In combination with long tails of the detectors PSF a lowerp value can be

a better choice, when non-linear effects (compare Section 2.5.1) can thereby be avoided. This is

especially true, when strong gradients are present in the projection images. However, a reduction

of p comes at the cost of a reduced signal-to-noise ratio. The plot of the relative noise level in

Figure C.46(b) shows the dependence ofp on the relative noise level. E.g., a reduction of the

projected attenuation coefficient top ≈ 1 results in an increase of the relative noise level by about

a factor of two, i.e., a reduction of the signal-to-noise ratio to about one-half. However, this may

be acceptable for many applications and will reduce the risk for non-linear artifacts drastically.

The difference between the measured average attenuation〈p〉 and the real attenuation ˆp is

found [Equation (C.45)] to be given by

〈p〉 − p̂ ≈
1

2〈N0〉

(
ep̂ − 1

)
, (2.61)

which is again a valid approximation in the limit of〈N〉 � 1 and〈N0〉 � 1. The equation describes

a shift of the measured projected attenuation towards higher values with decreasing average count

numbers. In the example of Appendix C.3 it is shown that for typical values forN0 and p̂ the shift

is negligible.
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2.5.3 Deconvolution

The goal of deconvolution is restoration of the object imageo(x, y) in Equation (2.27) from

the recorded imagei(x, y) and the known point spread functions(x, y). Deconvolution of the point

spread function is an inverse operation that can easily be expressed in frequency space. From

Equation (2.29) we find

O(u, v) =
I (u, v)
S(u, v)

. (2.62)

HereS(u, v) is given by the one-dimensional representation of the MTF in Equation (2.32)

when we assume that the PSF is radially symmetric. Fast Fourier Transforms (FFTs) are usally

applied for the conversion between real and frequency space to actually perform deconvolution.

The deconvolution approach described by Equation (2.62) is termed Fourier deconvolution

or direct deconvolution. Direct deconvolution typically results in a strong amplification of high-

frequency noise (compare, e.g., Jähne [88, Chapt. 17.8.3]). But as long as the noise level is low,

andS(u, v) does not fall off to zero over the frequency range that is to be recovered, Fourier de-

convolution will give a good approximation to the original image. However, more sophisticated

deconvolution methods take the noise characteristics of the system into account. E.g., the Wiener

filter is the optimal filter in the least squares sense [120] but beyond that, a variety of other decon-

volution techniques exist. More details on deconvolution (and image restoration) techniques can

be found, e.g., in [90], [120], and in a recent review paper by Puetteret al. [125].

Use of deconvolution in SRµCT or similar techniques has been reported only a few times. Di-

rect and iterative deblurring methods were applied to SRµCT data by Cloetens [36]. Graafsma and

de Vries [66] used a maximum-entropy algorithm for the deconvolution of the two-dimensional

point spread function of phase images.

In this work Fourier deconvolution has been applied to recorded radiographic images in order

to suppress long-range blur and to enhance the spatial resolution in the tomographic reconstruc-

tions. An example is presented in Section 6.2 for the measurement of cortical bone, where also the

details of the implementation of the deconvolution procedure are described. A properly measured

detector PSF (s(x, y)) is required for the deconvolution operation according to Equation (2.62).

The determination of the PSF/MTF from edge profile measurements is described in detail in Ap-

pendix D.1. Thus, we can make use of the MTF (S(u, v)) that is determined in the resolution

measurement also for deconvolution.
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Chapter 3

Instruments and methods:

Tomographic reconstruction

3.1 Introduction

Computed tomography1 (CT) allows to generate a three-dimensional image of the internals of

an object from a series of x-ray projections (one or two-dimensional) taken in varying directions

around a single axis of rotation. At a synchrotron radiation source, the so-called parallel-beam

geometry is approximately realized. Using a two-dimensional x-ray detector, the projection data

of several slices (cross-sections) of the object are recorded in parallel, and the three-dimensional

reconstruction of the object is obtained as a stack of two-dimensional reconstructions.

The mathematical foundation of tomography was laid by Radon in 1917 [127]. The math-

ematical description of the projection is, therefore, called the Radon transform. Tomographic

reconstruction is the inverse problem that deals with the inversion of the Radon transform.

This chapter presents the mathematics and the implementation of two direct reconstruction

algorithms used in this work that are based on backprojection. A general introduction to tomo-

graphic methods and tomographic reconstruction algorithms can be found in textbooks, e.g., by

Kak and Slaney [93] or by Herman [76]. A more mathematical treatment of tomographic recon-

struction can be found in a book by Natterer [108]. A list of reconstruction techniques has been

presented by Budinger and Gullberg [30].

1The word tomography is derived from the greek words for ‘slice’ (‘tomos’) and ‘describing’ (‘graphia’).
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Figure 3.1: Representation of a two-dimensional object in (a) real space, (b) projection space (called
‘Radon transform’ or ‘sinogram’), and (c) frequency space. The one-dimensional Fourier transformPθ(w)
of a projectionpθ(t) correspond to radials in frequency space as it is described by the Fourier slice theorem.
The representation in frequency space is a complex function, of which only the absolute is shown here.

3.1.1 Radon transform and Fourier slice theorem

Let an object be represented by the two-dimensional scalar functionf (x, y), which describes

some physical property of the object at position (x, y). In our casef (x, y) is the object’s attenuation

coefficient for x-raysµ(x, y) that was introduced in Section 2.5. However, the following definition

of the Radon transform will be independent of the physical meaning off (x, y). The nomenclature

in the following has been adopted from Kak and Slaney [93], except that functions in real space are

designated by small letters, while their corresponding Fourier transforms are designated by capital

letters. Note that thexy-coordinate system is now used to describe the position in the tomographic

slice, which differs from its use in the previous chapter. The position on the x-ray camera is now

described by thetz-coordinate system. One-dimensional projections of the functionf (x, y) can be

defined as

pθ(t) =
∫

line
f (x, y) ds , (3.1)

where the line integrals are evaluated along lines of constant

t = xcosθ + ysinθ , (3.2)

with the projection angleθ. The (θ, t) coordinate system is defined according to Figure 3.1. The

definition of the Radon integral is sometimes written using a Dirac delta functionδ(t) as

pθ(t) =
∫ +∞

−∞

∫ +∞

−∞

f (x, y) δ(xcosθ + ysinθ − t) dx dy. (3.3)

The functionpθ(t) as a function ofθ and t is known as theRadon transform of f (x, y).2

2Restrictions to the functionf (x, y) shall not be discussed here. See the book by Helgason [75] on the Radon
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For tomography data one also refers topθ(t) as thesinogram, since by definition of the Radon

transform, every point (x0, y0) in (x, y) space is projected onto a sinusoidal line in the (θ, t)-space.

Figure 3.1(b) shows a sinogram.

The information content ofpθ(t) can be understood by conversion off (x, y) and pθ(t) into

Fourier space. The two-dimensional Fourier transform of the slicef (x, y) is given by

F(u, v) =
∫ +∞

−∞

∫ +∞

−∞

f (x, y) e−ι2π(ux+vy) dx dy, (3.4)

where we introduced the Greek letter iota (ι) for the imaginary unit to avoid confusion with the

index i that we will use below. The one-dimensional Fourier transform of the projection with

respect tot is given by

Pθ(w) =
∫ +∞

−∞

pθ(t) e−ι2πwt dt . (3.5)

The Fourier slice theorem relates the projectionpθ(t) and the functionf (x, y) in Fourier

space: The Fourier transformPθ(w) for angleθ gives the values ofF(u, v) along a line through the

origin and rotated by angleθ with respect to thex-axis. Or in other words:

Pθ(w) = F(wcosθ,wsinθ) , (3.6)

whereF(wcosθ,wsinθ) is the representation ofF(u, v) in polar coordinates (θ,w) with (u, v) =

(wcosθ,wsinθ). The Fourier slice theorem is represented by Figure 3.1(c).

The full information for the reconstruction is known, when projectionspθ(t) are given over a

rangeπ of projection anglesθ. When the projections are known, their one-dimensional Fourier

transformsPθ(w) are known too. According to the Fourier slice theorem, these one-dimensional

Fourier transforms can be identified with radials in the two-dimensional Fourier transformF(u, v).

The radials cover the entire Fourier space. Thus,f (x, y) can be recovered from the given projection

data.

3.1.2 Filtered backprojection

The filtered backprojection is usually derived from the Fourier representation off (x, y) as the

starting point. The derivation can be found in the books cited above. Only the main steps are

presented here.

Trivially f (x, y) can be recovered by inverse Fourier transform ofF(u, v) as

f (x, y) =
∫ +∞

−∞

∫ +∞

−∞

F(u, v) eι2π(ux+vy) du dv. (3.7)

By introduction of the polar coordinate representation of (u, v), substitution oft = x cosθ+ysinθ,

transform, which also includes a reprint of the original paper by Radon [127], and Natterer [108] for details.
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use of the Fourier slice theorem of Equation (3.6), and rearrangement of the integration variables

we obtain

f (x, y) =
∫ π

0

∫ +∞

−∞

|w|Pθ(w) eι2πwt dw dθ . (3.8)

Here, the inner integral is referred to as thefiltered projection . The term ‘filtered’ refers to

the frequency filter|w|. The outer integral describes the so calledbackprojection. Inversion

algorithms based on this equation are called filtered backprojection algorithms. Note that the

backprojection operation requires the knowledge of the position of the rotation axis (t = 0) in the

recorded projection data. The determination of the position of the center of rotation in the recorded

sinogram will be discussed in detail in Chapter 5.

There are a variety of possibilities to derive reconstruction algorithms from Equation (3.8).

The main difference between these lies in the way, in which the filtering is implemented and in the

selection of different additional filters. A filter functionH(w) is generally introduced in the above

equation as

f (x, y) =
∫ π

0

∫ +∞

−∞

H(w) Pθ(w) eι2πw t dw︸                              ︷︷                              ︸
qθ(t)

dθ , (3.9)

with

H(w) = B(w) |w| . (3.10)

Here, we have defined the filtered projection including the additional filter asqθ(t). The factor

|w| in the filter is an essential part of the reconstruction, while the factorB(w) is used to suppress

noise at high frequencies at the cost of a decreased resolution. Filter functions are discussed by

Huesmanet al. [82]. The filter operation can be replaced by a convolution operation in real space

according to the convolution theorem (e.g., see Jansson [90]) resulting in

f (x, y) =
∫ π

0
h(t) ∗ pθ(t) dθ . (3.11)

Here,∗ denotes the one-dimensional convolution operation andh(t) is the inverse Fourier trans-

form of H(w).

Reconstruction algorithms implemented in frequency space according to Equation (3.9) are

frequently referred to as filtered backprojection (FBP) algorithms. In contrast to this, algorithms

based on the convolution operation in real space according to Equation (3.11) are referred to as

convoluted backprojection (CBP) algorithms. This notation is, however, not uniquely applied in

literature. Mathematically, convolution in real space and filtering in frequency space are equivalent

operations.

The FBP algorithm can be implemented by use of fast Fourier transform methods, which

allows to make the filter operation fast. The CBP algorithm can be implemented as fast or even

faster as the FBP algorithm by use of specially designed hardware [93]. The bottleneck for both

types of algorithms is the backprojection step, as is shown in Section 3.2.4.
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3.2 Implemented reconstruction algorithms

Different implementations of the filtered backprojection reconstruction have been applied in

this work. For fast standard reconstructions an algorithm from the RECLBL library3 is imple-

mented. The algorithm has been reimplemented in this work in the IDL4 programming language.

The IDL implementation, although slower than the RECLBL code, allows the fast application of

changes to the algorithm and simplifies the call of the reconstruction within other self-written IDL

software, as the iterative optimization presented in Chapter 5. It was noted during this work, that

reconstructions calculated with the standard reconstruction algorithm showed a slight overall shift

(DC-shift) of the attenuation value towards negative values. The reason for this shift was identified

during this work and can be avoided by use of a variant of the algorithm as discussed in Section

3.2.2. Both algorithms have been reimplemented in this work in one IDL procedure. By default

the IDL procedure performs the reconstruction as described in the following section. Setting the

keyword ‘DC CORRECT=1’ performs the reconstruction according to Ramachandran described

thereafter.

3.2.1 “BKFIL” of the RECLBL library

The “BKFIL” algorithm of the RECLBL library has been used in this work for standard recon-

structions in combination with the frequency filter ‘BUTER’. The algorithm is based on Budinger

and Gullberg [30] and is a discrete version of Equation (3.9). “BKFIL” stands for ‘backprojection

of filtered projections’.

The “BKFIL” algorithm performs the following sequence of operations: Fourier transform the

projection data vector; multiply the complex values by the frequency (i.e. with the ramp filter) or

an alternative filter; inverse Fourier transform these modified frequencies; and back-project the

modified projection data. The algorithm implements the necessary discrete Fourier transforms

(DFTs) by use of the fast Fourier transform (FFT) algorithm and adequate zero padding. Zero

padding means the extension of the projection data with zeros. It is incorporated, to avoid effects

of the otherwise cyclic behavior of the DFT.5

As filter, the Butterworth function defined as

B(w) =
[
1+ (w/wm)2n

]− 1
2 (3.12)

is used. This frequency filter is named “BUTER” in the RECLBL library. It is used for our

standard reconstruction with the filter parameters “ORDERX”= 2n = 10.0 and “FREQX” =

wm = 0.5. Figure 3.2 shows the Butterworth filter for this selection of parameters. As can be

3The RECLBL library [82] is a package of routines for the reconstruction of projection data written in the program-
ming language FORTRAN. Available online athttp://cfi.lbl.gov/software/ [visited August 7th, 2006].

4IDL: Interactive Data Language, supplier: ITT Visual Information Solutions (formerly RSI Research Systems Inc.),
http://www.ittvis.com/ [visited August 7th, 2006].

5For the properties of the DFT see, e.g., Bracewell [26] or Jansson [90, p.406].
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Figure 3.2: Frequency filters used in the tomographic reconstruction. (a) Plot of the Butterworth filter for
parameters ORDERX=10.0 and FREQX=0.5, (b) ideal ramp filter, (c) product of (a) and (b). The frequency
is plotted in units of the sampling frequencyτ−1. In these units, the Nyquist frequency corresponds to 0.5.

seen from the plot, this selection of parameters causes only a mild suppression of high frequency

components and maintains high resolution. The routine “BIN” of the RECLBL library is used for

backprojection and performs linear interpolation of the inverse fourier transformed data onto the

reconstruction grid.

The input for the reconstruction is the projectionpθi (t j) sampled on a regular sampling gridt j .

The calculation is performed in mathematical detail in the following steps:

1.) Zero pad the projection data: Find the smallest integer ‘pow’, for which 2pow is larger than

the number of given sampling points. Fill up the projections with zeros to a size ofNt = 2pow+1

sampling points.

2.) Calculate the discrete Fourier transform (DFT) of the projections using a Fast Fourier

transform algorithm as

Pθi (wk) =
1
Nt

Nt−1∑
j=0

pθi (t j) e−ι2πk j/Nt (3.13)

for the discrete frequencies6

wk =

 k/Nt for k ≤ Nt/2

1− k/Nt for k > Nt/2
. (3.14)

3.) Calculate the frequency filter

H(wk) = B(wk) |wk| . (3.15)

6This is the interpretation of the frequencies in tomography, where it is generally assumed that all frequency com-
ponents in the projections are smaller than the Nyquist frequency, i.e.,|wk| < 1/2. The DFT is cyclic: frequencieswk

differing by integer numbers are thus mathematically identical.
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4.) Calculate the filtered projections by use of inverse DFT’s

qθi (t j) =
Nt−1∑
k=0

H(wk) Pθi (wk) eι2πk j/Nt . (3.16)

5.) Backproject the filtered projections

f̃ (xm, yn) =
π

Nθ

∑
i, j

F i j
mnqθi (t j) . (3.17)

Here we wrotef̃ (xm, yn) for the reconstruction of the slicef (x, y) on a discrete reconstruction

grid (xm, yn). The implementation of the backprojection based on Equation (3.9) requires values

of qθi (t) at positionst(xm, yn, θi) = xm cosθi + yn sinθi that generally do not coincide with the

sampling pointst j of the (filtered) projections. The routine “BIN” provides linear interpolation of

the value at two sampling points witht j < t < t j+1. The interpolation is described by the weighting

factorsF i j
mn in Equation (3.17).

The reconstructionf̃ (xm, ym) in Equation (3.17) is given in dimensionless units. The inter-

pretation in tomography is that it describes the measured attenuation coefficient µ̃ per sampling

distanceτ in the projections, i.e.,µ(xm, yn) = f̃ (xm, yn)/τ. In the dimensionless case it isτ = 1.

3.2.2 DC-shifts and the alternative “RALA” implementation

A slight shift in the zero frequency component (DC-shift) of the reconstructions algorithm

towards negative values has been recognized during this work for reconstructions calculated with

the “BKFIL” algorithm. The shift also varied in magnitude for individual reconstructions. It was

found that this shift is generally caused by this type of reconstruction algorithm as has been dis-

cussed by Kak and Slaney [93, p. 74]. The shift can be avoided by use of a different reconstruction

algorithm based on Ramachandran and Lakshminarayanan [128].

The algorithm of Ramachandran is available in the RECLBL library as “RALA” with the

convolution implemented in real space by the subroutine “CONVO”. The manual of the RECLBL

library [82, p. 36] states that the “RALA”-type algorithm would achieve the same results as the

“BKFIL” algorithm described above.7 This cannot be true, since it contradicts the discussion by

Kak and Slaney, who explain the observed DC-shift.

The difference of the two reconstruction algorithms shall be explained here in a unified nomen-

clature, in order to provide clarity for the future use of the RECLBL library. Therefore, it is nec-

essary to present the reconstruction algorithm proposed by Ramachandran and compare it with

7RECLBL library manual [82, p. 36]: “Real space convolution and frequency filtering are equivalent operations.
As is shown in examples ..., the RAMP filter used with the algorithm BKFIL achieves the same result as the RALA
convolution function used with CONVO.”
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the “BKFIL” algorithm. The reconstruction algorithm “BKFIL” has already been described by

Equations (3.13) through (3.17).

Ramachandran’s reconstruction algorithm is a discrete version of Equation (3.11) and hence

based on convolution in real space. The discrete convolution function

h( jτ) =


1

4τ2 for j = 0

− 1
π2 j2τ2

for j = odd

0 else

(3.18)

is used to calculate the filtered projections by discrete convolution according to

qθi ( jτ) = τ
∞∑

k=−∞

h( jτ − kτ) pθ(kτ) . (3.19)

These filtered projections are backprojected as before using Equation (3.17). The convolution

function h( jτ) is the discrete representation of the analytical (i.e., mathematically exact) inverse

Fourier transform of the ideal ramp filterH(w) shown in Figure 3.2, withH(w) = |w| for |w| below

the Nyquist frequency andH(w) = 0 otherwise. As discussed by Kak and Slaney the filtered

projections obtained by Equation (3.19) are not identical to those obtained by Equation (3.16).

This is because the discrete Fourier transform of the discrete convolution functionh( jτ) is not

equivalent to the discrete filter|wk| in Equation (3.15).8 While the filter |wk| becomes zero at

wk = 0, the DFT ofh( jτ) is different from zero at this point. This DC-shift is the main difference

between the two algorithms. The magnitude of the DC-shift will depend on the given sinogram

data and it will be reduced by additional zero padding of the data. The “BKFIL” routine increases

the sinogram size (projection widthNt) to a number that is a power of two. Hence, the magnitude

of the DC-shift can change drastically, when the projection width of the original sinogram changes

from, e.g., 1023 to 1024= 210. The DC shift will be demonstrated in an example in Section 6.3.

3.2.3 Optimum sampling

The optimum sampling rate for the reconstruction is discussed by several authors. Results for

both the optimum number of sampling pointsNt and the optimum number of projectionsNθ are

summarized here. The application of the sampling conditions to our setup is discussed.

The optimum sampling frequency is discussed in the book of Kak and Slaney [93, Chapt. 5].

The sampling distanceτs in the tomographic projections defines the sampling frequency 1/τs.

According to Shannon’s sampling theorem, a band-limited signal can be recorded without loss of

information, when the sampling frequency is at least twice the band limit of the data. This can be

8Discrete convolution can also be performed in frequency space using the product of DFTs. This gives a mathemat-
ically identical result, when the data are adequately zero-padded. Any algorithm described by convolution in real space
can, thus, be implemented in frequency space and vice versa. The frequency representation of the filterh( jτ) should
thus be identical to the filterH(wk).
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expressed as
1

2τs
≥ B (3.20)

or equivalently as

τs ≤
1

2B
, (3.21)

whereB is the band-limit in the data. Thus, frequencies below the so-called Nyquist frequency

1/(2τs) can be recovered from the data.

Generally, tomographic projections are not band-limited and will contain frequency informa-

tion above the Nyquist frequency. Kak and Slaney discuss the optimum sampling for a signal that

is recorded with a rectangular detector sampling function (as the sampling function of our CCD).

For a rectangular detector sampling function of widthτ (edge length of a CCD detector pixel), the

highest recorded frequency component can be estimated by the frequency, at which the Fourier

transform of the detector sampling functions [given by Equation (D.3) for an ideal detector] drops

to zero for the first time; this occurs at the frequencyB = 1/τ. According to the Nyquist theorem

in Equation (3.20), the sampling distance must, thus, beτs ≤ (1/2)τ, when the signal shall be

recovered. For a CCD based detector we can assume thatτs = τ, i.e., the sampling distance is

given by the edge length of a pixel. The signal is, therefore, undersampled by a factor of two.

In praxis this can be compensated by an increase of the number of sampling points. This can be

achieved by a second measurement, in which the detector is shifted by the distance (1/2)τ. For

tomography, a more elegant way to achieve the two images is given by the possibility to perform

a scan over 360o instead of the required 180o range of projection angles. When the position of

the projected center of rotation is located at 0.25 bin distance from a pixel center, images recorded

at θ andθ + 180o will give mirror images that are shifted by (1/2)τ and the sampling density is

doubled.9

The system response of our system is not simply described by the rectangular sampling func-

tion assumed above. The point spread function of our system reduces the band-limit toB ≈ f10,

where f10 is the frequency, at which the MTF of our system falls below 10% (see Section 2.4.3).

This frequency, in terms of the sampling frequency, isB = f10 = b (1/τs), where we typically have

b ≈ 0.25. From the Nyquist theorem in Equation (3.20), we then findτs ≤ τ/(2b) ≈ 2τ. Thus, our

data are generally oversampled because of the suppression of high-frequency components caused

by the detector’s point spread function.

For the case thatNθ projections are recorded at evenly spaced angular positionsθi = i (π/Nθ),

with i = 0, ...,Nθ − 1, the optimal ratio ofNt and Nθ for standard parallel-beam geometry is

given by

Nθ,opt =
π

2
Nt (3.22)

9The interlaced sampling geometry can be more efficient then the standard sampling geometry that is used here.
According to Natterer [108, p. 71], sampling in the ‘interlaced geometry’ provides a reconstruction with the same
resolution with only one-half of the data. In the interlaced geometry, only one-half of the sampling positions is required.
The position of the sampling positions alternates in successive projections.
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as discussed by Natterer [108, p. 84] and Kak and Slaney [93, p. 186]. Equation (3.22) corresponds

to the simple geometric requirement that the distance between two points (t, θ) = (Ntτ/2, θi) and

(Ntτ/2, θi+1) corresponds toτ, whereτ is the distance between sampling points. According to

Natterer, the resolution will not improve, when more thanNθ,opt projections are recorded.

As Budinger and Gullberg [30] pointed out, a tomographic slicef (x, y) is normally not a

complete random image. Spatial correlations inf (x, y) exist. The reconstruction from a reduced

number of projections will, therefore, generally still result in a good reconstruction. In our case

the correlation in the recorded data is additionally increased by the limited detector resolution.

Numerical example:For a typical tomographic reconstruction we record data atNt = 1536

sampling points (corresponding to the CCD width) and atNθ = 720 projection angles, i.e., in steps

of 0.25 degree. According to Equation (3.22), the optimal number of projections would thus be

Nθ,opt ≈ 2413. As discussed, we will generally still obtain a good reconstruction, even when using

only Nθ = 720 projections, i.e., with an undersampling of a factor of∼3.

3.2.4 Computational costs

The order of the number of operations [designated byO()] required by the filtered backprojec-

tion algorithms is given by Natterer [108, p. 111]. The total computational costs are given by the

sum of the operations required for the filtering and the backprojection operation as

O(reconstruction)= O(filter) + O(backprojection). (3.23)

When the filtering operation is implemented as convolution, we haveO(filter) = O(Nθ N2
t ).

The filter implemented in Fourier space and application of the fast Fourier transform reduces this

number toO(filter) = O(Nθ Nt logNt) operations. Backprojection requiresO(backprojection)=

O(Nθ N2
t ) operations. The total computational costs using fast Fourier transforms, thus, are

given by

O(reconstruction) = O(Nθ Nt logNt) + O(Nθ N2
t ) (3.24)

= O(N2
t logNt) + O(N3

t ) , (3.25)

where we have used the relationNθ = (π/2)Nt in Equation (3.25), which is the optimum sampling

condition discussed above. The total computational costs are dominated by the backprojection

process.
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3.3 Reconstruction quality

3.3.1 Spatial resolution

The spatial resolution in the reconstructionf̃ (x, y) can be described by a point spread function

PSFf̃ of the reconstruction as

f̃ (x, y) = PSFf̃ (x, y) ∗∗ f (x, y) , (3.26)

wheref (x, y) is the original slice and∗∗ designates two-dimensional convolution. The point spread

function PSF̃f of the reconstruction is obtained by reconstruction of a centered point-like object,

whose projections are given bypθ(t) = δ(t). The Fourier transform of the delta function is unity

for all frequenciesw, and we thus havePθ(w) = 1 for all projection anglesθ. The reconstruction

in Equation (3.9) then gives

PSFf̃ (x, y) =
∫ π

0

∫ +∞

−∞

H(w) eι2πw t dw dθ , (3.27)

whereH(w) is the ideal ramp filter multiplied by the optional filter function andt = x cosθ+ysinθ.

The effect of the ideal ramp filter can be described by setting the integration limits to plus and

minus the Nyquist frequency, which is 1/2τ for sampling intervalτ. This band-limit has the same

effect on PSF̃f as a circular aperture has for the PSF of an optical system. Thus, oscillations are

caused by the band-limit, which are sometimes referred to as ‘ringing’. Figure 3.3(a) shows the

PSFf̃ that was obtained from our standard reconstruction of a point-like oject. The reconstruction

grid was defined with a 0.25τ spacing here, whereτ is the sampling distance in the projection. In

the plot through the center in Figure 3.3(b), the oscillation between positive and negative values is

visible.

The influence of the detector point spread function can be incorporated into Equation (3.27).

By insertion of the radially symmetric modulation transfer functionM(w) of the detector that was

introduced in Equation (2.32), we obtain:

PSFf̃ =

∫ π

0

∫ +∞

−∞

H(w) M(w) eι2πw t dw dθ . (3.28)

Here, we have used the two-dimensional representationM(w) of the detector MTF for the descrip-

tion of the blur within a one-dimensional projection. This was also done by Busch [31, p. 73 f.],

who referred to Glover and Eisner [65]. However, it must be pointed out that Equation (3.28) only

gives a correct description of blur, when the two-dimensional recorded projections are independent

of thez-direction as for cylindrical samples. Only in this caseM(w), which is the one-dimensional

Fourier transform of the detector line spread function, describes the blur in the one-dimensional

projection correctly.
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Figure 3.3: Calculation of the PSF̃f of the standard reconstruction according to Budinger. The combination
of ideal ramp filter and Butterworth filter of Figure 3.2(c) was used in the reconstruction. (a) Reconstruction
of a sinogram withNt = 101 sampling points,Nθ = 200 projections, andpθ(t50) = 1 in the central pixel
and otherwise zero. The resolution of the reconstruction grid is 0.25τ, with τ the sampling distance in the
projection. (b) Plot of the central intensity profile. For negative values the absolute value is plotted (red).

3.3.2 Noise

This section deals with the propagation of the noise from the projection imagesp into the

reconstructed slices̃f . Noise in the reconstructed slices is sometimes referred to as ‘density reso-

lution’ and is seen as the broadening of peaks in the histogram of a reconstruction. The standard

deviationσµ, which is the statistical variation in a point of the reconstructed slicef̃ , can be used

to estimate the width of the peaks in the histogram.

Noise in the projection imagesp is dominantly caused by statistical fluctuations of the x-ray

photons, as discussed in Section 2.5.2. Several authors have discussed the propagation of noise

through the backprojection algorithm. (See, e.g., [42], [93], [56], and [68]). More references can

be found in [92]. Kak and Slaney [93, p. 199] described how the variance in the reconstruction

σµ(xi , y j)2, i.e., the variance of̃f (xi , y j) can be calculated for each point (xi , y j) on the recon-

struction grid. This calculation is performed for reconstruction according to the algorithm of Ra-

machandran that was presented above. For a simple estimation of the noise in the reconstruction

we will use a simple analytical expression derived by Davis [42].

Davis analytically derived an expression [42, Equations (2),(A22)] for the noise varianceσ2
µ of

a pixel in the center of the reconstruction of a homogeneous cylindrical or a slowly varying object.

The calculation is conducted for the reconstruction according to the algorithm of Ramachandran,

with the convolution kernelh( jτ) given in Equation (3.18), i.e., for the equivalent of the ideal

ramp filter10. Taking the effect of linear interpolation in the backprojection step into account

10The influence of filter functionsB(w) is described by Kak and Slaney [93]. For our standard reconstruction, the
influence of the Butterworth filter can be neglected and Davis formula is a good approximation.
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Davis determined the variance as

σ2
µ =

π2 − 3
18τ2Nθ〈N〉

. (3.29)

Here,τ is the spacing between sampling points,Nθ is the number of projections, and〈N〉 is the

same average count rate for all pixels. It is assumed that the photon signal obeys Poisson statistics

and is uncorrelated, with the same average photon count〈N〉 and variance〈(∆N)2〉 = 〈N〉 for

all sampling points. (The assumption of the same count rate for all pixels can be used as a first

approximation for our setup). In Appendix C.3, the signal variance for each sample point in the

projection is calculated. The result, neglecting the influence of noise in the reference image, is

given by Equation (C.44) as

σ2
p = 〈(∆p)2〉 =

1
〈N〉
. (3.30)

The optimal signal-to-noise ratiop/σp in the measurement of the projected attenuation coefficient

is achieved forp ≈ 2 (see derivation in Appendix C.3 or Section 2.5.2).

Hereby, Equation (3.29) can be rewritten as

σ2
µ = c

1
τ2Nθ

σ2
p , (3.31)

wherec = 0.3816 is a constant.

By introduction of the detector widthW, with W = Ntτ, whereNt is the number of sampling

points, we obtain

σ2
µ =

c

W2

N2
t

Nθ
σ2

p (3.32)

=
c

W2

N2
t

Nθ〈N〉
, (3.33)

which demonstrates the dependence of the variance on the sampling parametersNt, Nθ, and the

average photon count〈N〉 at each sampling point. The decrease of the variance with increasing

detector widthW must be related to the typically lower attenuation coefficient µ at increasing

sample diameters. This is possible by introduction of the relative variance of the reconstructed

attenuation coefficient as

R(µ) =
σ2
µ

µ2
=

c

(µW)2

N2
t

Nθ〈N〉
(3.34)

The optimal signal-to-noise ratioµ/σµ in the center of the reconstruction is again obtained for

p ≈ 2. (Since it isµW ∝ p, the functionσµ/µ is proportional to the functionσp/p and conse-

quently has the same minimum).

We shall estimate the relative variance for the reconstruction of a homogeneous cylindrical

object, with diameterD =W equal to the detector width. If projections are recorded under optimal

condition, i.e., with maximum projected attenuation coefficient pmax= µD = µW = 2, the relative
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variance at the center of the cylinder in Equation (3.34) becomes

R(µ)
∣∣∣µW=2 =

c
4

N2
t

Nθ〈N〉
. (3.35)

Example 1: In a typical SRµCT measurement we have〈N0〉 = 80 000 quanta in the refer-

ence image,Nθ = 720 projections,Nt = 1536 sampling points in each projection, and optimal

attenuationp = µW = 2. We then can use〈N〉 = 〈N0〉exp(−p) ≈ 8 000 as an approximation

for the average count rate in each pixel, which gives the varianceσp ≈ 0.011 in the projection.

For these numbers the relative variance in the reconstruction given by Equation (3.35) becomes

R(µ) ≈ 0.039, the signal-to-noise ratio becomes SNR=
√

1/R(µ) ≈ 5.06, and the standard devia-

tion becomesσµ = µ
√

R(µ) ≈ 0.20µ, with µ = 2
W.

3.3.3 Noise form the reference images

The influence of noise in the reference images in SRµCT seems not to have been discussed by

other authors before. However, due to the time-dependent structure of the x-ray source in SRµCT

the influence of the constantly acquired reference images on the reconstruction cannot be neglected

as it is typically done for (stable) x-ray tube sources. Important aspects for the measurement of

reference images and their influence on the noise in the reconstruction shall be discussed here.

As can be seen from Equations (3.31) and (C.42) noise in the reference images gives simply an

additive contribution to the variance in the reconstructions. The contribution from the radiographic

projections to the variance is proportional to (Nθ 〈N〉)−1, while the contribution of reference images

is proportional to (Nr〈N0〉)−1, whereNθ is the number of projection images andNr is the number

of reference images (compare Section 2.5.2). The contribution of the reference images to the noise

in the reconstruction should be considered in recording and processing of images, i.e., the number

of imagesNθ andNr should be selected accordingly.

We generally observe a structure in the noisy data that cannot be explained by simple pixel-

wise fluctuations in the reconstruction. This noise is especially pronounced for weakly absorbing

samples. It is more pronounced at the center of the reconstruction and decreases with increasing

distance from the center. With increasing distance from the center also the point-like noise struc-

ture changes into small streaks oriented on concentric curves around the reconstruction center. As

could be verified by simulation, the observed structures are caused by thenoise in the reference

images. The streak-like structure and the increase to the center could be reproduced in a simula-

tion, where each noisy reference image was used for the calculation of several projection images as

in our measurements. The structured noise becomes visible in the reconstructions, when the noise

in the reference images makes a relevant contribution to the noise in the projections. Thus, the

structured noise caused by the reference images is more pronounced for objects of low absorption.
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3.3.4 Binning reduces noise

As to be seen directly from Equation (3.33), the noiseσµ in the reconstruction depends on

the number of sampling pointsNt and the average number of recorded quanta〈N〉 in a pixel.

Sometimes it can, therefore, be desirable to reduce the number of sampling points by binning.

This can in practice be done in two ways: using the on-chip binning of the CCD or by binning

of the recorded projection data in the computer prior to reconstruction.11 We shall distinguish

between the two binning factorsbt andbz, wherebt is the binning factor along thet-direction of

the projectionpθ(t) andbz is the binning factor over the perpendicular direction, i.e., over parallel

slices. When both are equal, we writeb = bt = bz. The total (average) number of collected charge

quanta given by〈Ntot〉 = 〈N〉NθNtNz is changed only in the case of on-chip binning.

1.) Theon-chip binning in our CCD camera limits the total number of charge quanta in the

binned image to the maximum CCD count times the (fixed) CCD gain. Thus, the average count

rate〈N〉 in the binned image is the same as for the unbinned image. Only the number of sampling

pointsNt is changed. We can substitute

Nt → N′t = Nt/bt (3.36)

in Equation (3.33), withbt the binning factor along thet-direction of the projectionpθ(t). There is

no influence ofbz. The variance in the reconstruction from the on-chip-binned data is then given

by

σ′2µ =
1

b2
t

σ2
µ . (3.37)

The noise level thus scales with the binning factor asσ′µ ∝ b−1
t . The higher the binning factor, the

lower is the noise level. The exposure time scales ast′acq ∝ b−1
t b−1

z for this type of binning and so

does the total number of charge quanta, for which we find〈N′tot〉 ∝ b−1
t b−1

z .

2.) Binning of the recorded images, which we perform before calculation of the projection

data, can be described by substitution of

Nt → N′t =
Nt
bt

and

〈N〉 → 〈N′〉 = btbz〈N〉
(3.38)

in Equation (3.33). This describes the reduced number of sampling pointsN′t in the reconstruction

and the simultaneously increased number of collected charge quanta〈N′〉 per sampling point.

From Equation (3.33) we find

σ′2µ =
1

b3
t bz
σ2
µ . (3.39)

11A third variant of binning is of course the binning of the reconstructed slices. One would expect a decrease of the
noise variance proportional tob−2 for uncorrelated data, when the averaging is performed overb2 pixels. The values in
the reconstructed slices are, however, correlated through the reconstruction process, which must be considered in this
case. Comparison of binning before and after reconstruction should be investigated in a future study.
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If the binning factor is the same for both detector coordinates, i.e. ifb = bt = bz, then the noise

level scales asσµ ∝ b−2. Exposure time and the total number of collected charge quanta are of

course unchanged for this type of binning.

It should be noted, that the reduction of noise by the application of binning to the recorded

images is probably not optimal, since information is irreversibly lost in this operation. An exper-

imental study that discusses the optimum binning of projections in an SRµCT measurement was

presented by Thurneret al. [145].

Example 2:The noiseσ′µ in a binned measurement, with binning factorb = bt = bz = 2 and

otherwise the same parameters as inExample 1above can be calculated. InExample 1the noise

varianceσµ = 0.2µ was found for a typical reconstruction. For the binned measurement we find

σ′µ = b−1σµ = 0.1µ for on-chip binning andσ′µ = b−1
t b−1

z σµ = 0.05µ for binning of the recorded

data, when it is assumed that the CCD dynamic range is fully utilized.

3.3.5 Geometrical requirements for parallel-beam tomography

The finite source size causes blur in the radiographic images, while the finite source-to-sample

distance causes a deviation from the ideal parallel-beam geometry. We can make a simple estima-

tion of the geometrical requirements that must be fulfilled for parallel-beam tomography.

We shall assume that the opening of the radiation cone from the wiggler is wide enough,

such that any source point illuminates any point on the sample. This will result in a conservative

estimation of the geometrical conditions that have to be met for a parallel-beam tomographic mea-

surement. More blur will be introduced by the source in the horizontal than in the vertical direction

due to the larger horizontal source size. Thus, we will formulate the following conditions for the

horizontal direction as the limiting factor. The geometry in the horizontal plane is schematically

represented in Figure 3.4. The horizontal source size 2σX, source-to-sample distanceL, and sam-

ple diameterD are defined as shown in the figure. We shall assume that the sample-to-detector

distance is also given by the distanceD.

Theblur induced by the source sizeis represented by the spacing of the red lines in 3.4 (at

the detector plane) and should be less than the sampling distanceτ on the detector. Thus, the

condition
σX

L
D < τ (3.40)

must be fulfilled. Here, we have approximated the source-to-detector distance by the sample

diameterD for all points on the sample. Assuming, that the detector width equals the sample

diameterD, we obtain the sampling distanceτ = D/Nt, with Nt the number of sampling points.

Thus, Equation (3.40) can be rearranged as

Nt <
L
σX
. (3.41)
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Figure 3.4: Schematic representation of blur induced by source size (red lines) and deviation from the
parallel-beam geoemetry (green lines) for the horizontal direction. The scheme shows the source-to-sample
distanceL, the sample diameterD, and the horizontal source size described by it half diameterσX. It is
assumed that the sample-to-detector distance is alsoD. The drawing is not to scale. Typical distances would
beL = 35 000 mm andD = 5 mm in SRµCT.

Similarly, we can derive a condition for thedeviation from the ideal parallel-beam geome-

try , which must be fulfilled for the parallel-beam reconstruction algorithm to be applicable to the

recorded projection data. The maximum deviation from the parallel-beam geometry is observed

for the outermost sample positions. The projection of the outermost ray that penetrates the sam-

ple may not be separated by more than the sampling distanceτ from the projection of the ideal

parallel-beam projection (illustrated by the spacing of the green lines in 3.4 at the detector plane).

This gives the condition
D
L

D < τ . (3.42)

With τ = D/Nt, this can be rearranged to

Nt <
L
D
. (3.43)

The application of fan- or cone-beam reconstruction algorithms (e.g., the cone-beam reconstruc-

tion by Feldkampet al. [57]) must be considered if this condition is not met.

Numerical example:For beamline BW2 (see parameters given in Table 2.1), we haveσX ≈

σx = 2.22 mm, andL = 35 000 mm, which givesL/σX = 35 000/2.22 = 15 766 (divergence:

0.063 mrad). Thus, for our sampling resolution ofNt = 1 536, the condition for an unblurred

image given by Equation (3.41) is easily fulfilled withNt = 1 536< 15 766. The parallel-beam

geometry is applicable as long as Equation (3.43) is fulfilled. ForNt = 1 536 sampling points this

is the case for samples smaller thanD < 35 000 mm/1 536= 22.8 mm. The beam divergence at the

sample position was measured for HASYLAB beamline BW2 with a pinhole (compare Appendix

D.7). This verified a beam divergence of less than 0.108 mrad.
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3.3.6 Sources for artifacts

Any perceived distortion or other data error caused by the instrument of observation is called

an artifact.12 Recently, an investigation of reconstruction artifacts in SRµCT was presented by

Vidal et al. [148], who simulated artifacts and compared them with experimental data. Here, it is

attempted to give a complete list of the possible artifact sources in SRµCT.

The x-ray source, which must be understood as part of our instrument, gives rise to an always

present artifact, which is

• Noise. Noise is introduced by the statistical fluctuations of the x-ray beam as discussed in

Section 3.3.2. Readout noise and quantization noise of the CCD are typically negligible.

Leakage of intensity into regions of low intensity (high absorption) can be caused by the

following sources. These effects add blur to the incident intensity profile and can result in a non-

linear effect in the calculation of the projected attenuation coefficient. This can cause an integral

under-estimation of the measured attenuation coefficient in the projections as discussed in Section

2.5.1.

• Beam divergence. The opening angle of the radiation cone and the finite source size can blur

the recorded images (compare Section 3.3.5). The source is extended and generates a cone

of radiation in each point. It can be described as a four-dimensional function. In order to

obtain good projection data, the influence of the source must be the same in all projections.

Accordingly, the spread that is introduced in the projection over the distance of the sample

diameterD must be small. In our measurements the distance between sample and detector

typically is in the order ofD and we can neglect the source influence.

• Detector blur (in space and time). The effect of the detector PSF on the recorded projection

images and the reconstruction depends on sample geometry and beam profile as discussed

in Section 3.2.3. Afterglow of the luminescent screen can cause the blur of intensity in time.

• Scatter. The relevance of Rayleigh and Compton scatter is discussed in Section A.3. For

samples of diameterD < 1 cm and with the selection of accordingly low x-ray energies,

their influence is negligible. If necessary, scatter can be suppressed by the use of x-ray

collimators.

• Fluorescence. When atomic fluorescence is excited as secondary radiation inside the sam-

ple, it may become visible on the detector much like scattered radiation. The contribution

of fluorescence to the signal will mostly be low, due to the isotropic generation of the fluo-

rescent radiation and the typically strong self absorption of the fluorescent radiation.

12Definition fromhttp://en.wikipedia.org/wiki/Artifact.
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• Diffraction phenomena (phase propagation, refraction, total reflection, Bragg reflection).

Except for Bragg reflection, these effects are negligible at short sample-to-detector dis-

tances. Bragg reflection can occur for samples of crystalline structure, when the Bragg

condition is fulfilled. Using an x-ray source with small bandwidth, the probability for Bragg

reflection is small and the effect is negligible.

The following are sources of systematic artifacts in the reconstruction:

• Beam hardening. The attenuation coefficient is a strong function of photon energy as de-

scribed approximately by Equation (A.13). In a polychromatic beam, the low energetic

components are more strongly attenuated than the high energetic components, whereby the

measurement of the attenuation coefficient becomes non-linear. This effect was described

by Brooks and di Chiro [27] and is known as beam hardening. The small bandwidth of

the Si(111) reflex causes a negligible variation of the attenuation coefficient as described

by Equation (A.15). The contribution of higher harmonics as from the Si(333) reflex can,

however, be relevant. It can be suppressed by mirrors that are introduced into the SR beam

as low-pass filters.

• Misalignment of projection data. Proper alignment of the rotation axis is required (compare

Section D.3). Moreover, the determination of the center of rotation is required and will be

discussed in detail in Chapter 5.

• Incomplete data. When the sample leaves the field of view or projections are missing (as in

laminography), techniques for the sinogram restoration must be applied before reconstruc-

tion.

• Aliasing. The artifacts that are introduced by under-sampling (band-limited data) of the

number of projectionsNθ, the number of sampling pointsNt or by the detectors sampling

function are referred to as the aliasing distortions.

• Partial volume effect. The partial volume effect describes the additional blur (averaging)

that is caused by the detector sampling function (e.g., form of detector pixels) and the finite

reconstruction grid.

• Detector non-linearities. If the same pixel in every projection is recorded incorrectly due to

a local non-linearities of the detector, ring-artifacts are created. An example of ring artifacts

is shown in the reconstruction of Figure 6.11(d). Ring artifacts are most pronounced at

the center of the reconstruction and decrease in intensity with increasing distance from the

center. They are typically dominated by non-linearities of the luminescent screen, while the

CCD non-linearity is typically negligible.

• Deviation from the parallel-beam geometry. The limit was discussed in Section 3.3.5.
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• Sample movements or morphological changes of the sample. Any movement of the sample

other than the tomographic rotation will result in inconsistent projection data and recon-

struction artifacts. To detect morphological changes, e.g., Du Roscoatet al. [130] have

calculated the cross-correlation coefficient of equivalent projections that were recorded at

different times.

• Source fluctuations. Fluctuations of the SR beam can be caused by the decaying electron

(positron) beam intensity, variations of the electron beam position, and heat-load effects on

the monochromator crystals. The resulting intensity variation must be small and slow. The

decaying beam intensity is compensated as presented in Section 2.5.

• High-energetic hits on the CCD. The hits give rise to single streaks in the reconstructions.

They can be corrected by Zinger removal techniques as discussed in Section 2.5.

Beam hardening can cause a similar non-linear effect as the long tails of the point spread

function. By measurements with defined absorber plates (not presented) it was verified that beam

hardening caused by higher-order harmonic radiation had negligible influence on our measure-

ments. However, if the detector blur is successfully removed (e.g., by deconvolution) then the

next limitation for quantitative measurements might be imposed by these high-energetic compo-

nents.

The same as for beam hardening holds for afterglow in the luminescent material. Afterglow

blurs intensity in time, i.e., over projections and can result in a similar non-linear effect. When

the exposure times will further reduce with future CCD cameras, the influence of afterglow might

become relevant.
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Chapter 4

Optical coating of the luminescent

screen

4.1 Introduction

The x-ray camera presented in Chapter 2 is based on lens-coupled imaging of a luminescent

screen (x-ray phosphor). Part of the luminescent light that is collected by the lens system is

reflected or scattered inside the luminescent screen before it leaves the screen. Thus, it does not

seem to be emitted at the original place of luminescent light generation (x-ray detection). This is

observed as a broadening of the point spread function (blur), which exhibits weak but extended

tails, and as the more or less sharp images of crystal defects.

The crystals that are employed as luminescence screens, typically possess polished plan-

parallel surfaces, a high refractive index, and are optically clear. A major fraction of luminescent

light can, therefore, be trapped between the crystal surfaces by total reflection. This is the case

for both luminescent bulk crystals as well as for crystals with only a thin active (luminescent)

layer. The trapped light may travel large distances and can be coupled out, when it is scattered

at surface defects (e.g., scratches) or crystal impurities that serve as secondary sources. These

localized defects that become visible as screen inhomogeneities give rise to ring artifacts in the

tomographic reconstruction. Therefore, we want to minimize the fraction of light that is trapped

by total reflection, i.e., we want to minimize the reflectivity at the crystal surfaces.

The long tails in the point spread function have been recognized by several authors [36], [66],

[70], [96], [129], [142]. Several strategies for their suppression exist. Generally, the reflection

properties of optical elements can be tailored by application of absorbing, reflective, or anti-

reflective coatings. The application of optical coatings for x-ray detectors has been described

in a review article by Gruner [70] and for the field of medical imaging systems in another review

article by Rowlands [131]. Kochet al. [96] and Cloetens [36] already suggested that an absorbing

coating could be used to suppress the long tails appearing in single crystals employed as lumines-
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cent screens in microtomography. However, so far only the application of anti-reflection coatings

has been reported by Cloetens [36], who applied the coating to both surfaces of doped YAG and

LAG crystals. The use of immersion liquids (frequently used in microscopy) between objective

and scintillator could also reduce the total internal reflected light, as noted by Kochet al. [96].

Structured scintillators can be used to inhibit light propagation in the luminescent material. Struc-

tured CsI(Tl) that is deposited by columnar growth or lithographically fabricated phosphor plugs

are commercially available. However, the spatial resolution achieved with these screens is in the

range of 10µm only (compare Martin and Koch [102, Fig. 2]).

An optical coating on the screen surface opposite to the imaging detector is called a backing

layer and typically is reflective or absorbing. Reflective backing layers result in an increased light

output and a reduced spatial resolution of the system, while absorbing backing layers result in a

lower light output but also enhance the spatial resolution. In this work an absorbing optical coating

of black lacquer paint was applied to the luminescent crystals in order to suppress the long tails in

the PSF.

The preparation of crystals is described in Section 4.2.1. The influence of the backing layer

on the spatial system response was quantified by edge profile measurements that are presented in

Section 4.2.2. Optimal suppression of reflections can be expected, when the refractive indices of

luminescent crystal and the backing layer match. Therefore, the refractive index of the lacquer

was measured using ellipsometry. The measurement result is presented in Section 4.2.3. From the

known refractive indices of crystal and lacquer, the fraction of trapped light is estimated using the

Fresnel equations in Section 4.2.4. The influence of the backing layer on the microtomographic

measurement of a human femur will be demonstrated in Section 6.2.

4.2 Preparation and characterization of the backing layer

4.2.1 Application of lacquer paint

An absorbing backing was prepared on several CdWO4 crystals of different thickness during

this work. Two crystals with thickness of 1.0 mm and 0.08 mm (referred to as CWO1 and CWO2),

respectively, were characterized by edge profile measurements before and after application of the

backing layer. The results obtained for these two crystals are presented here.

The absorbing backing was applied to the crystal surface that faces the incoming x-ray beam,

as shown in Figure 4.1. Black spray lacquer was used to form a thin, optically opaque surface layer

on the crystals. The spray lacquer (type: ‘Buntsprühlack seidenmatt’, manufacturer: Eisodur) was

applied such that it also covered the edges of the crystals, at which reflections of course should be

suppressed too. The attenuation of x-rays caused by this thin lacquer layer can be neglected for

SRµCT measurements at energies above 10 keV. At lower energies some x-ray intensity is lost. In
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Figure 4.1: Scheme of the luminescent crystal with backing layer. The surface oriented towards the in-
coming x-ray beam and the crystal edges are covered with black lacquer paint. Internal reflections are
suppressed.

1 1

2 2

200 µm

(a) (b)

Figure 4.2: Microscope images of a 1 mm thick CdWO4 crystal with many surface defects. Focussed on
(a) back surface and (b) front surface. The arrows mark (1) an extended point defect on the backside and
(2) a streak on the front side.

any case, the attenuation by the lacquer layer is automatically corrected during the measurement

by normalization with reference images.

Light microscope images of the 1.0 mm thick crystal CWO1 taken before application of the

backing are shown in Figure 4.2. This crystal displayed a lot of surface defects on both its front and

its back surface.1 Actually, the crystal was selected for the test of the black backing for exactly

this reason. The light microscope images give a good indication of the crystal performance in

the x-ray camera.2 Defects on each surface can be identified by focussing the microscope to the

crystals back surface [Figure 4.2(a)] and the crystals front surface [Figure 4.2(b)]. Note that our

x-ray camera typically is focussed onto a layer close to the back surface. Defects on the back

surface will thus give a sharp, disturbing image.

1Front/back as seen from the camera or microscope. The back surface carries the black backing.
2The image seen with the light microscope will however be different to the image seen with the x-ray camera,

although, the x-ray camera is not much different from a microscope. The difference is due to the light source: external
light source in the microscope, luminescence light generation inside the crystal in the x-ray camera.
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4.2.2 Edge profile measurements

Both crystals CWO1 and CWO2 were characterized by edge profile measurements directly

before and after application of the backing layer. The edge profiles were recorded at HASYLAB

beamline BW2. The edge profile was realized using a gold plate that was opaque for the incident

radiation. The detailed measurement parameters are given in the footnotes of Table 4.1.

Figure 4.3 shows data from the edge-profile measurement for crystal CWO1. Figure 4.3(a)

shows the image recorded with the untreated crystal. Figure 4.3(b) shows the equivalent image

recorded after application of the backing layer. Both images have been dark image corrected and

are plotted in logarithmic scale. The x-ray beam in these measurements was reduced to rectangular

shape by the slit system. The central edge in the images corresponds to the gold edge. The images

were recorded within about 30 minutes. The observed change of the beam profile during this time

was negligible for the evaluation, and the mean CCD count over all pixels in the two (dark image

corrected) images was very similar with Mean(NADU) = 3214.3 and Mean(NADU) = 3385.65 for

the images in Figures 4.3(a) and (b), respectively. Hence, the intensity profile in the tails is directly

comparable.

The intensity spreads into the dark regions of the images in both cases. It is directly evident,

that the intensity in the tails is higher for the untreated crystal than it is for the crystal with the

absorbing backing layer. Figure 4.3(c) shows the measured CCD counts of the same CCD row for

the untreated (curve 1) and the treated crystal (curve 2). An intensity reduction of about a factor of

two is observed for the treated crystal. Furthermore, a reduction of the signal variation is observed,

which can partly be explained by the reduced intensity and the corresponding reduction of photon

noise.

The strong inhomogeneities in the profile of Figure 4.3(a) are most likely caused by surface

defects on the back surface. Defects on the front surface would not be seen as a sharp image for

a crystal of 1 mm thickness (compare the images in Figure 4.2). These inhomogeneities appear

much less pronounced after application of the backing in Figure 4.3(b). Light emission from

surface defects is obviously strongly suppressed now. Figure 4.3(d) shows a closeup of two weakly

visible screen inhomogeneities that correspond to the two peaks in the profile (curve 1) in Figure

4.3(c). It will be shown in Section 6.2 that these two weak spots result in significant ring artifacts

in the tomographic reconstruction.

The plots in Figure 4.4(a) show the intensity averaged across a subregion around the central

edge profile, i.e., the edge spread function (ESF). The intensity was normalized to the maximum

intensity (mean value of the pixels with>95% maximum intensity) in the image for the calculation,

and were shifted upon averaging to correct for the edge tilt, as described in Section D.1. In this

logarithmic plot, a reduction of the intensity in the tails of the ESF by a factor of about two is

observed after application of the backing layer. Note that the observed absolute change of the

ESF is only small. However, the relative change and not the absolute change is important for the

measurement of projections.
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Figure 4.3: Edge profiles recorded with an absorbing gold edge for crystal CWO1 as (a) untreated crystal
and (b) after application of the black backing. The images have been dark image corrected and are shown
in logarithmic scale. The visible full CCD size corresponds to a field of view of 4.12×2.74 mm. (c) Plot of
CCD counts along the dashed lines (1,2) in images (a) and (b). (d) Closeup of the marked region in (a), with
two screen defects marked by circles. The two screen defects correspond to the intensity peaks in curve 1 of
the plot in (c). The solid, vertical line in (a) to (c) marks the position of the center of rotation in the SRµCT
scan presented in Section 6.2.
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Figure 4.4: ESF, LSF, and MTF determined from the edge profile measurements performed on the two
CdWO4 crystals CWO1 and CWO2. Edge profiles were recorded both for the untreated crystal and after
application of the backing layer. (a,b) ESF normalized to its maximum as described in the text; the intensity
fall off at the right side of the dashed curve for crystal CWO2 is caused by an inhomogeneous beam profile.
(c,d) LSF from derivation of the ESF. (e,f) MTF calculated from the symmetrically completed left hand
side of the LSF. The difference of the MTF in the untreated case and with black backing is plotted (dotted
line) and shows a small increase of the MTF at low frequencies. The MTFs of CWO1 and CWO2 end at
the Nyquist frequency, which is different for the two crystals due to difference in the effective pixel size in
the measurements.
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Table 4.1: Resolution before and after application of the backing layer.

CWO1a CWO2b

Resolution measure untreated backing untreated backing

10% MTF [µm] 4.61 4.64 3.66 3.51
FW of 50% int. LSF [µm] 9.99 9.00 7.31 6.35
FW of 90% int. LSF [µm] 168.86 48.72 95.97 41.33
aCryst. th.: 1.0 mm, object. foc. length: 35 mm, f-number: 3.56, magn.: 3.36, x-ray energy: 22 keV
bCryst. th.: 0.08 mm, objective foc. length: 35 mm, f-number: 3.56, magn.: 5.97, x-ray energy: 20 keV

Figure 4.4(c) shows the LSF, which was determined by derivation of the ESF. The same re-

duction as for the ESF is of course seen for the LSF too. The right hand side of the LSF is very

noisy because of the higher photon noise on the bright side of the edge.

The MTF shown in Figure 4.4(e) was calculated from the symmetrically completed left hand

side of the LSF as explained in Section D.1. The MTF does not change significantly at high

frequencies. Only for low frequencies, the MTF is slightly increased. Again, the change of the

MTF is small because the absolute change of the ESF is small.

Table 4.1 gives the spatial resolution that has been determined from the normalized edge pro-

files using different spatial resolution measures (introduced in Section 2.4.3). The high-frequency-

dependent resolution measures corresponding to 10% MTF and the full width (FW) of 50% in-

tegrated LSF are only slightly reduced upon application of the backing, while the low frequency

sensitive measure of the full width over 90% integrated LSF is drastically decreased. This demon-

strates the limited usefulness of a single resolution parameter for the description of the entire

system response. The drastic relative change of intensity in the long tails of the PSF is not noticed,

if the system is described only by the resolution parametera10.

For crystal CWO2 very similar effects as for crystal CWO1 were observed. The ESF shown in

Figure 4.4(b) displays a similar reduction of intensity in the tails. However, the beam profile in the

edge-profile measurement with backing layer was not entirely homogeneous with a maximum of

the intensity in the center of the image, which can be recognized as the intensity fall off at the right

hand side of the ESF. This probably caused an additional reduction of intensity for the long-range

components of the measured ESF.

4.2.3 Refractive index of lacquer paint

The refractive index of the lacquer paint was measured as a function of wavelength using pho-

tometric ellipsometry. In ellipsometry, the change in polarization of a light beam upon reflection

on a sample is measured. For a detailed description of the method see the book by Azzam [5].

The measurement was carried out at the ‘Institut für Angewandte Physik’, University of Ham-

burg using a commercially available Sentech SE850 spectrally resolving ellipsometer. A thin film

of lacquer paint was prepared for the measurement onto a flat glass substrate. The reflected inten-
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Figure 4.5: Refractive index of the applied lacquer paint. Real part (n) and imaginary part (κ) as function
of wavelength were calculated from the photometric ellipsometry measurement.

sity from the lacquer paint was recorded as a function of wavelength at fixed polarizer orientations

and fixed reflection angle. A xenon discharge lamp was used as light source and the reflected light

was spectrally resolved by a grating spectrometer in combination with a photo diode array. From

the measured intensity and assuming a homogeneous, isotropic, and compared with the penetra-

tion depth (infinitely) thick sample, the complex refractive index of the lacquer ˜n = n + j κ was

calculated. Here, the imaginary partκ describes how fast the amplitude of the wave decreases

and is called the extinction coefficient. It is directly related to the absorption coefficient given by

4π κ/λ, whereλ is the wavelength of light.

Figure 4.5 shows a plot of the determined refractive index as a function of wavelength. For

the central spectral emission wavelength of CdWO4 at 500 nm, the real and the imaginary part of

the refractive index are approximatelyn = 1.485 andκ = 0.085, with only a slight variation with

the wavelength over the CdWO4 emission spectrum, which allows us to use these fixed values as

an approximation over the full range of the luminescent screen emission spectrum.

4.2.4 Reflectivity and fraction of trapped light

The reflectivity and the transmittance at the crystal surfaces can be calculated from the law of

refraction and the Fresnel equations (see Born & Wolf [25, Sect. 1.5]) from the complex refractive

indicesñ1 of the crystal and the complex refractive index ˜n2 of the second medium. Knowing the

refractive indices of crystal and lacquer, we can now estimate and compare the fraction of totally

reflected light for a crystal with and without absorbing backing.

Figure 4.6(a) shows plots of the reflectivity at the crystal-to-air surface and at the crystal-to-

lacquer surface as a function of incident angle. Here, the incident angle is defined as the angle that

the direction of incidence makes with the surface normal (see Figure 4.1). The complex refractive

indices ñ1 = 2.2 for the CdWO4 crystal, ñ2 = 1.0 for air, andñ2 = 1.485+ j 0.085 for the

lacquer paint as determined by ellipsometry, were used. The luminescent light was assumed to

be unpolarized.3 The reflectivity at the crystal-to-air surface becomes unity for incident angles of

3The assumption of unpolarized light is justified for the emitted luminescent light. However, note that the lumi-
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Figure 4.6: Reflectivity of unpolarized light at the internal crystal surface. (a) Calculation for first medium
CdWO4 with refractive index ˜n1 = 2.2 and for second media air with ˜n2 = 1.0 and lacquer paint with
ñ2 = 1.485+ j 0.085. The dashed curve has been calculated neglecting the complex part in the refractive
index of the lacquer paint, i.e., for ˜n2 = 1.485. In this case, total reflection appears above a certain angle.
(b) Same calculation for first medium YAG with ˜n1 = 1.8. (c) Reflectivity at the crystal-to-lacquer surface
of a crystal with assumed refractive index ˜n1 = 1.485 and matching lacquer paint with ˜n2 = 1.485+ κ for
assumed imaginary partsκ = 0.01, 0.05, and 0.2.

αtot = 27o and above. Hereαtot is the angle of total reflection, which is given by

αtot = arcsin
n2

n1
, (4.1)

in the case, when the refractive indices of both media are real numbers (˜n1 = n1 and ñ2 = n2),

i.e., in the ideal case of zero absorption. All luminescent light emitted under an angleα > αtot is

totally reflected at the internal crystal surfaces in this case.

The reflectivity at the crystal-to-lacquer surface [plotted in Figure 4.6(a)] is significantly lower

than the reflectivity at the crystal-to-air surface for all incident anglesα. This is the desired effect

for the suppression of the long tails in the PSF. The lower reflectivity at the crystal-to-lacquer

surface is of course due to the closer match of the refractive indices. Since the imaginary part of the

refractive index of lacquer paint ˜n2 is not zero, the phenomenon of total reflection has disappeared

here. Still the reflectivity is significantly different from zero, especially for high incident angles.

When the light travels through the crystal, multiple reflection at the crystal-to-lacquer surface will

take place, and more and more light will be absorbed. Thus, the intensity of the propagating

light will decrease with increasing distance from its generation. The intensity decay with distance

depends on the lateral distance that the light travels in between consecutive reflections, which in

turn depends on the crystal thickness.

For an uncoated luminescent crystal, the reflectivity at both plan-parallel surfaces is described

by the same crystal-to-air reflectivity curve. Thus, the totally reflected light is trapped inside the

crystal. Assuming isotropic generation of luminescent light, the fraction of trapped light intensity

nescent light will be polarized upon reflection at the crystal surface as described by the polarization dependent Fresnel
equations.
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can be calculated from the total-reflection angleαtot as

εtrap =
light emitted withα > αtot

total emitted light intensity
= 1− 2

2π (1− cosαtot)
4π

= cosαtot . (4.2)

For the crystal-to-lacquer surface, which does not show total reflection, the trapped light in-

tensity cannot be calculated in the same way. However, we shall define an effective total reflection

angleα′tot = arcsin[Re(ñ2)/n1], with Re(ñ2) = n2 the real part of the refractive index, neglecting its

imaginary part. The reflectivity curve that is obtained neglecting the imaginary part of the refrac-

tive index is shown for CdWO4 as the dashed curve in Figure 4.6(a) and gives an upper bound for

the reflectivity. We then enterα′tot into Equation (4.2) for the calculation of the effective fraction

of trapped lightε′trap.

For an uncoated CdWO4 crystal it isαtot = 27o and we find thatεtrap = 89% of the light is

trapped inside the crystal. For the same crystal with black backing, we calculateα′tot = 43o and

ε′trap = 73%.

Other luminescent crystals often applied as luminescent screens are Ce-doped Lu2SiO5 and

Ce-doped Y3Al5O12 (YAG). Both crystals have refractive indices in the order of 1.8, which is

closer to the refractive index of our lacquer paint than the refractive index of CdWO4 discussed so

far. Reflectivity curves for a crystal with ˜n1 = 1.8 were calculated and are plotted in Figure 4.6(b).

For these crystals, we obtainαtot = 34o andεtrap ≈ 83% for the uncoated crystal andα′tot = 56o

andε′trap = 57% for the crystal coated with lacquer paint. In both cases the trapped light intensity

is significantly less than for our present crystal-lacquer combination.

Figure 4.6(c) demonstrates the reduction of reflectivity that would be possible, when the re-

fractive indices of crystal and lacquer would match. Here refractive indices of ˜n1 = 1.485 for the

crystal and of ˜n2 = 1.485+ j κ for the lacquer paint were assumed. Variation of the extinction coef-

ficient around its true valueκ = 0.085 demonstrates the influence of the extinction coefficient. The

lower the extinction coefficient, the lower the reflectivity. The reflectivity is of course much lower

than for the equivalent curves of CdWO4 and YAG in Figures 4.6(a) and (b), which demonstrates

the high potential of lacquer and crystal with matching refractive indices.

4.3 Results and discussion

For our crystals with high refractive index (n ≈ 2.2), a major fraction (89%) of the luminescent

light is trapped inside the crystal by total reflection, when no coating is applied. Light inside the

luminescent crystal can be reflected at the crystal surfaces, or it can be scattered at surface defects

(screen inhomogeneities). It was found, that application of the black backing causes a relevant

reduction of internal reflectivity and thus reduces the intensity in the long tails of the PSF. This

relative reduction of intensity in the long tails is important in order to avoid non-linear effects,

when calculating the projection images (compare Section 2.5.1).
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Furthermore, the visibility of surface defects that may be present on the crystals is strongly

reduced by the backing layer, i.e., scatter or reflection from these defects is significantly reduced.

Since surface defects are the cause of screen inhomogeneities with non-linear response, their re-

duction will directly result in the reduction of ring artifacts in the tomographic reconstruction, as

it will be shown in Chapter 6.2.

The visibility of surface defects in the radiographic images differs for the crystal’s front and

back surface. When the luminescent screen is homogeneously irradiated, defects on the surface

that faces the incoming x-ray beam (back surface) are typically observed as an increase of light

intensity, while defects on the front surface are observed as a local reduction of the light intensity.

These latter defects are visible mostly for thin crystals, for which the front surface is close to the

focal plane and, thus, still is in focus. For thick crystals they appear blurry [compare Figure 4.2(a)],

which makes them less critical for the tomographic investigation. The backing layer suppresses

the visibility of defects on the back surface, to which it is applied, but the blurry defects on the

front surface remain. A way of reduction of the front surface defects is given by an increase of the

crystal thickness, which brings the front surface out of focus. This approach is however limited by

the spherical aberrations (see Appendix B.3) that are introduced by the additional crystal thickness.

The fraction of trapped light is reduced by application of the backing layer. However, the

reduction of intensity in the tails must be seen relative to the overall intensity loss caused by the

absorbing backing. Fortunately, the intensity (efficiency) loss that can be expected in the images

by application of the backing compared with the previously uncoated crystals is small: Without

backing, most of the light that is emitted into the opposite direction of the objective’s aperture

leaves the crystal and is lost for imaging. After application of the backing, this light is absorbed

inside the backing layer. Hence, the signal intensity recorded with and without backing layer is

similar. Any reduction of intensity in the long tails thus is purely beneficial for our measurements.

Other methods for the reduction of reflectivity might be thought of for the future. Application

of an anti-reflective coating (λ/4 coating) to the crystal’s front surface (that faces the objective)

seems useful. However, the performance of the anti-reflective coating depends on the light’s inci-

dence angle (and wavelength). Thus, the anti-reflective coating is advantageous only for limited

values of the numerical aperture. An immersion liquid in the space between crystal and objec-

tive could be used to suppress the reflectivity at the crystal-to-air surface and to increase the light

collection efficiency of the system (see Appendix C.1) simultaneously. Unfortunately, the use of

immersion liquids is difficult for practical reasons. One reason is the typical horizontal orientation

of the setup in combination with gravity.

Ellipsometry was applied for the measurement of the refractive index of the backing layer.

The refractive indices provided by this method in a simple and fast manner can be used as an input

parameter for further system optimization, e.g., employing optical simulation software.4 Different

luminescent screens and backing combinations should now be tested. Higher absorption efficiency

4Optical simulation software as, e.g.: TracePro©R, OSLO©R, or ZEMAX©R.
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of the backing layer (lower reflectivity) might be achieved by a combination of luminescent crystal

and absorbing substance with closely matching refractive indices. Other combinations of lumines-

cent and backing materials should thus be exploited in a future study. It will probably be easier

to find a matching coating substance for other luminescent materials than it is for CdWO4 with

its high refractive index ofn = 2.2. For a future comparison of luminescent screens and backing

combinations, the use of conventional x-ray tube systems should be considered. Although these

systems provide x-rays with a broader energy spectrum than typically used at synchrotron radia-

tion sources, they can provide a large and homogeneous beam profile more easily. Of course, also

an optical light source can be used for fast comparison of the optical properties.

Note that entire suppression of long-range blur is not possible for the discussed type of lens-

coupled x-ray detector, since it is fundamentally limited by the diffraction pattern of the

lens aperture.

However, since the application of an absorbing backing layer presents a simple, cheap, and

easy way of system enhancement, all crystals operated in our x-ray camera are being coated with

lacquer paint before their first use now. Other methods that make use of the same type of x-

ray camera, such as phase-contrast tomography or nano-tomography, can directly profit from the

technology of the presented blur-reduced detector.

4.4 Summary

An absorbing backing layer was applied to the luminescent screen of the x-ray camera and

characterized by the measurement of edge profiles. Apparently, use of an absorbing backing is

reported here for the first time for an SRµCT setup. The application of the backing layer to the

CdWO4 luminescent screens resulted in the reduction of the internal light reflections. A reduction

in intensity by about a factor of two was observed in the long tails of the edge spread function.

Ellipsometry was used to measure the refractive index of the backing material, which in turn

allowed to calculate the reflectivity at the crystal-to-lacquer surface and to estimate the trapped

light intensity. Besides the reduction of tails, it was found that application of the backing layer is

an excellent way for the suppression of screen inhomogeneities (that are the cause of ring artifacts

in the tomographic reconstruction).
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Chapter 5

Automated determination of the center

of rotation

5.1 Introduction

For the tomographic reconstruction of the recorded projections, it is important to know the

relative position of the rotation axis and the detector, i.e., the position of the center of rotation,

precisely. Otherwise, artifacts arise in the tomographic reconstruction as will be shown below.

Owing to the high spatial resolution of microtomography setups, it is difficult to measure the

relative position. And even if it has been determined once, the position can be altered, when a

new sample is mounted or setup parameters (e.g., camera magnification, luminescent screen, x-

ray energy) are changed. It is, however, very inconvenient to spend valuable measurement time

remeasuring the center of rotation. The tomographic projections are therefore often recorded

without precise knowledge of the center of rotation, which has to be determined from the recorded

projection data subsequently.

Mostly two methods are employed for the determination of the center of rotation from the

projection data. One method is based on image registration of mirror projections and the other

is based on the movement of the center of rotation in the projections. The precision reached by

these two methods is limited and often results in unsatisfactory reconstructions. Therefore, it is

common practice to calculate test reconstructions and to select the best reconstruction manually.

This laborious procedure is unsatisfactory, especially at synchrotron radiation sources, where great

numbers of data sets are recorded with short scan times.

In this work a new method for the determination of the center of rotation has been developed.

The method has been published by Donathet al. [49], [50]. It allows for the automated determina-

tion of the center of rotation from the recorded projection data. For demonstration the method is

applied to model systems (computer phantoms) and measured SRµCT data. The results are com-

pared with the results obtained from the often used center-of-mass method and image registration

based methods. The influence of measurement errors is discussed.
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Figure 5.1: Scheme of the microtomography setup at a synchrotron radiation source with the parallel x-
ray beam coming from the right. The rotation axis is aligned parallel to thez axis (ϑ ≈ 0) prior to the
measurement, such that it is perpendicular to the incoming x-ray beam and perpendicular to the detector
rows simultaneously. In this situation each detector row records the projection data of one tomographic
slice. The position of the aligned rotation axis as it is projected onto the detector (dashedzaxis) is uniquely
described by the parametertr .

Note that the determination of the relative orientation of recorded projections is a problem that

occurs in many types of tomography. In high-resolution measurements, this problem naturally

exists due to the limited precision of the rotation axis. This is, e.g., the case in electron tomography

(see Zieseet al. [166]) and in nano-tomography. In medical CT similar difficulties exist. Here

patient motion needs to be handled and the active research field of dynamic CT imaging (see,

e.g., Bonnetet al. [21]) actually aims at reconstructing image sequences of the moving human

body as, e.g., heart motion. Compared to these tasks the problem we are confronted with in

microtomography is relatively simple. We have to determine a single parameter only, the center of

rotation. A wrong center of rotation, however, would result in a systematically wrong alignment

of all projection images.

5.1.1 Alignment of the rotation axis

The microtomography setup at a synchrotron radiation source is shown schematically in Figure

5.1. The x-ray beam at a synchrotron radiation source can be assumed to be approximately parallel

and thus the simple parallel-beam geometry is approximately realized as discussed in the previous

chapter. The projection data are recorded by a two-dimensional x-ray detector. For the projection

measurements the rotation axis must be aligned perpendicular to the incident beam direction. At

the same time the rotation axis is usually aligned parallel to the detector columns. Then it is

ϑ ≈ 0 in Figure 5.1 and the rotation axis is parallel to thez axis. After alignment, the angular
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Figure 5.2: (a) Parallel projection of a slicef (x, y) under projection angleθ. (b) The corresponding sino-
gram consists of all projections. The position of the projected center of rotationtr corresponds to the vertical
line in the sinogram.

orientation of the rotation axis is kept fixed. In this case the position of the projected rotation axis

can be uniquely described by the parametertr in Figure 5.1. With this alignment the data recorded

on a single detector row contain the full information for the reconstruction of the corresponding

tomographic slice. The reconstruction of the (three-dimensional) volume data can be split into

many reconstructions of parallel slices, which can be calculated using the techniques of (two-

dimensional) parallel-beam tomography. Thus, the three-dimensional reconstruction is performed

as a stack of two-dimensional reconstructions.

5.1.2 Effect of a wrong center of rotation

The projections in parallel-beam geometry of a two-dimensional functionf (x, y) are mathe-

matically described by the Radon transform, which has been defined in Equation (3.3) as

pθ(t) =
∫∫

f (x, y) δ(xcosθ + ysinθ − t) dx dy. (5.1)

Here pθ(t) as a function ofθ andt is the sinogram. According to this definition the center of the

xycoordinate system is the center of rotation, which is projected by the Radon transform onto the

positiont = 0. The formation of the projectionpθ(t) is shown schematically in Figure 5.2. The

detector coordinatet′ = t + tr is introduced here, which is shifted with respect tot. The parameter

tr describes the position of the projected center of rotation on the detector axis. We will assume the

center of rotationtr to be unknown but fixed in all projections, i.e., independent of the projection

angleθ. Then the projected center of rotation corresponds to the vertical line in the sinogram of

Figure 5.2.
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Figure 5.3: (a) Reconstructions from the sinogram data of Figure 5.2. The slices have been calculated on
a 128×128 grid using centers of rotatioñtr = tr + ∆tr with ∆tr in the range from -4.0 to+4.0. Tuning-
fork artifacts become visible for∆tr , 0. They add a systematic error to the noisy background of the
reconstruction. (b) Profiles along the dashed lines in the reconstructions are plotted. The profiles have been
shifted for better illustration. For comparison, the value of the ideal slicef (x, y) is 0.2 inside the circle and
elsewhere zero. Even offsets|∆tr | of only a fraction of a bin give rise to artifacts.

Figure 5.3 shows reconstructions of the model sinogram in Figure 5.2, which were calculated

for different centers of rotatioñtr = tr + ∆tr . For increasing offsets|∆tr | artifacts appear in the

reconstructions. Owing to their characteristic shape, they have been referred to as tuning-fork

artifacts by Sheppet al. [137]. The profiles in Figure 5.3 show that these artifacts produce a

systematic error even for offsets|∆tr | < 1, i.e., for offsets of less than one detector bin.1 (Note: tr
can be any real number and is not limited to points on the sampling grid). Precise knowledge of

thetr parameter is thus a necessity for a high quality reconstruction.

5.1.3 Methods for the determination of the center of rotation

Several methods for the determination of the center of rotationtr from the projection data

exist. In this work a procedure for the scoring of reconstructions is described and compared in

its performance with the often used center-of-mass method and the image registration method.

These three methods are described in detail below. Another method is based on the detection of

the sinusoidal movement prescribed by a fiducial marker as, e.g., used by Lu and Mackie [100].

It is similar to the center-of-mass method and not considered here, since it can only be applied to

data sets, which contain a strong marker of a previously known structure.

1The quality of reconstructions is sometimes quantified by the definition of a distance measure between the true
slice and the reconstructed slices. E.g., Herman [76] uses the sum over the squared difference as distance measure. This
is not possible here, since the change oft̃r shifts the position of the data, whereby the compared regions would not be
identical. In other words: variation of the center of rotation prohibits the definition of a “real” image.
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Figure 5.4: (a) The center-of-mass in the two-dimensional slicef (x, y) is projected onto the center-of-mass
tc in the one-dimensional projectionpθ(t). (b) In the sinogram the center-of-masstc as a function ofθ
describes a sinusoidal movement. For the typical case of a sinogram recorded for projection anglesθ over
the interval [0, π [, this results in half a sinusoidal oscillation of the center-of-mass (xc, yc).

Center-of-mass method

The center of rotationtr can be determined from the sinusoidal movement described by the

center-of-mass (shown in Figure 5.4) aroundtr in the sinogram [4], [77]. The movement of the

center-of-mass can be derived directly from the definition of the Radon transform in Equation

(5.1) as shown by Azevedoet al. [4]. Equivalently, it can be derived from the so called Helgason-

Ludwig consistency condition [121], which puts certain constraints on the two lowest-order mo-

ments of a Radon transformpθ(t) with respect tot.

The center-of-mass of the two-dimensional functionf (x, y) is the point (xc, yc), with

xc =

∫∫
f (x, y) x dx dy∫∫
f (x, y) dx dy

and yc =

∫∫
f (x, y) y dx dy∫∫
f (x, y) dx dy

. (5.2)

Similarly, the center-of-mass in the projection is defined for the one-dimensional Radon transform

as a function of the projection angleθ as

tc(θ) =

∫
pθ(t) t dt∫
pθ(t) dt

. (5.3)

The Radon transform projects the center-of-mass (xc, yc) in f (x, y) onto the center-of-masstc(θ) in

the projection according to

tc(θ) = xc cos(θ) + yc sin(θ) + tr (5.4)

= rc cos(θ − ϕc) + tr . (5.5)

In Equation (5.5) the polar coordinate representation (rc, ϕc) of the two-dimensional center-of-

mass (xc, yc) has been introduced. The above equations describe the sinusoidal movement of the
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Figure 5.5: Schematic representation of image registration. We search for the spatial transformT that
brings the moving imageM into alignment with the fixed imageF. In our case,F andM are mirror images
and the position of the mirror axis must be found.

center-of-masstc(θ) around the position of the center of rotationtr . They allow for the determina-

tion of tr from the center-of-mass in the recorded projections.

For sinogram data recorded at discrete sampling pointsθi , t j , we estimate the position of the

center-of-mass in the projections by calculating

tc(θi) =
1

m0

∑
j

pθi (t j) j (5.6)

for each projection angleθi . Here j is the index of the detector bins andm0 [will be defined in

Equation (5.14)] is the average mass of all recorded projections, which has to be different from

zero. The three free parametersrc, ϕc, andtr of Equation (5.5) are found by an iterative non-linear

least squares fit to thetc(θi) values of Equation (5.6).

Image registration method

The image registration method determines the center of rotation by the alignment of projec-

tion data recorded at two opposing projection anglesθ1, θ2, with θ2 = θ1 + π. Following from the

definition of the Radon transform, the two projections are mirror images of each other, containing

redundant information. In a tomography scan, typically projections are recorded at angular posi-

tions θ ∈ {θ0, θ0 + δθ, ..., θ0 + π − δθ}, with equal spacingδθ = π/Nθ, whereNθ is the number of

projections. If additionally redundant projections are recorded, these can be used for registration.

Since, e.g., the projectionsp0(t) andpπ(t) are mirror images of each other, there exists a value of

t̃r for which p0(t) = pπ(t̃r − t). Heret̃r is the position of the mirror axis, and the two projections

are perfectly aligned wheñtr = tr .

Aligning two similar images is known as image registration and is a well known tool in image

processing [88], [104], [83]. Image registration is schematically represented in Figure 5.5. The

basic input of any image registration process are two images: one is defined as the fixed imageF

and the other as the moving imageM. Registration is treated as an optimization problem with the

goal of finding the spatial transformT that will bring the moving image into alignment with the

fixed image [83]. The main components for image registration are the transformT, the interpo-
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lator, which is used to estimate the moving image intensity at non-grid positions, and a metricQ

providing a measure of how well the fixed image is matched by the transformed moving image.

The value of this metric is optimized by iterating the transform parameters.

In our case the fixed imageF and the moving imageM are given by the projectionsp0(t′)

andpπ(t′′), respectively. The projections can either be one-dimensional or two-dimensional, when

recorded with a two-dimensional detector. In the latter case the projections become functions

pθ(t, z) of t andz. The spatial transformT that describes the mirror operation for the mirror axis

at the positioñtr is simply given by

t′′ = t̃r − t′. (5.7)

The estimate of the intensity in the moving image at the positiont′′ is found by linear interpo-

lation. Data points on the fixed image which correspond to points outside the range of the moving

image are set to zero. The cross correlation coefficient [88], also called the normalized correlation

metric [83], of two imagesA, B

QNC(A, B) = −

∑
i
(Ai Bi)[(∑

i
A2

i

) (∑
i

B2
i

)] 1
2

(5.8)

is used as metric, returning values between−1 and+1. A minus sign was introduced into the

definition, such that for maximum correlation, as in the case ofA = B, the metric is minimized.

An optimum estimate for the center of rotation is found by minimization of the metricQNC

with respect tõtr . The applied minimization procedure is presented in Section 5.3.

Scoring of reconstructions

Scoring of reconstructions is the approach taken in this work. Here the center of rotation is

found by comparing reconstructions̃f (xi , y j) calculated for different centers of rotatioñtr on a

regular reconstruction gridxi , y j . The best approximatioñtr to the true center of rotationtr will

give the best reconstruction.

The scoring of the reconstructions is often done in a visual inspection step, in which a human

scorer simply compares reconstructions, like the ones in Figure 5.3, and selects the reconstruction

with, in his opinion, the fewest artifacts. This time-consuming visual inspection can be replaced by

the use of image metrics. On the basis of the reconstructionsf̃ , a scalar metricQ( f̃ ) is calculated,

which reflects the quality of the reconstruction. The best center of rotation is found by optimization

of the metric value with respect tõtr . An optimization procedure is needed for the automated

detection of the center of rotation.

Image metrics have been presented for the correction of motion artifacts in magnetic resonance

imaging by Atkinsonet al. [2] and by McGeeet al. [103] and recently for the detection of the
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center of rotation in microtomography data by Brunetti and de Carlo [28]. These publications

studied the performance of several metrics empirically. The applicability of the metrics to the

particular problem was not mathematically derived.

In the section below three image metrics are presented, and for two of them a mathematical

derivation is presented. The iterative scoring procedure will the subject of Section 5.3.

Other attempts

Several methods for the determination of the center of rotation were developed and tested

during this work. Besides the metric-based methods that are presented in the following, two more

attempts were made that both are based on methods proposed for sinogram restoration. In the first

method, the difference between the sinograms and their reprojected reconstructions was used for

optimization. For this purpose a direct reconstruction-reprojection algorithm as proposed by Kim

et al. [95] was implemented. The second method based on the 2D discrete Fourier transform of

the sinogram. The method goes back to Edholmet al. [52], who described regions in the Fourier

transform that should take values close to zero. It was tried to minimize the contribution to these

areas with different weighted measures. Both methods did not successfully provide robust center-

of-rotation estimates in all situations. Therefore, only the three reconstruction based metrics that

give stable and precise results are presented here.

5.2 Image metrics

Three image metrics for the scoring of reconstructions (see above) have been developed in

this work. These simple image metrics are based on the integral of the absolute valueQIA, the

integral of the negativityQIN , and the histogram entropyQH (extending the histogram entropy

definition used by McGeeet al. [103]) of a reconstructioñf . Minimization of any of these metrics

with respect tõtr should result in an optimized reconstruction that best approximates the original

slice f . For the metricsQIA andQIN , it is shown below that they are at minimum for the correct

estimate of the center of rotationt̃r = tr , as desired. The application ofQIA andQIN is limited to

positive functions, i.e., to cases wheref (x, y) ≥ 0. The entropy-based metricQH does not have

this restriction and can thus be applied in cases where negative attenuation coefficients are present

in f (x, y). (This situation can occur for tomography data of samples recorded in a surrounding

medium as, e.g., water). We will present plausibility arguments why the metricQH should be at

minimum for t̃r = tr . A mathematical proof as it is presented for the metricsQIA andQIN cannot

be given, butQH will be shown to perform correctly when applied to model systems and real data

in Section 5.4.



5.2. I  75

5.2.1 Metric QIA: Integral of absolute value

We define the metric

QIA( f̃ ) =
1

m0

∫∫ ∣∣∣ f̃ (x, y)
∣∣∣ dx dy, (5.9)

with the zero-order moment

m0 =

∫∫
f (x, y) dx dy=

∫
pθ(t) dt . (5.10)

Here f̃ is the reconstruction calculated for a certain center of rotationt̃r = tr +∆t from projections

of a positive functionf , i.e., a function for whichf (x, y) ≥ 0. The integration is over the fullxy

plane.

Recognizing that the 0th-order moment off̃ is given by
∫∫

f̃ (x, y) dx dy=
∫∫

f (x, y) dx dy= m0

and with f (x, y) ≥ 0, it directly follows that∫∫
| f (x, y)| dx dy=

∣∣∣∣∣∫∫
f (x, y) dx dy

∣∣∣∣∣ = ∣∣∣∣∣∫∫
f̃ (x, y) dx dy

∣∣∣∣∣ ≤ ∫∫ ∣∣∣ f̃ (x, y)
∣∣∣ dx dy. (5.11)

Division bym0 gives

QIA( f ) ≤ QIA( f̃ ) . (5.12)

The above inequality expresses the fact that the metricQIA will be at minimum for the recon-

struction f̃ = f calculated for the correct center of rotationt̃r = tr .

For a reconstructioñf (xi , y j) performed on a discrete reconstruction grid (xi , y j), the metric

QIA in Equation (5.9) is numerically calculated as

QIA( f̃ ) =
1

m0

∑
i, j

∣∣∣ f̃ (xi , y j)
∣∣∣ , (5.13)

m0 = Meani

∑
j

pθi (t j)

 , , (5.14)

where Meani() is the mean with respect to the indexi andm0 is the average mass of all projections

in the sinogram.

5.2.2 Metric QIN: Integral of negativity

We use the definition of negativity as known in digital image processing (see, e.g., Jansson

[90]) for the definition of the metric

QIN( f̃ ) = −
1

m0

∫∫
u
[
− f̃ (x, y)

]
f̃ (x, y) dx dy, (5.15)
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with

u(α) =

 1 for α ≥ 0

0 else
. (5.16)

Herem0 is the total mass given in Equation (5.10) andu(α) is the Heaviside step function.

Again, we assumef to be a positive function withf (x, y) ≥ 0. Then it isQIN( f ) = 0, and

therefore

QIN( f ) ≤ QIN( f̃ ). (5.17)

The metricQIN will take on its global minimum value for the reconstructionf̃ = f calculated

for the correct center of rotatioñtr = tr .

The numerical calculation ofQIN in Equation (5.15) for a reconstructioñf (xi , y j) performed

on a discrete reconstruction grid (xi , y j) is done by the summation

QIN( f̃ ) = −
1

m0

∑
i, j

u
[
− f̃ (xi , y j)

]
f̃ (xi , y j) , (5.18)

whereinm0 is the average mass of all projections in the sinogram given in Equation (5.14).

5.2.3 Metric QH: Histogram entropy

We can assume that the reconstructionf (xi , y j) partly consists of homogeneous regions. This

assumption is valid because at least the outer regions of the reconstruction form an area of value

zero. Also, the object under investigation typically shows characteristic peaks in the density his-

togram of f (xi , y j). A wrong value oft̃r will lead to additional structures and gradients in the

reconstruction and smear out the histogram off (xi , y j). We therefore use as a measure of re-

construction quality the histogram entropy of the reconstructed image as it is known in image

processing.

The histogram entropy or image entropy, as known in image processing [89], originates from

the basics of information theory developed by Shannon [136] and can be applied to the histogram

of any image, giving a measure of the amount of information in the image. It is defined for a

discrete gray-level image as

Hdiscrete= −

G∑
k=1

pk log2(pk) , (5.19)

where the probability histogrampk gives the fraction of pixels containing the gray valuegk andG

is the number of discrete gray-value levels. Continuous gray-value images, as the reconstructions,

have to be converted to discrete gray levels before the entropy in Equation (5.19) can be calculated.

This conversion to discrete values causes a non-continuous behavior of the entropy.

The non-continuous behavior of the histogram can be removed by application of a kernel

density estimator (also known as the Parzen window). The discrete distributionpk of gray values
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is replaced by an estimated probability density functionp(g) of a continuous variable of gray

valuesg:

p(g) =
1

hN

N∑
i=1

K
(g− gi

h

)
, (5.20)

with

K(u) =

 1 for |u| < 1/2

0 else
. (5.21)

Heregi are the gray values of individual image pixelsi ∈ {1,2, ...,N} andN is the number of pixels.

Thusp(g) is a sum of kernel functionsK(u) centered around the gray valuesgi of the image. The

kernel function used here is a rectangular (box car) function of widthh.

We now define the entropy based on the continuous distributionp(g) as

H = −

∫
p(g) log2[h p(g)] dg (5.22)

= −

2N−1∑
j=1

p j log2(h pj)∆g j . (5.23)

The integral could be split into a sum over constant intervals in Equation (5.23) becausep(g)

is only changing at the pointsgi−1/2 orgi+1/2. Labeling the intervals by the indexj, we perform

the sum over intervals of length∆g j with constantp(g) = p j . The number of intervals, including

zero length intervals, is 2N− 1. Note thatH has a continuous behavior compared to the histogram

entropy definition in Equation (5.19) for discrete bins.

The maximum entropyHmax is reached when the contribution of each element is indepen-

dent of the other. In this case the box car functions are not overlapping, and Equation (5.23)

becomes a sum overN equal constant functions of heightp j =
1

hN and width∆g j = h, resulting in

Hmax= log2(N).

We can now define the entropy normalized byHmax as our metric

QH( f̃ ) =
H

Hmax
, (5.24)

which can take values in the range from 0 to 1. The metricQH is minimized with respect tõtr to

obtain the best reconstructioñf .

For the numerical calculation ofH in Equation (5.23) we setp j =
n j

hN, with n j as the number

of overlapping box car functions that contribute to thej-th interval:

H = −

2N−1∑
j=1

n j

hN
log2

(n j

N

)
∆g j (5.25)

= −
1

hN

2N−1∑
j=1

n j

[
log2(n j) − log2(N)

]
∆g j . (5.26)
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The j-indexed intervals are found by application of a sorting algorithm to theN gray values

gi . Note that the resolution parameterh not only contributes a constant factor but also determines

the form of the intervals in the sum. For the calculation ofQH it is necessary to define a resolution

parameterh, which should roughly describe the density resolution of the reconstruction. In prac-

tice the density resolution will be strongly noise dependent. Sinceh is not a critical parameter, we

simply choseh as the 1% fraction of an average attenuation coefficient estimate of the sinogram

pθi (t j) as

h = 0.01
1
Nt

∑
i, j

∣∣∣pθi (t j)
∣∣∣ , (5.27)

whereNt is the number of projection binst j .

5.3 Iterative scoring procedure

5.3.1 Reconstruction algorithm

The numerical calculation of the image metrics is based on the reconstructionsf̃ (xi , y j), which

were calculated in the following using the “BKFIL”-type reconstruction algorithm presented in

Section 3.2. No frequency filter other than the ideal ramp was applied in the reconstruction.

The application of the image metrics should in principle be independent of the use of any

particular reconstruction algorithm. In practice, the image metrics are influenced by the parameters

of the reconstruction algorithm, especially by the selection of the reconstruction grid. For the data

presented here, the edge length of the quadratic reconstruction grid is chosen such that the full

width of the recorded sinogram fits into a centered circle on this grid for all values oft̃r that are

compared. This requires the adequate continuation of the sinogram data by filling it up with zeros

(zero padding) in thet direction to fully cover the reconstruction grid with sinogram data. The

center of rotation is placed in the center of the reconstruction grid. The spatial resolution of the

reconstruction grid is chosen to be equal to the spatial resolution of the sinogram data.

It should be noted that, for the calculation of the metricsQIA andQIN , in principle the integral

over an infinite and continuous reconstruction grid has to be performed. In the numerical imple-

mentation of the metrics, this integration is calculated on a finite and discrete reconstruction grid.

The study of model systems in Section 5.4 will show that this approximation is sufficient.

5.3.2 Noise suppression

The finite reconstruction grid can cause periodic oscillations of the metrics as a function oft̃r .

To suppress this effect, which occurs for noisy data sets, two approaches are taken. The sinograms

are averaged over a couple of slices, and they are convoluted with a Gaussian filter function. Aver-

aging is performed overnav = 20 adjacent sinograms for the tomography data presented in Section

5.4. Since the position of the center of rotation in the projections is fixed and due to the linearity
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of the Radon transform, the reconstruction of the projection average is equal to the average of

the individual reconstructions. A significant reduction of the noise level in the reconstruction can

thereby be reached. Convoluting the sinograms with a digital Gaussian filter with a sigma value of

σ = 1 and normalized to unity further reduces the noise. The convolution of the projections is per-

formed for each projection angle using a one-dimensional Gaussian filter. Gaussian filtering of the

projections is equivalent to the convolution off (x, y) with a two-dimensional Gaussian function

of the same sigma value. The Gauss convoluted projections result in reconstructions of reduced

sharpness and reduced noise level. The consistency of the projection data is not influenced by the

averaging of sinograms nor by the Gaussian filtering.

The drawback of sinogram averaging and Gaussian filtering is that structures smaller than the

number of averaged sinogramsnav or the sigma parameter of the convolutionσ are suppressed. A

gain in performance can be expected as long asnav andσ are small compared with the structure

sizes in the reconstruction.

5.3.3 Iterative optimization

The optimum position of the center of rotation is found by minimization of any of the metrics

QNC, QIA, QIN , andQH with respect to the center of rotationt̃r used in the reconstruction. Let

Q(t̃r ) be the metric value, which has been calculated for the center of rotationt̃r .2 The absolute

minimum of the metricQ(t̃r ) has to be found. This is complicated by the fact that the metrics

Q(t̃r ) may exhibit local minima in addition to the global minimum that is being searched for.

One could calculateQ(t̃r ) for a wide range of̃tr values at high resolution to determine the global

minimum. This is, however, computationally expensive and not a practical approach. We therefore

make use of an iterative multi-resolution minimum search, which reduces the number of required

calculations and stabilizes the convergence towards the optimum value oft̃r .

A demonstration of the steps of the iterative scoring procedure is presented as Appendix F. The

iterative optimization is performed as follows: The sinogram resolution is reduced by reducing the

size of the sinogram in the direction oft, keeping its original size inθ. The reduction factor

(binning factor) isb = 2k, with k ≥ 1 as an integer number. In each iteration the minimum ofQ(t̃r )

is found at a resolution ofδt = b and used as the center valuet0r for the next iteration step. The

metricQ(t̃r ) is being calculated at the five positionst̃r ∈ {t0r − 2δt, t0r − δt, t
0
r , t

0
r + δt, t

0
r + 2δt}. When

the resolutionδt = 1 is reached, the procedure continues reducing the resolution intr to δt = 2k,

with k < 1 an integer value, but keeping the reduction factorb = 1, i.e., using the sinogram in its

original size.

The multi-resolution approach has several advantages: 1. The global minimum can be found

from a reduced number of reconstructions. 2. The risk of converging towards a local minimum,

2Note that the metricsQIA, QIN , andQH are calculated from the reconstructionsf̃ (xi , yj), while the metricQNC is
calculated from mirror projections usingt̃r as the position of the mirror axis.
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Table 5.1: Definition of the model systems from ellipses1.

Model system (x0, y0) A B α µ g

A: Circle (0.4,0.1) 0.1 0.1 0.0 10.0 0.0
B: Gradient ellipse (0.0,0.0) 0.8 0.45 10.0 1.25 0.5
C: Multicircle 300 positions 0.02 0.02 0.0 5.0 0.0
D: Circle plus/minus (0.8,0.0)/(0.3,0.1) 0.1 0.1 0.0 10.0/-10.0 0.0
1Position (x0, y0) and lengthesA, B are given in relative units, the angleα is given in degree.

which is not a global minimum, is reduced. 3. The reduction of the sinograms results in consistent

sinograms of highly reduced noise level and thereby stabilizes the procedure. 4. The reconstruc-

tions can be performed much faster for the sinograms of reduced size.

5.4 Application and comparison of methods

5.4.1 Application to model systems

The capability of the methods described above for detecting the center of rotation was studied

using the projection data of model systems (phantoms) witha priori known center of rotation.

The four model systems (defined in Table 5.1) are constructed of ellipses for which the sino-

gram can be calculated directly as described in Appendix E. The ellipses are fully described by

their center point (x0, y0), the axis parametersA, B, the rotation angleα, and the attenuation co-

efficientµ inside the ellipse. In this work the ellipse definition given by Kak and Slaney [93] was

extended to allow for a gradient on the ellipse. The calculation of the projection data for the el-

lipse with gradient is presented as Appendix E. The gradient is specified by the parameterg, such

that the attenuation changes linearly from (1− g) µ to (1+ g) µ along the axis described by the

axis parameterA. This allows for the creation of model systems containing a continuous range of

attenuation coefficients.

The sinograms of the model systems and their optimum reconstructions are shown in Figure

5.6. The sinograms have been calculated for 111 projection bins and 100 angular positions, with

the center of rotation located attr = 50. The center of rotation does not correspond to the center of

the projection (here att = 55), which represents a realistic measurement condition. The size of the

objects in the sinograms used here is given by multiplying the value in relative units by 50. The

attenuation coefficient per pixel in the reconstruction is obtained by dividing the value in Table 5.1

by 50.

The metricsQIA, QIN , andQH were calculated for the model systems for centers of rotation

t̃r with resolution of 0.1 bin in the interval [tr − 3, tr + 3]. The results are plotted in Figure 5.7.

All three metrics exhibit a global minimum at the true center of rotation, as it is desired in the

case of ideal sinogram data. Applying the iterative optimization described in Section 5.3, we have

determined the center of rotation further down to 0.01 bin resolution for the three metrics and for
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Figure 5.6: Sinogramspθi (t j) of the four model systems defined in Table 5.1 (top) and their reconstructions
(bottom). Model system: (A) circle, (B) ellipse with gradient, (C) small circles, and (D) two circles of
opposite attenuation coefficient. The sinograms have been calculated for 111 projection binst j and 100
projection anglesθi , equally stepped over the interval [0, π[. The color scale shows the attenuation in the
sinogram linearly ranging from -2.2 to+2.2. The reconstructions have been calculated on a 120× 120 grid.
The color scale in the reconstructions has been adapted to the individual systems. In the sinograms, the
center of rotation is located five pixels to the left of the sinogram center. In the reconstructions, the center
of rotation corresponds to the center of the reconstruction.
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Figure 5.7: Value of the image metrics plotted as a function of the center of rotationt̃r for the model
systems A, B, C, and D. It is plotted: (a)QIA−1, (b)QIN , and (c)QH. The calculation was performed at 0.1
bin resolution around the true center of rotation attr = 50.00. For model system D, which contains negative
attenuation values, only the metricQH is defined. In all cases a clear minimum is found at the true center
of rotation.
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Table 5.2: Optimum value of̃tr as determined by the different methods for the model systems.a

Image metricb

Model system Center-of-mass Registrationb H IN IA

A 49.90 50.00 50.00 50.00 50.00
B 50.01 50.00 50.00 50.00 50.00
C 49.98 50.00 49.97 50.01 50.00
Dc −d 50.00 50.01 − −

A + noise 48.57 50.12 50.05 50.04 50.03
B + noise 49.71 50.23 50.00 50.03 50.01
C + noise 49.76 49.97 49.98 50.01 49.99
D + noisec − 49.95 49.98 − −

A + gradient 60.95 50.00 50.01 50.01 50.00
B + gradient 52.54 49.92 49.97 49.98 49.98
C + gradient 51.89 50.00 49.98 50.01 50.00
D + gradientc − 50.00 50.00 − −

aThe true center of rotation is attr = 50.00.
bUsing the iterative optimization procedure down to resolutionδt = 0.01 bin.
cModel system with total massm0 = 0 and containing negative attenuation values.
d−Indicates method is undefined for this model system.

the image registration method. The determinedtr values are shown in the upper part of Table 5.2

together with the values obtained by the center-of-mass method. No results are given for model

system D and the methods based on image metricsQIA andQIN , since these metrics have been

defined for positive functionsf (x, y) > 0 only. For the ideal sinogram data, all methods return

good tr estimates. The largest deviation from the center of rotation of 0.1 bin is found for the

center-of-mass method for system A. Image registration and the presented image-metric-based

methods return the result with a maximum deviation of 0.03 bin, which is found for the histogram

entropy based metricQH.

Recorded tomographic projections contain noise (compare Sections 2.5.2 and 3.3.2). Addi-

tionally, modulations can be present on the recorded projections, which are caused by a change of

the beam profile during the measurement. The influence of these two measurement errors on the

determination of the center of rotation is demonstrated by adding simulated error projections to

the ideal projection data:

1. Noiseof Gaussian distribution with standard deviation ofσp = 0.1. For comparsion, the

maximum projected attenuation coefficient isp = 2 in the sinograms.3

3The noise levelσp = 0.1 of the sinogram with samplingNt = 111 andNθ = 100 causes the same noise level in
the reconstruction as it would be obtained for our standard reconstruction with sampling parametersNt = 1536 and
Nθ = 720 for a noise level ofσp = 0.0175 [according to Equation (3.33)]. The latter value ofσp corresponds (without
averaging of sinograms) to an average photon count of〈N〉 = 1/σ2

p ≈ 3 000 in the projection images, which is lower
than in our typical measurements. Thus, the assumed noise levelσp = 0.1 for the small sinograms is a realistic value
for judging the influence of noise when the metrics are applied to single slices of measured data.
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Figure 5.8: Ideal sinogram of sample system A in Figure 5.6 and the same sinogram corrupted by noise
and random gradients (top). The bottom line of the sinograms is plotted (bottom).

2. Random gradientsfor parametersp1, p2 randomly chosen for each angular projection be-

tween -0.2 and 0.2, varying linearly fromp1 to p2 over the 111 projection bins (as shown in

Figure 5.8).

Figure 5.8 shows the ideal and the corrupted projections of model system A.

The iterative optimization has again been used to determine the center of rotation down to 0.01

bin resolution as before. The results are shown in Table 5.2 together with the values obtained by

the other methods.

The tr estimates become significantly worse for the data with noise. The center-of-mass

method returns atr estimate that deviates by more than 1.4 bins for system A+noise and by more

than 0.2 bin for systems B+noise and C+noise. Image registration shows the largest deviation of

0.23 bin for system B+noise, which contains only little high frequency components in the projec-

tions and is, therefore, difficult to align by image registration. The maximum deviation found for

the presented image-metric-based methods is 0.05 bin for the projections with noise. Achievable

resolution of this order was recently was confirmed recently and published by Donathet al. [50].

The projections with random gradients cause drastic deviations of thetr estimates obtained by

the center-of-mass method. This is due to the systematic error introduced by the gradient. Image

registration shows a deviation only for projection B. However, it must be expected that the results

obtained by image registration strongly depend on the particular form of the random gradients,

since the method uses the data of only two projection angles. The presented image metric-based-

methods return results of only 0.03 bin deviation at maximum.
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Filename: desy2003b_gkss02a_sli.eps
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(c) (d)

Attenuation coeff. Pixel size
Sample min. max. [µm]

a -0.0003 0.0027 4.255
b -0.0005 0.0040 3.214
c -0.0002 0.0005 5.084
d -0.0005 0.0035 5.491

min. max.

Figure 5.9: Reconstruction of sinograms recorded at HASYLAB beamlines BW2 and W2 with projection
width of 1536 bins at 720 projection angles at HASYLAB beamlines BW2 and W2. (a) Root-bone interface
of a monkey tooth (canine) [35], (b) soil aggregate [118], (c) polymer foam [46], (d) bone sample with
titanium implant [19]. The samples in (c) and (d) have been recorded under non-optimum conditions, i.e.,
under low x-ray absorption in (c) and with strong absorption caused by the implant in (d). The minimum
and maximum attenuation coefficient per edge length of a pixel and the edge length of a pixel are given in
the table.

5.4.2 Application to tomography data

The performance of the different methods is compared here for the sinograms of four represen-

tative samples. The data were measured at the synchrotron radiation laboratory HASYLAB at the

Deutsches Elektronen-Synchrotron DESY at beamlines W2 and BW2. With the microtomography

setup projections of 1536 bins width were recorded at 721 angular positions using the 1536×1024

pixel CCD detector. Reconstructed slices of the data are shown in Figure 5.9.
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Figure 5.10: Value of the image metricQH plotted as a function of the center of rotationt̃r at 0.1 bin
resolution for the four sample systems (a)–(d) from Figure 5.9. MetricsQIA andQIN return qualitatively
the same results (not shown).

Samples a and b [Figures 5.9(a) and (b)] could be studied at an optimal absorption coefficient

of around or belowp ≈ 2 in the projections (compare Section C.3). Samples c and d [Figures

5.9(c) and (d)] were recorded under non-optimum conditions. Sample c has been recorded with

absorption ofp . 0.2, and, therefore, displays a high degree of noise. Sample d contains a strongly

absorbing titanium implant. Here the projected attenuation coefficient was as high asp ≈ 3.5 in

parts of the projections.

The metricsQIA, QIN , andQH were calculated as a function oft̃r over a range of six bins

at a resolution of 0.1 bin around a roughtr estimate. The result obtained for the three metrics

is qualitatively identical and therefore only presented for the metricQH in Figure 5.10. Unique

minima are found for the metric values of all four samples at individual positions around the center

of the projection, which is located at the position 1536/2 = 767.5.

Table 5.3 lists thetr estimates found according to the minima in the plots of Figure 5.10 and

the results found by image registration and by the center-of-mass method at 0.1 bin resolution.

Image registration was performed using the two-dimensional subregions of the projection images

recorded atθ = 0 andθ = π, which correspond to thenav averaged slices. The result obtained by

human scoring is given together with an estimated precision oftr , in which an improvement of the

reconstruction could be noticed. Since no true center of rotation is known for the measured data

sets, we compare the automatically determined values with the results obtained by human scoring.
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Table 5.3: Optimum value of̃tr as determined by the different methods for the sample systems
shown in Figure 5.9.

Image metricb

Sample Human scorer Center-of-mass Registrationa H IN IA

a 744.9± 0.1 747.6 744.3 745.1 745.1 745.1
b 781.2± 0.1 780.2 781.2 781.3 781.3 781.3
c 766.9± 0.2 764.6 766.7 766.9 766.8 766.9
d 763.2± 0.1 765.1 763.1 763.1 763.1 763.1
aUsing the iterative optimization procedure down to resolutionδt = 0.1 bin.
bAccording to the minima in the data of Figure 5.10.

The result obtained by the center-of-mass method deviates significantly from the human-scorer

result by more than one bin for all samples. The result of image registration agrees well with

human scoring for samples b, c, and d but differs by 0.6 bin for sample a. The image metric based

methods give results that are correct within the range of the estimated error, except for sample a,

where a slightly bigger 0.2 bin deviation is observed.

5.5 Discussion and outlook

By minimization of any of the presented image metricsQIA, QIN , andQH using the presented

iterative minimum search, the position of the center of rotation can be determined from measured

sinogram data uniquely and at well below one bin resolution. All projections of the tomographic

scan contribute to the reconstruction and influence the image metric values. The scoring of recon-

structions is therefore less sensitive to fluctuations in the projections than the image registration

method, which has the disadvantage of relying on only two of the recorded projections. Using

image registration, a single corrupted image can thus degrade the obtained result drastically. (This

could be circumvented by the recording of a larger number of redundant projections, e.g., by the

recording of projections over an angular range of 2π, if the additional measurement time is ac-

ceptable). The center-of-mass method was shown to be very sensitive to noise and fluctuations. It

fails to determine the center of rotation at the required subbin precision when applied to typical

measurement data.

The presented metricsQIN andQIA can be applied to data of positive attenuation coefficient

and return precisetr estimates. It seems more natural to use the metricQIA, since it includes

all points of the reconstruction grid equally, whereas the metricQIN only includes information of

the negative values of the reconstruction. The metricQH was introduced by presenting plausibility

arguments. It was shown to return precisetr estimates as well and is not limited in its application to

data of positive attenuation coefficients. For data with positive attenuation coefficient, we suggest

use of the metricQIA.
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The image metricQIA is now routinely applied in our reconstruction process for the determi-

nation of the center of rotation. It has been converging at the requested precision (0.05 bin) in all

cases, where the sinogram data was consistent, i.e., free of systematic measurement errors. In fact,

whenever the algorithm aborted before the final resolution of 0.05 bin was reached, inconsisten-

cies in the recorded projections could be identified. The method does not help to reconstruct these

data, but at least gives an indication that the projections are not self-consistent. Inconsistencies

can be caused by, e.g., bad reference images, a morphometric change of the sample during the

measurement, or a wrong angular position of recorded projections. During the latest measure-

ment period at HASYLAB beamline BW2 (March 2006, beamtime ‘desy2006a’), the method was

successfully applied for the automated determination of the center of rotation of all 59 recorded

scans. In the two cases, where the algorithm aborted before reaching the final iteration step (at

0.05 pixel resolution), inconsistencies in the recorded projection data were found; in one case,

sample motion had occurred during the measurement, in another case, the sample had partly left

the detector’s field of view. In the latter case, a center of reconstruction could be found by use of

the histogram based metricQH.

The computational costs of the image metrics are of practical importance. The number of

operations required for the calculation of metricsQIA andQIN directly scales with the number of

image pixels in the reconstructed slices. The calculation is thus much faster than the calculation

of metricQH, which requires a sorting operation. All three metrics are, however, computationally

less expensive than the reconstruction process, for which the computational cost was given in

Section 3.2.4. The speed of the algorithm is therefore limited by the speed of the reconstruction.

The presented method is readily applicable to any type of tomographic data recorded in parallel-

beam geometry. Furthermore, the image metrics should be useful for the detection of the position

of the rotation axis for tomography data recorded in fan-beam geometry. In contrast to the simple

parallel-beam situation considered in this work, the reconstruction of this data requires more than

one input parameter to describe the relative positions of source point, rotation axis, and detector.

A multidimensional minimum search could be implemented to return the optimum values of these

parameters.

The presented image metrics are, in principle, also applicable to tomography data with image-

to-image variations of the center of rotation, i.e., when an individual center of rotationtr (θ) must

be found for each projection. The number of free parameters is then equal to the number of

projections and an iterative optimization scheme as applied by McGeeet al. [103] can be used to

perform the multi-dimensional minimum search in this case.

The visual inspection step in the scoring of test reconstructions can be reliably replaced by the

presented iterative procedure. Without the need of visual inspection, the reconstruction process

can be fully automated. This accelerates data evaluation and allow researchers to work more

efficiently, especially with the new high-throughput microtomography setups.
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5.6 Summary

A stable and objective method for the determination of the center of rotation from sinogram

data with sub-pixel resolution was developed and implemented. The stability of the method was

tested in the presence of noise and gradients in the projections. In order to have a realistic model

system (phantom) for the test, the well known ellipse phantom was extended to an ellipse phan-

tom with gradient that has an continuously varying attenuation value. The developed method is

readily applicable to any type of tomographic data recorded in parallel-beam geometry and is now

routinely applied in our data-processing chain for the determination of the center of rotation with

0.05 pixel resolution. The visual inspection step in the scoring of test reconstructions was re-

placed by introduction of the presented iterative procedure. Hereby the complete automation of

the reconstruction process was achieved.



89

Chapter 6

Microtomography studies

This chapter presents four selected SRµCT studies carried out during this work. Moreover,

these studies are used to demonstrate the improvements made for quantitative SRµCT measure-

ments. The first two examples in Sections 6.1 and 6.2 show the influence of detector blur on the

reconstruction and how it can be removed, the example in Section 6.3 discusses the influence of

the reconstruction algorithm on the measured attenuation value. The last example in Section 6.4

presents the development of analysis tools for samples (fiberboard) recorded at the spatial resolu-

tion limit of the SRµCT apparatus.

6.1 Material flow in friction stir welding

6.1.1 Introduction

The material flow in friction stir welding has been investigated using SRµCT. The results

of this study are presented in this section. Furthermore, reconstruction artifacts around strongly

Figure 6.1: Schematic diagram of the friction stir welding process when joining two metal sheets. The two
abutting workpieces are joined by the rotating tool that comprises of pin (lower part) and shoulder (upper
part). Travel direction, rotation direction, and down force are indicated by arrows.
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absorbing sample parts are explained by a simulation that includes the effect of the detector’s point

spread function. The photon energy for optimal measurements is discussed.

The friction stir welding (FSW) process was developed and patented by The Welding Institute

(TWI) of Cambridge, England. See Thomaset al.[144]. A schematic diagram of the FSW process

is shown in Figure 6.1. The process essentially relies on frictional heating and plastic deformation

of the workpieces brought about by the interaction of the workpieces with a non-consumable and

rotating tool consisting of a shoulder and a pin. The tool is plunged into and then traversed along

the join line between, typically, two abutting workpieces. The frictional heat that is induced by tool

rotation and tool travel causes the material in the immediate vicinity of the tool to soften, flow, and

mix. At the rear of the pin, the transported material cools and consolidates to form the weld. The

shape of the welding tool and its interaction with the base material, i.e., process parameters such as

down force, travel and rotational speed, influence the structure and the integrity of the weld. The

process is unsymmetric with respect to the two workpieces because of the given directions of travel

and rotation. The side of the workpieces having the same rotation and travel direction is termed the

advancing side (also: shear side), while the side where travel direction and rotation are opposite

is termed the retreating side (also: flow side). Geometric and microstructural differences within

the join zone for both sides of a friction stir welded joint are generally observed. In comparison

to FSW conventional fusion welding melts the base material during the welding process. This can

lead to brittle solidification products and porosity in fusion welds. These effects can be strongly

reduced in FSW, since no bulk melting occurs. This is especially advantageous for the welding of

highly alloyed aluminum often used in the aerospace industries.

As with fusion welding, there occur changes in the materials microstructure during friction

stir welding. In addition there occur volumetric changes due to material transport. These changes

determine the quality of the resulting weld. Hence, it is of fundamental importance to not only

investigate the materials microstructure using common probes (micro-hardness measurements,

strain and stress measurements, and macrographs) but also to understand join zone formation

during welding, which depends on local temperatures and forces as well as on the material flow.

The study of material flow in the FSW process is an active field of research. Two different

but complementary approaches are generally taken, these being process modeling and experi-

mental flow visualization. For an overview on the activities in FSW modeling, see the publi-

cation by Colegrove and Shercliff [37] and the references therein. Experimental studies have

examined the material flow in FSW by tracking the flow of embedded tracer materials through

sectioning, conventional radiography or x-ray tomography, or by examining the material distri-

bution after welding dissimilar materials. References were reviewed by Fondaet al. [62] and

Guerraet al. [71].

Note that sectioning techniques (as the production of macrographs) are time-consuming and

destructive methods that can introduce artifacts and, typically, only provide limited resolution

in the sectioning direction. X-ray (attenuation contrast) tomography cannot reveal the mater-
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(b)

(c)

(a)

Figure 6.2: (a) Four FSW samples that were produced using the stop-action technique. The pin was partly
removed by discharge machining. (b) Joining tool pin of type B (conical threaded). (c) Joining tool pin of
type C (conical threaded with three flats). The pin diameter is 5 mm.

ial’s microstructure but provides three-dimensional information with high-resolution in a fast and

non-destructive manner. This allows to obtain complementary information, when at first micro-

tomography is performed with the FSW sample before the sample is destroyed during, e.g., the

preparation of macrographs.

In this study SRµCT was applied for the three-dimensional visualization of material flow in

friction stir welding of similar alloys of type 2024-T351. Titanium powder was implanted into

aluminum sheets as a contrast-giving marker material prior to welding. The marker distribu-

tion during welding (by use of the stop-action technique) and after welding was recorded three-

dimensionally using SRµCT and compared with macrographs that were subsequently prepared

from the same samples.

The SRµCT study on material flow is part of a larger study investigating the influence of

FSW tool geometry and welding parameters on the FSW process. Results of this study, including

results from SRµCT, temperature measurements, tensile tests, micro hardness measurements, and

the evaluation of macrographs, have already been published by Zettleret al. [163], [164], [165],

and by Donathet al. [47].

6.1.2 Sample preparation

Welding was performed on 4 mm thick sheets of 2024-T351, where each specimen mea-

sured 110× 400 mm (width× length). All welds were produced as butt welds at the GKSS-

Forschungszentrum using a Tricept TR 805 robot. A titanium powder measuring 30 – 90µm

in diameter was placed in slots milled into the aluminum sheets. Following a first series of ex-

periments to optimize weld parameters, a second series of 2024-T351 samples was prepared for

microtomographic examination. Here, the titanium powder was implanted into the top surface
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Table 6.1: Scan parameters for FSW measurements. Herem is the optical magnification,τ is the
effective pixel size,a10 is the spatial resolution. Unchanged parameters are not repeated.

Energy τ a10

Beamtime/scanname Beamline [keV] Mode m [µm] [µm]

desy2003a/gkss03a,b W2 (old HARWI) 45 180deg 0.98 9.18 16.1
desy2003a/gkss04a,b
desy2003a/gkss05a,b
desy2003a/gkss06a..d 0.87 10.34 18.9
desy2003a/gkss07a..d
desy2003a/gkss08a..d
desy2003a/gkss09a..e

desy2003b/gkss03a..c W2 (old HARWI) 45 180deg 0.87 10.34 16.0
desy2003b/gkss04a..c
desy2003b/gkss05a..c
desy2003b/gkss06a..d 60 180deg 0.87 10.34 19.7
desy2003b/gkss07a..d
desy2003b/gkss08a..d
desy2003b/gkss09a..d

desy2005e/gkss03a..db W2 (new HARWI) 82 360deg 1.357 6.63 15.77
desy2005e/gkss04a..cb W2 (new HARWI) 13.26a

– desy2005e/gkss09c
aRecorded with on-chip binning, factorb = 2.
bAluminum alloy 6013-T6, data not shown here.

of the workpieces, 1.5 mm away from the join line in the upper half of the workpieces. A small

quantity of the marker material was placed into each slot that was, thereafter, closed by insertion

of a plug prepared from the same 2024-T351 aluminum alloy. The dimensions of the slots were

10 mm in the direction of welding, 2.5 mm into each workpiece, i.e., transverse to the direction of

welding, and about 1.25 mm in height.

Friction stir butt welds were produced from the such prepared sheets with a weld speed of

200 mm/min and rotational speed of 800 rpm using two different welding tools. The welding tools

comprised of a concave shoulder (type 1) in conjunction with a welding pin of either type B or C

shown in Figures 6.2(b) and (c). The corresponding tool/shoulder combinations will be referred

to as tool 1B and tool 1C in the following. Welds produced with and without embedded marker

material were compared visually by their macrographs. Only small differences were observed,

while the general shape and characteristics of the weld structures were unchanged for all applied

tool and weld parameter combinations. Therefore, the use of titanium powder as marker material

is believed to have little influence on the welding process.

In the first SRµCT scans samples were investigated after welding had been completed. For

the following scans a stop-action technique was employed to halt and capture the welding pin,
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attenuation coeff. [1/mm]
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Figure 6.3: (a) Tomographic reconstruction and (b) macrograph showing the same cross section of a FSW
sample prepared by the stop-action technique. The same features of titanium marker and pin remains are
visible in both images, while microstructure is only visible in the macrograph. The black arrows point
towards a corresponding streak of marker material. The grid (red) has been overlayed for better orientation.

while still in contact with the embedded marker material. A small section of the weld of about

10× 10 mm that included the welding tool pin was removed from each sample and examined by

SRµCT. Four samples are shown in Figure 6.2(a).

6.1.3 Measurement and reconstruction

In total, 14 FSW samples were studied comprising a total of 73 SRµCT scans. Most of the

scans were part of stacked measurement with 2, 3, or 4 heights. The 4-height scans resulted

in a total reconstructed volume of about 16× 16 × 10 mm. The full samples measured about

10× 10× 4 mm in size and were investigated in an upright position, i.e., with the sample plane

parallel to the tomographic axis. Hereby, the maximum extension of the sample and the maximum

projected attenuation value were reduced. The here presented measurements were carried out at

beamline W2 (old HARWI) described in Section 2.1.2. Table 6.1 gives an overview of the recorded

data and the scan parameters.

First scans were recorded at photon energies of 45 keV (after welding, without welding pin)

and at the maximum available photon energy of 60 keV (using the stop-action technique, with

welding pin). The x-ray energy of 60 keV was not sufficient to penetrate the steel pin. Therefore,

tomographic reconstructions could be obtained only from the regions above and below the pin.

In order to decrease the projected attenuation value in further examinations, the pin was removed
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from the immediate weld zone by spark erosion. Small parts of the pin that could not be removed

without the risk of damaging the sample remained inside the sample.

The measurements were recently continued at the redesigned W2 beamline (new HARWI) for

the same type of marker-implanted FSW samples of a 6013-T6 aluminum alloy (see Donathet al.

[48]) at 82 keV photon energy. At this higher energy the reduced absorption of the welding pin

allowed for the measurement of samples with the pin remaining inside the sample. The effect of

the higher photon energy on the image contrast will be discussed below.

Tomographic reconstruction was performed using the “BKFIL” algorithm of the RECLBL

library. All here presented measurements were carried out in 2003. At this time the luminescent

screen of the x-ray camera carried no backing layer and the center of rotation was still determined

manually. For the later conducted simulations the method for the determination of the center of

rotation described in Chapter 5 was applied using the entropy based metricQH down to a resolution

of 0.05 pixel. The metricQH was used here because of the expected inconsistency of the sinogram

data due to the strongly absorbing pin fragments (compare below).

6.1.4 Observed redistribution of Ti-marker

The comparison of macrographs with the corresponding tomographic slices (see Figure 6.3)

revealed perfect agreement in the visible marker distribution. Thus, it can be concluded that even

fine marker particles can generally be detected in the tomographic reconstruction. The material’s

microstructure is only visible in the macrograph that has been prepared under destruction of the

sample after the SRµCT measurement.

An evaluation of the marker flow patterns (cross sections shown in Figure 6.4) revealed that

the marker material ahead of the welding pin was ruptured well before the pin threads made

contact with it. They also revealed that the titanium powder flowed in the direction of tool rotation

(clockwise). It was also evident that much larger clumps of the marker were to be found in the weld

nugget produced using tool 1C [Figures 6.4(b) and (d)]. By comparison tool 1B [Figures 6.4(a) and

(c)] indicated that the marker was more finely dispersed and distributed throughout both the top

and bottom half of the workpieces. Significant differences existed in marker distribution not only

between the FSW tools but also between marker flows for each side of a single friction stir weld.

The major difference was observed for welds produced using tool 1B. Marker initially embedded

on the advancing side of the weld was finely dispersed and deposited at the rear of the tool, again

on the advancing side [Figure 6.4(a)]. Marker embedded on the retreating side, however, could be

seen to be distributed much more coarsely [Figures 6.4(c)]. Large clumps of the marker material

could be seen to form at the rear of the welding tool again on the advancing side of the weld.

It was also observed that the deposition of the marker had been shifted closer towards the

original join line interface between the workpieces, while FSW using welding tool 1C. This dif-

fered from tool 1B where the majority of the marker material deposited at the rear of the welding
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(a) Tool 1B, adv.

(c) Tool 1B, retr.

(b) Tool 1C, adv.

(d) Tool 1C, retr.

4 mm
pin travel/
rotation direction

attenuation coeff. [1/mm]

-0.10 0.73

Figure 6.4: Tomographic cross sections from four FSW samples produced using the stop-action technique.
The pin of the welding tool was spark eroded prior to examination. The remaining pin fragments (black),
titanium powder (dark gray), and aluminum (light gray) are visible. Welding was conducted with titanium
powder embedded on the advancing (adv.) and retreating (retr.) side for both tool 1B and tool 1C. The cross
sections are oriented parallel to the tomographic rotation axis and were stacked from four scans each. A
slight variation in photon energy caused by the bent Laue monochromator results in a slight variation of
the attenuation coefficient as a function of height. The large remaining pin fragment in (a) causes artifacts
around the pin.

pin could be seen to be biased towards the advancing side of the weld joint. Vertical displacement

could be as well revealed from the three-dimensional data sets as can be seen in the volume render-

ing in Figure 6.5. The volume data set confirmed, what had been suspected from two-dimensional

micrographs. Tool 1C produced much less vertical displacement of the marker than tool 1B.
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10 mm

(a) (b)

Figure 6.5: 3D rendering of the Ti marker distribution in an FSW sample prepared by the stop-action
technique. (a) Top view with pin travel direction from top to bottom of the image and clockwise pin
rotation. (b) Side view with pin travel direction from right to left. The upper part of the aluminum sheet
(light gray) has been made transparent to allow the view on the redistributed titanium powder (dark gray).
Artifacts are observed at the bottom of the weld in the vicinity of pin fragments. [A cross section from the
same sample is shown in Figure 6.4(b)].

attenuation coeff. [1/mm]

-0.10 0.73

4 mm

Figure 6.6: Cross section through an FSW sample measured at 60 keV. Aluminum (light gray), marker
(dark gray), and remains of the strongly absorbing pin (red) are visible. Strong artifacts along the extension
of the pin fragments and a few ring artifacts are observed.
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6.1.5 Simulation of artifacts

Figure 6.6 shows a reconstructed slice of a friction stir weld measured at 60 keV that displays

artifacts. In close vicinity to the remaining pin fragments, and especially along the directions that

contain a lot of pin material, the reconstructed attenuation is shifted to above or below its true

value. Ti marker can thus not be identified by simple threshold techniques. It will be shown now,

that these artifacts are caused by the high projected attenuation values in combination with the

long tails of the detector’s point spread function (PSF). To investigate the source of the artifacts,

we will compare measured and simulated data.

A typical sinogram of a slice recorded at 60 keV will be the basis for our simulation. In order

to speed up the calculations, the sinogram was binned by a factor ofb = 4 in projection width.

For the resulting sinogram shown in Figure 6.7(a), the projection width isN′t = 1536/b = 384

and the number of projections isNθ = 720. The corresponding reconstruction is shown in Figure

6.8(a) and presents a very similar cross section as Figure 6.6. Here the reconstructed attenuation

coefficient displays too low values along the direction of extended pin fragments, which cause

a high value of the projected attenuation coefficient p in the sinogram. At the same time the

reconstructed attenuation value is increased in the perpendicular directions. In the vicinity of the

pin the intensity of the artifacts is comparable with the attenuation of the titanium powder, which

inhibits automated segmentation of the titanium powder by threshold selection. Additionally, the

reconstruction of Figure 6.8(a) shows ring artifacts. Ring artifacts are typically caused by spatial

inhomogeneities of the luminescent screen that was not yet coated with a backing layer in these

measurements. They would be strongly suppressed in our new SRµCT setup with optically coated

luminescent screens (compare Chapter 4) and we shall not further discuss them here. We rather

attempt to describe the effect of detector blur with the following simulation.

From the cross section shown in Figure 6.8(a) a simulated slice was generated that is shown in

Figure 6.8(b). The shape of the pin in the simulated slice was based on the real pin and assigned an

attenuation value of 0.93 mm−1, while the aluminum was simulated for simplicity as a rectangular

block with attenuation coefficient of 0.08 mm−1. From the simulated slice, a sinogrampsim was

calculated using the Radon transform procedure of the IDL programming language. The simu-

lated sinogram is shown in Figure 6.7(b). The maximum projected attenuation in the simulated

sinogram is Max(psim) = 5.3, which is far above the desired optimum value ofp ≈ 2 (compare

Section 2.5.2). Forp = 5.3 the dynamic in the recorded images given by exp(p) ≈ 200 has to be

compared with the detector’s dynamic range, which is DR≈ 6000. Thus, the dynamic range of

the detector still is about a factor of 30 higher than the dynamic in the recorded projection data,

and is thus not the limiting factor in these measurements. Moreover it was found that the pro-

jected attenuation value in the simulated sinogram [Figure 6.7(b)] was locally much higher than in

the measured sinogrampmeas[Figure 6.7(a)]. In contrast to the simulated sinogram the measured

sinogram displayed a much lower maximum projected attenuation of Max(pmeas) ≈ 3.0. It was

suspected that the lowerp values in the measured data are the cause of the observed artifacts in



98 C 6. M 

4 mm

(a) Measurement (b) Calculation from model
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Figure 6.7: Sinogram of a FSW sample recorded at 60 keV photon energy: (a) measured, (b) calculated
from the model in Figure 6.8(b). The maximum projected attenuation is∼3.0 in the measured sinogram and
∼5.3 in the calculated data. The reconstruction of the measured sinogram is shown in Figure 6.8(a).

the reconstruction and that they can be explained by the detector blur. In order to verify this, the

effect of the detector blur was simulated.

From an edge profile measurement that was carried out before the scan, the detector LSF and

MTF were determined as described in Section D.1. The determined LSF shown in Figure 6.9

was then manually approximated by the sum of three Gaussian functions, where each Gaussian

function is described by its integral value and its sigma parameter. In the following, the sum of the

three Gaussians that is used to simulate the detector response will be referred to as LSF1. Although

LSF1 and the measured LSF do not match perfectly, the approximation by Gaussian functions was

used because of the simple relation between the description of Gaussians in real space (slice) and

projection space. More importantly, the description by Gaussian functions enables us to study the

effect of blur over different length scales easily, i.e., we can systematically change the influence of

long range contributions to the LSF by reduction of the integral value or removal (integral value

= 0) of the Gaussian functions with large sigma value. The total of all Gaussians must be unity

of course.

LSF1 was then used for the calculation of a blurred sinogram. A second function LSF2 was

defined to demonstrate the effect of long tail suppression. Both functions LSF1 and LSF2 are

plotted in Figure 6.9 that also contains a table with the function parameters. The blurred sinogram
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4.0 mm

(a) Measurement (b) Model

(c) Simulation with LSF1 (d) Simulation with LSF2

attenuation coeff. [1/mm]

-0.10 0.75

Figure 6.8: Simulation of artifacts in the tomographic reconstruction of an FSW sample. (a) Reconstruction
of the measured sinogram shown in Figure 6.7. (b) Model of a tomographic slice for simulation consisting
of a pin-like object with attenuation coefficient 0.93 mm−1 and a rectangular, aluminum-like block with
attenuation coefficient 0.08 mm−1. (c) Reconstruction of the simulated sinogram blurred with LSF1 and (d)
blurred with LSF2. All reconstructions were calculated on a 384× 384 pixel reconstruction grid using the
“RALA”-type reconstruction algorithm. Ring artifacts visible in the original measurement are not part of
the simulation.
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Figure 6.9: Plot of the measured LSF and LSF1, LSF2 for the simulation of blur. The measured LSF
was determined from an edge profile measurement. Line spread functions LSF1 and LSF2 are defined as
the sum of three and two Gaussian functions respectively. The integral value and the sigma parameter for
each Gaussian are given in the table. The width of the smallest Gaussian function in LSF1 and LSF2 is
approximately equal to the spatial resolution determined from the measured LSF, which isa10 = 19.7µm
corresponding to the 10% MTF value.

was calculated by convolution of intensity values (assuming a homogeneous reference image) as

pblur,i = − ln[LSFi ∗ exp(−psim)] , (6.1)

where psim is the sinogram of the simulated slice, LSFi is either one of the functions LSF1 or

LSF2, and the symbol∗ designates one-dimensional convolution. Convolution of the projection

data according to Equation (6.1) was performed for each projection angle. Use of the LSF for

the description of blur in the reconstruction implies the assumption that the sample structure is

independent of thez direction (compare Section 3.3.1), which is only approximately the case for

our sample, and that the beam profile is flat. The simulation may thus differ from the measurement.

Figure 6.8(c) shows the reconstruction obtained for the sinogram blurred with LSF1. The

visible artifacts resemble the artifacts of the real reconstruction in Figure 6.8(a), i.e., the real and

the simulated reconstruction are qualitatively identical. Exact quantitative agreement could not

be achieved but this was neither expected, due to the above made approximations. However,

the comparison of measured and simulated reconstruction confirms that blur introduced by the

detector PSF is the most probable cause of the observed artifacts.

The removal of long tails of the PSF has been simulated by the line spread function LSF2

shown in Figure 6.9. For LSF2, the broadest component of LSF1 has been removed and the relative

intensities of the remaining components changed to give a sharper LSF. Figure 6.8(d) shows the

reconstruction of the simulated sinogram blurred with LSF2. The reconstruction shows almost no

relevant artifacts. Weak streaks are observed here only along edges, i.e., along those directions,

for which the projection shows high gradients.
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Table 6.2: Attenuation coefficients of iron (Fe), titanium (Ti), and aluminum (Al).

Attenuation coefficienta µ
Photon energyEph [1/mm]

[keV] Fe Ti Al

45 2.009 0.711 0.118
60 0.925 0.342 0.074
82 0.436 0.175 0.053

aCalculated from the tables of Plechatyet al. [119].

Convolution with the detector PSF makes a non-linear effect for the measured data (compare

Section 2.5.1), which can be seen from the average mass of all projectionsm0 given by Equation

(5.14). When compared with the average massm0,sim of the simulated sinogrampsim the convo-

luted sinogramspblur,1 and pblur,2 exhibit a value ofm0 that is 93.3%m0,sim and 99.64%m0,sim

respectively. Thus convolution with LSF1 makes a strongly non-linear effect, whereas convolution

with LSF2, that does not contain long tails, results in almost no change ofm0.

6.1.6 Optimal contrast-to-noise ratio

Selection of a higher photon energy reduces the attenuation value and avoids the previously

described artifacts but also decreases the contrast in the measurement. The expected contrast-

to-noise ratio for measurements at the different applied energies can easily be estimated. The

attenuation coefficients of aluminum alloy, titanium marker, and pin is approximately given by

the attenuation coefficients of aluminum, titanium, and iron given in Table 6.2 for the applied

photon energies. The noise levelσµ in each pixel of the reconstruction is approximately given

by Equations (3.30) and (3.31). For sampling distanceτ = 10.34µm, number of projections

Nθ = 720, and average count of〈N〉 = 8.000 x-ray photons in each pixel, we obtainσµ =

0.025 mm−1 independent of photon energy. The assumption that was made here for the average

photon count〈N〉, corresponds to the situation of an optimally exposed reference image recorded

with our camera and a projected attenuation value ofp ≈ 2 (∼10% transmission). We are primarily

interested in the contrast between titanium and aluminum that can be described by the contrast-to-

noise ratio (CNR) as

CNR=
µTi − µAl

σµ
, (6.2)

with the attenuation coefficientsµTi andµAl. At photon energyEph = 60 keV the contrast-to-

noise ratio becomes (0.342− 0.074)/0.025 = 10.7, while at 82 keV, the contrast-to-noise ratio

becomes (0.175− 0.053)/0.025 = 4.88. Note that we assumed the same projected attenuation

value ofp = 2 (∼10% transmission) for both energies, which requires that the pin is almost entirely

removed from the sample for the measurement at 60 keV, while it may remain inside the sample

for the measurement at 82 keV. In this case, the calculated contrast-to-noise ratio is lower by about

a factor of two for the measurement at photon energy 82 keV. Hence, with respect to contrast,
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it is desirable to perform the measurement at the lower 62 keV photon energy. However, even at

82 keV a contrast-to-noise ratio of five is obtained. This CNR should be sufficient for visualization

of the titanium particles, even when the image of the finest titanium particles (diameter 30µm) is

blurred by the detector point spread function (resolutiona10 ≈ 20µm) in three dimensions. Thus,

since measurements at 82 keV photon energy provide sufficient contrast and can be performed

with pin remains inside the sample, this higher photon energy is desirable for our measurements.

Partial removal of the pin should however still be considered, since it will reduce the noise in

the reconstruction.

6.1.7 Summary

The flow and redistribution of a Ti-powder marker material embedded in friction stir welded

2024-T351 alloy has been investigated in relation to variations in tool pin geometry by means

of SRµCT and standard metallographic techniques. To the best our knowledge, for the first time

a fine-powdered marker material inside friction stir welds has been visualized by SRµCT. From

the investigation important insights into the material flow in FSW of similar aluminum alloys

could be gained. A comparison of the marker flow and distribution between the two tool types

1B and 1C clearly indicated that differences exist between the marker flows from each side of the

workpiece and that marker flow was generally much more homogeneous in nature for the tool of

type 1C. Vertical transport of marker material was also found. For the three-dimensional mapping

of marker particles SRµCT has proven to be a reliable, non-destructive method that provides higher

resolution and requires less time than metallographic sectioning techniques.

A simulation was presented that qualitatively reproduced the artifacts observed in the recon-

structions. Hereby, the origin of the artifacts could be explained as the combined effect of a high

projected attenuation coefficient caused by remains of the welding pin and the long-range contri-

butions of the detector PSF. As was shown, the reduction of long-range contributions to the PSF or

the measurement at higher photon energies avoid these artifacts. The discussion on the contrast-

to-noise ratio showed that an increase of the photon energy to 82 keV is favorable for this type of

FSW sample. This was confirmed by first measurements at GKSS-operated beamline W2 (new

HARWI), which can provide this energy, and which is available for measurements since this year.

The SRµCT study on the material flow in FSW is being continued at beamline W2 (new

HARWI) for the further investigation of the influence of the welding tool and the welding parame-

ters on the welding process. Furthermore, investigations were recently started for two similar

joining techniques that are being developed at the GKSS-Research Center: ‘friction riveting’ and

‘hybrid friction diffusion bonding’ (HFDB). The first measurement of a friction rivet was recently

presented by Beckmannet al. [17].
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6.2 Density of cortical bone

6.2.1 Introduction

The contrast obtained between bone and soft tissue makes x-rays an ideal probe for biomedical

research. Bone mass measurements (or bone mineral density measurements), which are typically

based on conventional x-ray radiography or CT data, are mostly applied for the diagnosis of os-

teoporosis and for research on this common disease. However, quantitative CT measurements are

also important to relate bone density values to mechanical properties (stiffness and strength), in

case one wants to build finite element models with the correct input for the material properties.

Assuming a certain mass attenuation coefficient (µ/ρ) for bone, the measured x-ray attenuation

coefficientsµ can be directly converted into a value for the bone densityρ. For a deeper discussion,

see the description of the radiographic determination of mineral content by Elliottet al. [54]. The

high degree of monochromaticity in x-ray beams available at synchrotron radiation sources enables

the precise determination of the attenuation coefficient and, thus, the precise determination of the

bone density in SRµCT as was, e.g., presented by Nuzzoet al. [117]. However, blur introduced by

the detector limits this capability. The influence of detector blur is discussed here for the example

of a cortical bone measurement. The suppression of blur by application of the backing layer

(presented in Chapter 4) and by deconvolution of the detector PSF is demonstrated. Furthermore,

the reduction of ring artifacts after application of the backing layer is shown.

The cortical bone sample that is used for demonstration here was examined as part of a larger

study on the remodeling of bone that had been started in 2002. This study aims at the quantitative

evaluation of the remodeling process in osteoporotic cortical bone (human bone) with focus on

examination of the bone structural unit, the osteon, and more specifically its mineralization level.

For the investigation SRµCT measurements were performed on 8 samples from the femur of a

male donor and 4 samples from the femur of a female donor. The osteonal mineralization patterns

in the cortical bone samples (as shown in the rendering of Figure 6.10) were studied and compared

with images obtained by scanning acoustic microscopy (SAM) that can be related to the elastic

constant (Young’s modulus) of the bone.1 The results of this study have been published by Dalstra

et al. [41] and in the master thesis of Karaj [94].

6.2.2 Measurement and reconstruction

The presented data from the cortical bone of an osteoporotic, female donor were recorded in

2004. In total, four matchstick-like samples (2.5× 2.5× 40 mm) were prepared from the proximal

end of the right femur of the donor from the medial, anterior, lateral, and posterior position. The

sample shown here is the posterior sample. All scans were performed at beamline BW2 at 22 keV

photon energy. The scan parameters are given in Table 6.3. The maximum projected attenuation

1The relation between the acoustic impedance and the elastic constant is given in Karaj [94, Eq. (33)].
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Figure 6.10: (a) Longitudinal section of upper human femur from H. Gray, ‘Anatomy of the Human Body’,
1918. The mark shows the approximate location of cortical-bone extraction for the medial sample. (b)
Tomographic reconstruction of the sample volume and (c) rendering of the Haversian canal system.

coefficient wasp ≈ 2 as required for a measurement with optimum signal-to-noise ratio (compare

Section 3.3.2). Projections were recorded with the x-ray aperture slightly smaller than the field

of view such that the intensity was close to zero in the outer areas of the field of view. Binning

was applied to the recorded images with binning factorb = 2 to decrease the noise level in the

reconstructions (compare Section 3.3.4). The resulting binned projections had a width ofNt = 768

pixels. The 55 outer-most pixels on each side of the projections were set to zero after binning

and before reconstruction. This was necessary because of the low intensity in the outer areas of

the field of view, which would result in undefined values of the projected attenuation coefficient

otherwise. Reconstruction was performed using the “RALA”-type reconstruction algorithm that

was implemented under IDL (see Section 3.2) and produces reconstructions free of DC-shift. The

center of rotation was determined for each scan from the sinogram data with precision of 0.05

pixel, using the method presented in Chapter 5. The calculation of the MTF from an edge profile

measurement was performed before the scan as described in Appendix D.1.

A stacked scan (scans: gkss08a–f in Table 6.3) of the sample at six different positions was per-

formed. The luminescent screen was then removed from the apparatus for application of the black

backing. The sample was not translated during this procedure. The luminescent screen was re-

mounted, the camera was focussed and the ‘new’ MTF was recorded. Only about 30 minutes later,

the previous scan was repeated at the same sample position (scan: gkss08g), with the luminescent

screen now covered with lacquer paint under otherwise unchanged conditions. The specific lumi-

nescent screen was referred to as screen CWO1 in Chapter 4, where the recorded edge profiles

were shown in Figure 4.3. They showed the reduction of the intensity in the long tails of the PSF

and a reduction of the visibility of screen inhomogeneities.
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Table 6.3: Scan parameters for bone measurements. Herem is the optical magnification,τ is the
effective pixel size,a10 is the spatial resolution. Unchanged parameters are not repeated.

Energy τ a10

Beamtime/scanname Beamline [keV] Mode m [µm] [µm]

desy2004b/gkss08a..fa BW2 22 180deg 3.36 2.68 4.61
desy2004b/gkss08ga,b 4.64
aReconstructed with binning of recorded images (b = 2). Effective pixel size in reconstructions is 2τ.
bRepetition of scan gkss08f after application of the backing layer.

6.2.3 Deconvolution of projection data

Deconvolution of the spatial detector response (removal of blur) was tested for the evaluation

of the data set recorded with absorbing backing (scan: gkss08g). The direct deconvolution ap-

proach presented in Section 2.5.3 was applied, which requires that the entire beam profile must

be recorded within the field of view of the x-ray detector, i.e., the intensity should be zero outside

the field of view of the detector. This was experimentally realized by closing the x-ray aperture

to a little less than the extension of the field of view. Hereby, a slight reduction of the usable

detector size was caused that was irrelevant for the examination of the sample in this case. The

one-dimensional MTF(w) shown in Figure 4.4(e) describes the spatial system response and was

used for deconvolution.

The direct deconvolution was implemented using IDL routines. The deconvolution of images

imn with M×N pixels were calculated using the fast Fourier transform (FFT) routine. The resulting

FFT(imn) is a complex image in frequency space of sizeM×N. The measured MTF was assuming

rotational symmetry interpolated to the frequencies that correspond to the positions of the elements

in FFT(imn). The deconvoluted images were calculated by division in frequency space [compare

Equation (2.62)] and inverse fast Fourier transform (FFT−1) as

omn = FFT−1
{

FFT(imn)
Interpolate2D[MTF(w)]

}
. (6.3)

The deconvolution procedure was applied to the dark image corrected projection images (i−d)

and to the averaged reference images (r −d) before calculation of the projection images according

to Equation (2.45) [or more precisely Equation (D.4)]. The cyclic behavior of the DFT/FFT was

not accounted for in the deconvolution (possible using zero padding) and might produce cross talk

from one to the other side of the image upon deconvolution. However, the effect of cross talk

is assumed to be negligible here, since the intensity falls off to almost zero at the edges of the

images. In principle, the photoresponse of each pixel must be corrected prior to deconvolution,

which can be achieved by normalization with a CCD flat-field image recorded with homogeneous

illumination of the CCD. Because of the very small photoresponse non-uniformity of the CCD in

the x-ray camera of∼1%, this correction could be omitted here.
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6.2.4 Expected attenuation value

The mass attenuation coefficient (µ/ρ)boneof bone at a certain photon energy can be calculated

according to Equations (A.6) and (A.7) if its elemental composition is known. This was done

using the elemental composition of cortical bone given in the ICRU-44 report2 [84]. Using the

elemental attenuation coefficients from the tables of Plechatyet al.[119], the total mass attenuation

coefficient at 22 keV photon energy was calculated as (µ/ρ) = 2.99 cm2/g. This value agrees

perfectly with the mass attenuation coefficients tabulated by NIST.3

As mentioned above, the mass attenuation coefficient (µ/ρ) can be used to convert the mea-

sured x-ray attenuation coefficientµ into the bone densityρ. We will not convert our data, since the

determined mass attenuation coefficient relies on unjustified assumptions on the elemental compo-

sition of the bone. However, we can calculate the attenuation coefficient that we can expect from

the description of cortical bone in the ICRU-44 report for comparison with our data. At 22 keV,

we obtain for the attenuation coefficientµ = ρbone(µ/ρ)bone= 0.57 mm−1, where an average bone

density ofρbone= 1.920 g/cm3 (given in the ICRU-44 report) has been assumed.

6.2.5 Results

Figure 6.11 shows a comparison of cross sections from the cortical bone sample that were

recorded first with the untreated luminescent crystal, after application of the black layer, and after

additional deconvolution of the PSF from the projection data. Figures 6.11(a) – (c) show the

reconstructed cross sections. Actually, the reconstructions in the figure were reduced from the

original reconstruction size (700× 700 pixels) to about the size of the sample (540× 540 pixels).

All cross sections were recorded on the same central row of the CCD detector. The position of this

line was marked in the measured edge profiles shown in Figures 4.3(a) and (b) of Chapter 4.

A closeup of the reconstructions is shown in Figures 6.11(d) – (f). Several ring artifacts are

visible in the reconstruction of Figure 6.11(d). The two strong ring artifacts on the right half

of the image can be directly attributed to the two (weakly visible) screen inhomogeneities that

were shown in the closeup of Figure 4.3(d). The other less pronounced ring artifacts could not

be related to any features in the edge profiles of Figure 4.3(a), which are probably too weak to be

visible. The equivalent reconstructions obtained after application of the backing layer [closeups in

Figures 6.11(e) and (f)] display no ring artifacts. The position of the luminescent screen may have

been changed slightly upon remounting after application of the backing layer. Since the sample

2Data of the ICRU-44 report can be found online at a website of the National Institute of Standards and Technology
(NIST): http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html. Table 2 gives the composition
of cortical bone and other human tissues. Table 4 gives the mass attenuation coefficients for a number of photon
energies. The elemental weight fractions for cortical bone are given as: H (0.034), C (0.155), N (0.042), O (0.435), Na
(0.001), Mg (0.002), P (0.103), S (0.003), Ca (0.225).

3(See also the previous footnote). The closest tabulated value is given for photon energyEph = 20 keV as (µ/ρ) =
4.001 cm2/g. This agrees perfectly with our value (µ/ρ) = 2.99 cm2/g for Eph = 22 keV that was calculated here using
the tables of Plechaty. The two values were compared by the relationµ ∝ E−3

ph given by Equation (A.13).
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Figure 6.11: Comparison of SRµCT cross sections from a cortical bone sample that were recorded (a)
with the untreated luminescent crystal, (b) after application of the black layer, and (c) with additional
deconvolution of the PSF from the projection data. The size of the cross sections is 540× 540 pixels. (d)
– (f) Closeup from the red rectangle. (g) – (i) Attenuation profile along the green line. (j) – (l) Histogram
over the entire reconstructed slice (700× 700 pixels) together with the best fit of a function consisting of
two Gaussians. For each Gaussian, its center and its sigma parameter (in brackets) is given. The red arrow
in the histogram points to the peak caused by the observed non-zero attenuation in the Haversian canals.
The peak is less pronounced with the backing layer and vanishes for the deconvoluted reconstruction.



108 C 6. M 

remained fixed, all reconstructions show the same slice of the sample, but light generation may

have taken place at a slightly different positions of the luminescent screen in the measurements

carried out with and without backing layer. To ensure that this was not the cause for the vanishing

of the ring artifacts, the adjacent slices were checked. Strong ring artifacts as from the two screen

inhomogeneities under consideration could not be found in any other slice below or above the

slice shown in Figure 6.11(c), and the significant reduction of ring artifacts could be verified for

all slices.

From the closeups of the reconstructions in Figures 6.11(d) – (f) it is observed that the recon-

struction becomes clearer after application of the backing layer and even clearer after the addi-

tional convolution of the data, i.e., blur is reduced. Edges appear pronounced in the deconvoluted

data of Figure 6.11(f), which is visible as a small bright ring of 1 – 2 pixels extension around the

Haversian canals. This effect appears like an overcompensation of the PSF by deconvolution.

The plots in Figures 6.11(g) – (i) show line profiles of the attenuation coefficient through the

reconstructions in Figures 6.11(a) – (c). The attenuation coefficient in the presented reconstruction

varies between∼0.6 mm−1 for the darkest values inside the osteons (newly formed bone, low level

of mineralization) and∼0.7 mm−1 for the brightest values in the bone structure (high level of

mineralization). These values were estimated from line profiles through the slice in Figure 6.11(b)

after application of additional 4-fold binning to the slice, which provided averaged values. A

relevant deviation from the expected attenuation coefficient is found in the small void spaces of

the Haversian canals. The attenuation coefficient in the canals should be zero in an unblurred

measurement but is clearly above zero for the case of the untreated crystal in 6.11(g).

Figures 6.11(j) – (l) show histograms of the attenuation coefficient that were calculated over

from the reconstructed slices. Note that the histograms were calculated over the entire reconstruc-

tion (700×700 pixels) and include more pixels that contain air than are visible in the reduced cross

sections of Figures 6.11(a) – (c). Position and width of the peaks in the histogram were quantified

by fitting the sum of two Gaussian functions to each histogram. Center position and sigma para-

meter of the Gaussians for the air peak and the bone peak are given in the histograms. Stronger

mineralized (old) osteons show a higher attenuation than the newly formed ones. However, it is

impossible to resolve the bone peak into two peaks that would correspond to the contribution from

newly formed and old osteons as might be expected. This is due to the continuous distribution of

the attenuation coefficient within the osteons and the variation between osteons. A reduction of

the peak widths is observed after application of the backing layer. As derived from the parameters

in Figures 6.11(j) and (k) the reduction is about∼20% for the air peak and∼6% for the bone peak.

This reduction can be explained by the suppression of weak ring artifacts. After deconvolution,

which causes an amplification of high-frequency components (including noise), the peak width

increases again by about 50%.

Intensity in the Haversian canals that was observed in the measurements appears in the cor-

responding histogram in Figure 6.11(j) as a small fraction of voxels with attenuation coefficient



6.2. D    109

significantly above zero and centered at about 0.12 mm−1 [marked by the red arrow in Figure

6.11(j)]. After application of the backing layer, the attenuation observed in the Haversian canals

is reduced as it is visible in the line profile of Figure 6.11(h) and the corresponding histogram in

6.11(k). For the deconvoluted data set, the attenuation in the line profile of Figure 6.11(i) drops

to zero in the Haversian canals as ideally expected and the peak in the corresponding histogram in

6.11(l) disappears.

6.2.6 Discussion

The significant reduction of ring artifacts after application of the absorbing backing is ex-

plained by the suppression of screen inhomogeneities that is caused by the backing layer (com-

pare Chapter 4). Not only the clearly visible ring artifacts have disappeared after application of the

backing layer, but also a reduction of the peak widths in the histogram is observed. This indicates

the suppression of many weak (non-visible) ring artifacts, which cause a similar broadening of the

peak widths as noise.

The attenuation coefficient was determined asµ = 0.6346 mm−1 from the position of the bone

peak in 6.11(k). This value is about 10% above the theoretically expected valueµ = 0.57 mm−1

that was derived for the elemental composition of cortical bone above. However, we can resolve

bone and Haversian canals in our measurements. Thus, the theoretical bone density assumed in

the calculation is too low, since it is an average over the bone tissue and the Haversian canals. The

bone material (bulk) has a higher density and consequently a higher attenuation coefficient that

will be very close to the measured value. Differences may of course also arise due to variation of

the elemental bone composition and/or density.

The position of the bone peak indicates the improvement in the absolute measure of the atten-

uation coefficient. Blur on the reconstructions produces voxels that take an attenuation coefficient

between the true zero attenuation of air and the attenuation coefficient of bone (partial volume

effect). This is most pronounced for the space in the Haversian canals. The intensity that appears

blurred into the Haversian canals is lost for the surrounding. Thus, the bone peak is shifted to-

wards lower values compared with the true attenuation coefficient. Upon application of the black

backing, the bone peak shifts back up (from 0.6179 to 0.6346 mm−1) by 2.7%, and after decon-

volution (to 0.6481 mm−1) by another 2.1%. The combined effect of backing and deconvolution

thus causes an increase of the measured bone density by 4.8%. The zeroth-order moment of the

reconstructions was determined and increases by 0.6% and 0.5% at the same time. This can be ex-

plained as a non-linear effect caused by detector blur, whereby the zeroth-order moment decreases

(compare Section 2.5.1). The change of the zeroth-order moment is significantly smaller than the

peak shift, which indicates that blur predominantly makes a linear effect here.

The intensity in the Haversian canals becomes zero (as ideally expected) after application

of the black backing and additional deconvolution. This indicates that a precise measurement of

absolute attenuation coefficient with simultaneously high spatial resolution is achieved in this case.
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As described above, the PSF seems to have been overcompensated by the deconvolution. This

effect can occur, when the MTF used for deconvolution does not describe the PSF on the short

length scale correctly. Since short-range contributions to the PSF are difficult to measure, this is

not very surprising. Compare also the discussion on measurement of the MTF in Appendix D.1.

Hence, the simple direct (Fourier) deconvolution approach applied here is not optimal for the

restoration of high-frequency components in the reconstruction, while it is very efficient in the

suppression of long-range blur. It would of course be better to record unblurred projections than

to perform a deconvolution operation on the recorded images, since deconvolution always requires

assumptions on the detector response and degrades the image quality to some extend. The sup-

pression of blur by the backing layer is thus the right approach. But since we cannot suppress blur

in this type of detector entirely, the additional use of a proper deconvolution method is advised.

Deconvolution, or more generally, image processing of the radiographic images prior to re-

construction (image pre-processing) should thus be exploited beyond the direct deconvolution

approach. The development of image pre-processing steps that achieve deconvolution of predom-

inantly the long and middle range PSF with minimal amplification of high-frequency components

(and noise) seems feasible and should be investigated. The application of optimal digital filters

that make use of the approximately known PSF and the noise characteristics (as, e.g., the Wiener

filter) should be systematically investigated and further developed in a future work.

Other ongoing studies such as the morphological characterization of bone around dental im-

plants [35], titanium implants [18], [19], or the in-vitro/in-vivo corrosion measurement of mag-

nesium implants [60], [160] will directly profit from the enhanced performance of the SRµCT

setup.

6.2.7 Summary

The apparently first SRµCT scan was presented here, in which the luminescent screen of the

x-ray camera carried a black backing as optical coating. The effect of the absorbing backing

on the reconstruction was investigated using as an example the measurement of cortical bone.

Furthermore, the influence of deconvolution of the MTF (PSF) from the recorded projections prior

to reconstruction was studied. It was found that ring artifacts in the reconstruction are drastically

reduced after application of the absorbing backing. Blur was partly removed after application of

the backing and finally removed by the deconvolution operation. The combined removal of blur

caused a 4.8% increase of the average attenuation coefficient of bone, as was determined from the

shift of the bone-peak position in the histogram and resulted in an accurate reconstruction of the

attenuation coefficient of bone. This is essential for the precise determination of the bone mineral

density that can be further used, e.g., for the study of osteoporosis or as input parameter for finite

element models that allow for the simulation of the mechanical bone properties.
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6.3 Porosity of hydroxyapatite scaffolds

6.3.1 Introduction

Hydroxyapatite is a calcium phosphate with promising properties as building material for bone

grafts that are needed in medical surgery for the substitution of large bone defects. Rapid proto-

typing techniques such as 3D printing in principle allow for the preparation of patient-specific

scaffolds based on medical CT or MRI4 data. The design of the scaffolds has to fulfill different

criteria to ensure cell viability and function. These include nanoporosity to allow diffusion of

molecules for nutrition and signaling, micropores to ensure cell migration and capillary forma-

tion as well as macropores for arteries and veins [58]. Consequently, the analysis of the scaffold

porosity is important for the optimization of the manufacturing process and the implant design.

The quantification of the porosity using other techniques such as Hg-porosimetry and electron

microscopy is problematic and does not yield a satisfying description. In this study, SRµCT was

used to provide information on the structural properties of interest.

Goal of the SRµCT study was the morphological characterization of the volume structure on

three different length scales: macroscopic (down to∼0.1 mm), microscopic (down to∼5µm), and

nanoscopic (below∼1µm). SRµCT allows for the morphological characterization in the macro-

scopic and microscopic regime. Methods from 3D image analysis as, e.g., the euclidean distance

transform (compare, e.g., M̈uller et al.[106]) can be applied for this purpose. Results of this study,

especially on the characterization of scaffolds on the microscopic scale, were presented by Irsen

et al. [86].

Structures on the nanoscopic scale cannot be spatially resolved by SRµCT. However, the

porosity at this scale can be determined from the reconstructed attenuation coefficient, when at-

tenuation coefficient and density of the bulk material are known. Thus, the characterization on the

nanoscopic scale requires the precise reconstruction of the attenuation coefficient. Any influence

of the reconstruction algorithm on the reconstructed attenuation value will thus directly influence

the measured porosity and must be avoided.

The reconstruction algorithm itself can influence the reconstructed attenuation coefficient. A

comparison of the precision that can be achieved with the two different algorithms discussed in

Section 3.2.2 is presented here. Reconstructions of hydroxyapatite scaffolds that were studied by

SRµCT will be used for demonstration. In fact it was during this study, that the slight deviation

caused by the applied reconstruction algorithm was recognized.

4magnetic resonance imaging (MRI)
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Figure 6.12: (a) Photograph of a 3D-printed scaffold and (b) 3D rendering of the SRµCT data of the same
sample.

6.3.2 Sample preparation

The examined hydroxyapatite scaffolds were prepared at the Caesar Research Center.5 An

experimental 3D-printing setup (Bio-3DP) was used for the fabrication of all scaffolds. A detailed

description of the 3D-printing facilities used for this study was presented by Seitzet al. [135].

Figure 6.12(a) shows a photo of a sample after printing. The corresponding volume rendering

from the recorded and reconstructed tomographic data is shown in Figure 6.12(b).

Hydroxyapatite granules for 3D printing were prepared by spray drying of water based hy-

droxyapatite slurries (solid content of 55 weight percent). Various organic additives were added

to the hydroxyapatite suspensions for adjustment of slurry as well as granule properties.

The 3D printing was performed with an ink-jet like printer in a layer-by-layer process that

comprises of three repeating steps: In the first step a layer of powder (hydroxyapatite granulate)

is spread on the building platform. Thereafter, a 2D layer of binder solution is printed onto this

powderbed, which glues the granules in the wetted regions together. Finally, the building platform

is lowered corresponding to the layer thickness and the process is repeated for the following layer,

which is prepared on top of the previous one. All investigated samples were printed with an pitch

size of 250µm in the slices and a slice thickness of 200µm. The mean droplet diameter was in the

range of 200µm.

The final 3D-printed scaffold (green body) was removed and freed from unglued powder using

a slight airstream. To enhance the mechanical stability of the 3D-printed scaffolds, the green bod-

ies are normally sintered. Upon transformation from the green body to the final sintered body, the

material develops the desired mechanical properties. The density of the material and its strength

are increased. The details of the production process were described in [86].

5Samples were prepared by Stephan Irsen, Caesar Research Center, Ludwig-Erhard-Allee 2, 53175 Bonn.
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6.3.3 Measurement and reconstruction

Table 6.4: Scan parameters for hydroxyapatite measurements. Herem is the optical magnification,
τ is the effective pixel size,a10 is the spatial resolution. Unchanged parameters are not repeated.

Beamtime/ Beam- Energy τ a10

scanname Sample line [keV] Mode m [µm] [µm]

desy2005a/eth01a sintered BW2 24.0 180deg 2.11 4.27 6.36
desy2005a/eth02a green body
desy2005a/eth03a infiltrated gr. body
desy2005b/eth10a compr. gr. body BW2 24.0 180deg 2.139 4.21 7.04
desy2005b/eth11a compr., sintered

Scaffolds were examined in different production states. Table 6.4 gives an overview of the

measured samples and the scan parameters. All measurements were carried out at HASYLAB

beamline BW2 at the highest available photon energy of 24 keV within two different measurement

periods (beamtimes) in 2005. The same luminescent screen with backing layer was used in both

beamtimes. The scans were performed in ‘180deg’ mode withNt = 720 recorded projections in

each scan.

One slice of each data set was reconstructed for this comparison using both the “RALA”-type

reconstruction and the “BKFIL”-type reconstruction algorithms (IDL implementation) presented

in Chapter 3. The center of rotation required for reconstruction was determined for each slice

using the method presented in Chapter 5 with precision of 0.05 pixel using metricQIA.

6.3.4 Comparison of “RALA”- and “BKFIL”-type reconstruction

The difference in the “RALA”-type reconstruction according to Ramachandran and Laksh-

minarayanan [128] and the “BKFIL”-type reconstruction algorithm according to Budinger and

Gullberg [30] was explained in Section 3.2.2. As discussed, a shift towards negative attenuation

values is expected for the “BKFIL”-type reconstruction. Thus, the reconstructions were compared

in order to investigate this shift and to detect possible further differences.

Two homogeneous samples (compressed raw material as green body and after sintering) and

a structured 3D-printed sample (as green body) were selected for the comparison here. Figure

6.13 shows the reconstructions from the three data sets that were calculated by “RALA”-type

reconstructions. The equivalent reconstructions calculated with the “BKFIL”-type reconstruction

appear visually identical and are therefore not shown. Histograms over the reconstructed slices

were calculated for both types of reconstruction and are again shown only for the “RALA”-type

reconstruction next to the corresponding reconstructions. The histograms for the “BKFIL”-type

reconstructions (not shown) appear identical except for a slight shift. The position and width of

the peaks corresponding to air (surrounding) and the material itself were determined. For this
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Figure 6.13: Tomographic reconstructions of hydroxyapatite granules in different production states: (a)
Compressed green body, (c) compressed and sintered body, and (e) 3D-printed green body. All recon-
structions were calculated using the “RALA”-type reconstruction algorithm. (b), (d), and (f) show the
corresponding histograms recorded for each slice together with the best fit of a function that is the sum
of two Gaussians. Position and sigma parameter for each Gaussian are printed next to the corresponding
peaks (sigma parameter in brackets). The scale of the histogram ordinate is given in arbitrary units and was
enlarged for the histogram of the 3D-printed green body.
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purpose a least-squares fit to the histogram was made using a fit function consisting of the sum of

two Gaussian functions. The position and width (sigma parameter) of each Gaussian are given in

the histograms.

The average difference, i.e., the shift of the attenuation value between the two different recon-

structions was calculated as

∆ f = fB − fR , (6.4)

where fB is the reconstruction obtained from “BKFIL”-type,fR is the reconstruction obtained

from the “RALA”-type reconstruction, and the overline indicates the average over the (circular)

reconstructed area. Since the reconstruction is a linear calculation, the shift∆ f depends on the

zeroth-order moment (total mass) of the reconstruction. For comparison of the shift for the differ-

ent slices, we thus needed to compare the relative shift∆ f / f . Here, f is the average density in the

reconstructions calculated as

f =
( fB + fR)

2
. (6.5)

The determined absolute shift∆ f and the relative shift∆ f / f are given for each slice in Table

6.5. It was found that for all reconstructed slices, the reconstructions by the “BKFIL” algorithm

were shifted to negative attenuation values. The observed relative shift between the two types

of reconstruction varies between−1.47% and−3.30%. This variation can be explained by the

variation of the projection (sinogram) width with different number of sampling pointsNt (given

in Table 6.5) for the different sinograms as was discussed in Section 3.2.2. For identical values of

Nt, as for scans eth02a and eth03a, the same relative shift is observed. The reconstructions were

compared for further differences. The difference image of the reconstructionsfB− fR− f (corrected

for the shift) showed structure with intensity far below the noise level of the reconstructions. Thus,

no other relevant difference than the uniform DC-shift was found.

For the data sets shown in Figure 6.13, additionally to the average value, the position of the

histogram peaks was compared for both types of reconstruction. As expected for pure DC-shift

the difference in the peak positions between the two algorithms agreed perfectly with the size of

the DC-shift∆ f for all three samples.

So far, we compared the reconstructions obtained with both types of algorithm relative to

each other. The position and width of the histogram peaks were then used to check the absolute

precision of each algorithm. For the homogeneous and cylindrical samples shown in Figures

6.13(a) and (c), the attenuation coefficient in the slice is constant over large areas that correspond

to either hydroxyapatite or air. Hence, a very accurate position of the peaks (negligible influence

of the partial volume effect and blur) in the histogram can be expected. Note that the attenuation

coefficient of air should be exactly zero in these measurement because we measure the attenuation

coefficient relative to air. Therefore, we can use the position of the air peakµair
B for the “BKFIL”-

type reconstruction andµair
R for the “RALA”-type reconstruction of these measurements (given in

Table 6.5) directly as a measure for the absolute offset∆ fabs.
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Table 6.5: Shift from “RALA”-type to “BKFIL”-type reconstruction.

∆ f ∆ f / f µair
B µair

R
Beamtime/scanname Nt [1/mm] [%] [1/mm] [1/mm]

desy2005a/eth01a 1136 -0.00771 -3.30 -a -
desy2005a/eth02a 1536 -0.00126 -1.47 0.004140 0.00540
desy2005a/eth03a 1536 -0.00136 -1.47 - -
desy2005b/eth10a 968 -0.00353 -2.75 -0.00386 -0.00032
desy2005b/eth11a 936 -0.00665 -2.38 -0.00583 0.00085
a- Not determined.

The air peak of sample eth11a in the “RALA”-type reconstruction showed the highest devi-

ation from zero ofµair
R = −0.00583 mm−1. To get a better understanding of the relative error in

the measurement, this deviation must be compared with the attenuation coefficient of the material

µmat that is to be examined. Since the attenuation coefficient of the material is in the order of

µmat ≈ 1 mm−1 in this case, we find a relative deviation∆ fabs/µ
mat, which is in the order of 0.5%

for the “BKFIL”-type reconstruction and below 0.1% for the “RALA”-type reconstruction for

both measurements eth10a and eth11a. The simple conclusion from this is that the “RALA”-type

implementation of the filtered backprojection algorithm should be preferred.

The noise level (error) in the reconstructed attenuation values is closely related to the sigma

parameter of the histogram peaks. The sigma parameter of the peaks in the measurement of ho-

mogeneous objects (measurements eth10a, eth11a) gives a direct measure for the noise level. We

estimated a noise level of aboutσµ = 0.03 mm−1 from the width of the air peaks in Figures 6.13(b)

and (d). This value is almost a factor of ten higher than the shift caused by the “BKFIL”-type re-

construction. Note that this does not make the DC-shift negligible: The sigma parameter describes

the variation of the attenuation coefficient in an individual pixel, i.e., it can be reduced by averag-

ing over many pixels, while the DC-shift will not be reduced by averaging. The DC-shift shifts

the peak positions in the histogram, while additional noise ‘only’ increases the peak widths.

It was observed that the noise level (width of the fitted Gaussian) for the material peak is

higher than for the air peak in all three histograms of Figure 6.13. This can be related to the lower

average photon count that is recorded in the projection of the central region of the sample (due

to the sample thickness), when compared with the outer regions, where almost no attenuation is

observed. The lower photon count results in the higher noise level in the projection (compare

Section 2.5.2).

6.3.5 Results and discussion

The reconstructions/histograms of Figure 6.13 calculated with the “RALA”-type were used

for the calculation of average porosities. The compressed material in the sintered sample in Figure

6.13(d) has an attenuation value ofµ = 1.1483 mm−1, which is given by the material-peak position
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in the histogram. This value can be directly compared with the attenuation value expected for

stoichiometric hydroxyapatite [Ca10(PO4)6(OH)2] at 24 keV photon energy and of densityρHA =

3.156 g/cm3, which isµ = 1.199 mm−1. Here, the data of Plechatyet al. [119] were used for the

calculation of the attenuation coefficient. The somewhat lower value measured for the attenuation

coefficient must be due to a slightly lower density of the compressed body as compared with the

assumed bulk density. The density was calculated relative to the bulk density asρ = 95.7%ρHA,

i.e., a porosity of about 4.3% was found.

The nanoscale porosity of the granular material can be derived from the comparison of the

materials attenuation coefficient in the measurements eth02a (green body) and eth10a (green body,

compressed). Thus, the densities of the materials in Figures 6.13(a) and (e) were compared relative

to each other. However, the air peak of the 3D-printed, fine-structured sample in Figure 6.13(e)

is significantly shifted from zero towards higher attenuation values, while the material peak that

must be compared to the peak of the base material in Figure 6.13(a) shifts towards lower values.

This indicates that part of the pixels are influenced by the partial volume effect and by detector

blur (compare Section 3.3.6). This causes pixels (voxels), especially those close to a material-air

surface, to take on attenuation coefficients in the range between the attenuation coefficient of air

and that of the bulk material. The direct comparison of histogram peaks will thus be influenced by

this effect. A histogram free of blur artifacts should be obtainable after deconvolution of the PSF

(compare Section 2.5.3). However, this approach relies on the precise measurement of the PSF

(compare Section D.1 and the previous Section 6.2) in the short distance range (several pixels) and

increases the noise level in the data. Another way towards a histogram that is free of blur and of

partial volume effects, might be given by the exclusion of surface voxels from the histogram using

an appropriate mask. So far, we obtained the ratio of densities directly from the ratio of peak

positions. The porosity of the granular material was determined by comparison of the material

peak position as 7.4% (ratio of attenuation coefficients 92.6%).

6.3.6 Summary

The difference between two implementations of the filtered backprojection algorithm was dis-

cussed using the example of a study on hydroxyapatite scaffolds. The DC-shift caused by the

“BKFIL”-type reconstruction algorithm was shown to cause an effect in the order of 0.5% relative

to the attenuation value that was to be measured. It was shown that this DC-shift in the recon-

struction is avoided by use of the “RALA”-type reconstruction algorithm. For the “RALA”-type

reconstruction, a relative shift of less than 0.1% was verified, as was deduced from the position

of the air peak in the histograms that were obtained for homogeneous material. The selection of

the appropriate reconstruction algorithm thus enabled the measurement of a precise attenuation

coefficient for hydroxyapatite.

Hydroxyapatite scaffolds were examined in several production states and their nanoscopic

porosity was determined. The presented results complement the results obtained on the macro-
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and microscopic scale previously. They give valuable insights into the nanoporosity that can be

used as feedback for the optimization of the manufacturing process.
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6.4 Microstructure of fiberboard

6.4.1 Introduction

Medium and high density fiberboard (MDF/HDF) are common wood composite products that

are widely used in the furniture industry and for laminate flooring. About 33 Mio. m3 of MDF [as

the typical MDFs shown in Figure 6.14(a)] were commercially produced in the year 2004 alone.

Fiberboard is made of a wood furnish material consisting of single wood fibers and fiber bundles.

During production the wood furnish is treated with adhesive and consolidated under temperatures

in the range from 180 to 220oC to panels of different densities ranging from 300 to 800 kg/m3 for

MDF and from 800 to about 1000 kg/m3 for HDF. Examination of the fiberboard microstructure is

important for modeling and understanding of the relation between the microstructural features and

the macroscopic behavior of the end product and, clearly, can have a strong economical impact.

Macroscopic properties of fiberboard such as the mechanical strength, thermal conductivity,

and the water vapor transmission are largely determined by the fiberboard’s three-dimensional

microstructure. The microstructure of the composite and the effect of the compression process

on the individual fibers is usually studied by scanning electron or light microscopy. However,

both methods suffer from surface artifacts that can easily be created during sample preparation

and are limited to the examination of two-dimensional surfaces. Simulations of the macroscopic

fiberboard behavior have so far been based on assumptions about the microstructure or have used

random generated structures as an input for the simulation (see Faesselet al. [55], Wang and

Shaler [155], and the PhD thesis by Wang [154]). A simplified description of the fiberboard

microstructure from measured data has so far not been available as input for these simulations.

In this study, the microstructure of MDF of four different densities was recorded three-dimen-

sionally using SRµCT. The measurements were carried out with x-ray attenuation contrast at

12 keV photon energy at beamline BW2 of HASYLAB/DESY. Goal of the study was the ex-

traction of material parameters that can be used as input for simulations or for statistical analysis.

Additionally, the visualization of the spatial distribution of adhesive on the fibers was attempted.

For this purpose marker substances were added to the adhesive prior to fiberboard production. A

segmentation procedure was developed for this purpose that makes use of 3D image processing

methods. The study was performed in collaboration with the ‘Zentrum Holzwirtschaft’ and the

‘Fachbereich Informatik’ of the University of Hamburg. The procedure for the segmentation of

fiber parameters from the SRµCT data and first results of the statistical analysis were published by

Waltheret al. [152].

The small structure size of the fiberboard, which is in the order of the spatial resolution of

the camera, made the segmentation of wood fibers challenging. A systematic oscillating structure

(artifact) that was observed close to the around 2 – 5µm thick cell walls will be discussed here.
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Figure 6.14: (a) Industrially produced medium density fiberboards. (b) A laboratory sample measuring
2× 2× 5 mm glued to the sample holder.

6.4.2 Literature review

Fiberboard and paper both are cellulosic structures with similar properties. A few studies on

the three-dimensional microstructure of both materials have been presented in recent years.

Among the first Groomet al. [69] derived quantitative information from SRµCT data of fiber-

board. They applied absorption contrast microtomography for the examination of a single MDF

sample measuring 1.3× 1.1× 0.4 mm at the X2B beamline of the National Synchrotron Radiation

Light Source (NSLS) using 8.5 keV radiation. They discussed the effect of fiber properties (phys-

ical, mechanical), fiber-to-fiber stress transfer, and fiber orientation onto the fiberboard’s macro-

scopic properties. The authors determined parameters of individual fibers as the secant (straight

line connecting the fiber ends) length and curl (ratio of secant length and segment length) from the

volume data by manual image interpretation. Faesselet al. [55] investigated the structure of fiber-

board by means of SRµCT and derived a pore size distribution from the data. They presented a

simulation of the thermal conductivity, which they based on a simulated three-dimensional random

model for the description of fiberboard rather than on the measured SRµCT data. Their thermal

conductivity model is based on the distribution of fiber lengths, the fiber density (porosity), the

average orientations of the fibers, and the tortuosity of fibers.

Sintornet al. [138] obtained the three-dimensional representation of a single paper sample

from a series of in total 73 SEM images of microtome sections. The resolution within the sections

(pixel size: 0.7µm) is, thus, about seven times higher than in the direction of the surface normal,

where the distance between consecutive sections is 5µm. The sample was embedded in epoxy.

Image processing was used in this publication for the labeling of individual pores.

An SRµCT study on the microstructure of paper was presented by Antoineet al. [1] and was

also described in the PhD thesis of Weitkamp [157]. The authors made use of near-field coherent

imaging with a partially coherent x-ray beam of 20 keV photons at the ID22 beamline of the
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European synchrotron radiation facility (ESRF). They claim that higher spatial resolution can be

obtained in near-field coherent imaging when compared to absorption contrast mode. However,

they present no measure of resolution. Using image processing methods, they obtained a binary

representation of air space and fibers. Holmstad [78] and Holmstadet al. [79] compared SRµCT

in phase contrast mode with conventionalµCT and presented a number of image processing tools

for the investigation of paper.

Du Roscoatet al.[130] presented another SRµCT study of paper performed at the ID19 beam-

line of the ESRF. The photon energy of this study is not reported. Absorption contrast seems to

have been dominating, although the authors describe that phase contrast can be recognized in the

reconstruction as a fringe pattern at edges.

6.4.3 Sample preparation

Fiberboards were produced in a laboratory hot-press at the ‘Zentrum Holzwirtschaft’ at the

University of Hamburg with densities of 300, 500, 800, and 1 000 kg/m3 (i.e. 1 000 kg/m3 =

1 g/cm3) and a thickness of 5 mm. Furthermore, another two series of boards with the same density

settings were produced. For these, the adhesive was stained with either iodine or barium sulfate

(BaSO4) as marker for visualization. Another set of boards contained a combination of 50% wood

fibers and 50% sisal or hemp fibers.

Samples of 2× 2 mm size were cut out from the 5 mm thick fiberboards, thus resulting in

a sample volume of about 2× 2 × 5 mm [see Figure 6.14(b)]. The fiberboards were manually

cut using razor blades, which produced almost artifact free surfaces. The density profile of the

fiberboard along its surface normal is symmetric with respect to the center of the fiberboard. Thus,

only one half of the 5 mm long samples had to be investigated for the qualitative description of the

entire fiberboard profile.

6.4.4 Measurement and reconstruction

Following preliminary studies in 2004, the total of 15 samples was scanned within two days in

January 2005 at beamline BW2 of HASYLAB. The photon energy was 12.0 keV and the optical

magnification factorm= 3.94 resulted in a sampling interval (effective pixel size) ofτ = 2.28µm.

The spatial resolution corresponding to 10%-MTF value was determined as a10 = 3.9µm from the

projection of a gold edge as described in Section D.1. In ‘180deg’ mode,Nθ = 720 projections

were recorded using the full field of view of the camera, which measured 1536× 1024 pixels or

correspondingly 3.51× 2.34 mm. The scan parameters are summarized in Table 6.6. Two scans

were recorded per sample at different distances from the sample surface and combined into one

stacked data set (compare Section D.2). By combination of the data, a little bit more than half the

sample thickness was covered and, thus, all relevant information about the otherwise symmetrical

fiberboards obtained. The center of rotation was determined for each scan from the sinogram
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Table 6.6: Scan parameters for MDF measurements. Herem is the optical magnification,τ is the
effective pixel size,a10 is the spatial resolution.

Energy τ a10

Beamtime/scanname Beamline [keV] Mode MTF m [µm] [µm]

desy2005a/holz01a,b BW2 12.0 180deg mtf00120 3.94 2.28 3.90
desy2005a/holz02a,b
desy2005a/holz03a,b
...
desy2005a/holz15a,b

data using the method presented in Chapter 5 with precision of 0.05 pixel and using metricQIA.

Reconstruction of the data was performed using the “BKFIL”-type algorithm on a 1536× 1536

reconstruction grid. The DC-shift (compare Section 3.2.2) caused by this algorithm is not of

relevance for the performed three-dimensional segmentation of the data described below.

Cellulosic samples can be sensitive to humidity and temperature. Du Roscoatet al. [130]

observed swelling of paper samples in their measurements. No swelling was observed for the

studied samples here and, probably, the swelling is much less critical for fiberboard than it is for

paper. Nevertheless, care was taken, to bring the samples to the laboratory place of examination in

reasonable time before the measurement and to maintain constant climate conditions at the place

of examination before and during the measurement.

Figure 6.15 shows the cross section of a typical sample that was prepared with orientation

parallel to the rotation axis. The cross section of most of the wood fibers is visible in this view,

since the preferred fiber orientation is parallel to the fiberboard surface, i.e., perpendicular to the

rotation axis.

6.4.5 Spatial resolution and noise

The structure size of wood fibers is close to the spatial resolution limit of the x-ray camera.

The outer fiber diameter is in the range of 10 – 20µm and the fiber wall thickness is in the range

of 2 – 5µm. Thus, the typical fiber wall thickness corresponds to the extension of just about two

pixels (∼2τ), whereτ = 2.28µm is the effective pixel size of the detector and the voxel size in the

reconstructed volume. The spatial resolution of the camera was determined from an edge profile

measurement asa10 = 3.90≈ 1.71τ.

Figure 6.16 shows a magnified subregion of an unstained MDF sample with density 500 kg/m3.

The cross section of several cells is clearly visible. However, the attenuation coefficient system-

atically deviates from zero at some places outside the fiber material and displays a structure that

cannot be explained simply as noise or blur. Negative values are found for the attenuation coeffi-

cient in short distance (2 – 3 pixels) from the center of the fiber walls, while at larger distance (5

– 6 pixels) a slight increase of the attenuation coefficient to clearly above zero is observed. This
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Figure 6.15: Cross section of an MDF sample with density 500 kg/m3. The orientation of the slice is
parallel to the rotation axis and has been produced from a combination of twoµCT scans at different sample
positions. The size of the image is 1536× 1901 pixel, the first value corresponding to the CCD width. The
pixel edge length isτ = 2.3µm.
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Figure 6.16: (a) Magnified subregion of the unstained 500 kg/m3 sample from the smaller box in Figure
6.15. The size of the image is 50× 50 pixels. (b) Plot of the attenuation in units of image gray levels (0
– 255) along the row marked in the subregion. Zero attenuation corresponds to a value of∼23. The noise
structure on the left and the fiber walls on the right are in a similar range of values. Close to the fibers, the
attenuation coefficient systematically takes values below zero attenuation.

effect appears like the so-called ringing effect that can be caused by the naturally band-limited

reconstruction process. The band limit causes oscillations similar to the Frauenhofer diffraction

pattern of a circular aperture in the reconstruction as it was discussed in Section 3.3.1. Presumably,

the negative attenuation coefficient close to the fiber walls corresponds to the first minimum of the

diffraction pattern, and the positive attenuation coefficient next to this minimum corresponds to its

first maximum. The effect was simulated by reconstruction of a model system that simulates the

fiber structures. For this purpose a 2D model system was constructed of two concentrical circles

(ellipses with equal axis parameters, see Appendix E) of opposite sign. The projection was cal-

culated and blurred by a Gaussian function with width corresponding to the measured resolution

parameter. Reconstruction of the sinogram reproduced the negative attenuation values between

the cell walls qualitatively, while the positive attenuation value in larger distance could not be

reproduced. It is believed that the effect can be fully reproduced, when the real point spread func-

tion of the detector would be used for the simulation. The PSF is however difficult to determine,

especially on the short length scale of a few pixels that is of interest here (compare Section D.1).

Note that the PSF itself is band limited by the aperture of the lens system and may contribute to

the ringing structure, although a Frauenhofer diffraction pattern could not be seen on a PSF that

was reconstructed from the edge profile measurement (compare Section 2.4.1).

The noise level in the reconstructions can be estimated from the peak widths in the histogram.

The histogram of the attenuation coefficient in the reconstruction of the unstained 500 kg/m3 sam-

ple is shown in Figure 6.17. The peak atµ = 0 mm−1 corresponds to air and strongly overlaps the
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Figure 6.17: Histogram of the unstained 500 kg/m3 sample (over the entire volume of one of two scans).
A Gaussian function (solid line) has been fitted to the data. The center position and sigma parameter (in
brackets) are given.

peak corresponding to the fiber material, which for pure cellulose C6H10O5 of density 1.5 g/cm3

and at 12 keV photon energy would be expected atµ = 0.333 mm−1 (calculated according to the

data of Plechatyet al. [119]). The fit of a function consisting of two Gaussian functions for the

description of air-peak and material-peak (cellulose material) to the measured histogram was not

successful. Without fixation of the fit parameters, the material peak did not converge into the

expected position. Therefore, a single Gaussian function was fitted to the histogram for the deter-

mination of the air-peak width only. The fitted curve is plotted in Figure 6.17. The determined

sigma parameter of the peak is 0.085 mm−1, which is reasonable for the selected scan parameters.6

Noise and ringing cause artificial structures in the reconstruction that locally can have similar

appearance as the cell wall material. These structures, which extend over several voxels, impose a

problem for fiber segmentation. The differentiation between these artificial structures and the real

eventually very thin cell walls is difficult. It was therefore necessary to employ a more sophisti-

cated method than the simple threshold technique for the segmentation of fibers and, in any case,

for the desired segmentation of individual fibers.

6.4.6 Fiber segmentation

A procedure for the segmentation of individual fibers from the recorded volume data sets was

developed together with the ‘Fachbereich Informatik’ of the University of Hamburg based on the

VIGRA7 library. This collaboration, initiated during this work, enabled application and adaptation

of state-of-the-art algorithms for the given segmentation problem.

6By inverse application of the formula for the calculation of the noise level in the reconstruction [Equation (3.31)]
and with Nθ = 720, we can obtain the corresponding average photon count in each pixel. The calculation gives
〈N〉 = 14 058 in this case, which is in the order of photon counts that are usually acquired in each pixel of the projection.

7VIGRA - Vision with Generic Algorithms. The software package is developed at the ‘Arbeitsbereich Kogni-
tive System, Fachbereich Informatik, Universität Hamburg’. Authors: Ullrich K̈othe and Hans Meine. Software and
documentation are online available athttp://kogs-www.informatik.uni-hamburg.de/∼koethe/vigra/ [visi-
ted July, 1st 2006].
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Figure 6.18: Demonstration of the fiber segmentation for the 300 kg/m3 MDF sample. (a) Selection of a
256× 256× 256 voxel sub-volume, which corresponds to 0.58× 0.58× 0.58 mm3. (b) – (g) Segmentation
steps (see text). Segmented fiber cavities (red) and a single segmented fiber (green) are shown.
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(a) (b)

Figure 6.19: A subvolume of 256× 256× 256 voxels with individually segmented fibers. The individual
fibers were assigned eight alternating colors. (a) 500 kg/m3 and (b) 300 kg/m3 sample.

For the demonstration of the segmentation procedure a subregion of the unstained 300 kg/m3

sample was selected as shown in Figure 6.18(a). Figures 6.18(b) – (g) show the different steps of

the segmentation procedure. Figure 6.18(b) shows a rendering of the sub-volume without any seg-

mentation. In Figure 6.18(c) the region of low attenuation coefficient has been made transparent.

The data set was then segmented into air, fibers, and cavities within the fibers. First the outside

air was marked using seeded region growing, then the remaining voxels were separated into fibers

and cavities through thresholding and subsequent seeded region growing. Figure 6.18(d) shows

the marked cavities that have no contact to the outer air. Finally, the cavities with contact to outer

air were separated in Figure 6.18(e) through a series of morphological operations (erosion and di-

lation). Figure 6.18(f) shows all cavities detected in the fibers. Individual fibers [shown in Figure

6.18(g)] were then segmented using dilation on individual cavities and using the segmented image

as a mask. The output of the segmentation process are three-dimensional data sets containing ei-

ther labeled fibers or labeled fiber lumina, in which voxels that belong to the same fiber/lumen are

indexed by the same number. Figure 6.19 shows the labeled fibers in a 256×256×256 sub-volume

of the unstained 300 and 500 kg/m3 MDF sample. A more detailed description of the segmentation

and labeling procedure can be found in the publication by Waltheret al. [152].

6.4.7 Results and discussion

Cross sections with orientation parallel to the rotation axis [as the one shown in Figure 6.15]

were prepared for all samples. A closeup from the equivalent position within each sample and of

all other studied samples is shown in Figure 6.20. The iodine marker is soluble in water and to be

seen in the reconstructions as a homogeneously distributed increase of the attenuation coefficient

of fiber material that varies locally. The barium sulfate marker is practically insoluble in water and

seen as tiny clumps of highly-absorbing marker, which are attached to the fiber material. Even in

the unstained samples, a small number of highly absorbing particles was found. They were not
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Figure 6.20: Overview of all MDF samples, showing a 200× 200 pixels cross section from each sample.
The cross section of the unstained 500 kg m−3 sample corresponds to the larger box in Figure 6.15. An
equivalent subregion has been selected for all samples.
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observed in the industrial sample. Most probably the particles are metallic grit from the laboratory

production machines.

The distribution of the water-soluble iodine marker was recognized in the reconstructions by

an increase of the average attenuation coefficient of the fibers. Because of natural variations of the

wood fiber material and the limited resolution, the attenuation coefficient could not be related to

the iodine or adhesive concentration, though. It is unclear, whether further statistical evaluation

of the marker distribution could give valuable information. The barium sulfate marker that be-

comes visible in the reconstruction as highly-absorbing particles was found to be non-uniformly

distributed. The data did thus not allow for a characterization of the marker distribution.

The segmented and labeled data sets obtained from the segmentation procedure enabled further

analysis of the data sets and of individual fibers. Parameters were determined from several sub-

volumes (512×512×256 voxels) with varying distance from the sample surface for each data set.

In total 57 sub-volumes were analyzed. For each labeled fiber in the sub-volume were determined:

• volume of cell wall,

• volume of lumen,

• surface area (inner/outer),

• orientation,

• contact area with other fibers.

Fiber bundles that were labeled as a object could be detected by analysis of these parameters. As

further parameters of the entire sub-volume were determined:

• inter-cellular volume,

• inner-cellular volume,

• total cell wall volume,

• number of fibers.

The volume of fibers and of their lumen is calculated by counting voxels within the segmented

images. The surface area of the fibers is calculated by counting the contact surfaces between

fiber and air. The orientation of the fibers is obtained by performing principal component analysis

(PCA) on the segmented cavities or fibers. During PCA analysis the eigenvectors of a three-

dimensional covariance matrix are calculated. The largest eigenvector can be directly related to

the main orientation of a fiber. The contact area between individual fibers (fiber-to-fiber bonding)

is retrieved from the labeled fiber walls by neighborhood operations. The results for each analyzed

sub-volume are in detail presented in the PhD thesis of Walther [153].
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The availability of individual fiber labeling opens further possibilities for evaluation. Parame-

ters as the secant length and curl that were derived manually by Groomet al. [69] can now easily

be determined from the segmented data. Distance transform or granulometry can be applied to

the labeled fiber lumina and provide information on the lumen collapse induced during fiberboard

production. Also dynamic studies with fiber tracking become possible. The change of individual

fiber parameters as position, length, volume, curl, or orientation could now be followed for fiber-

boards, e.g., during wetting or under mechanical load. Algorithms similar to those developed by

Nielsenet al. [115] for the tracking of marker particles (in this case in a metal matrix) by their

characteristic parameters can be implemented.

6.4.8 Summary

SRµCT was successfully applied for the three-dimensional visualization and characterization

of the fiberboard microstructure for several fiberboards with densities between 300 and 1 000 kg/m3.

The microstructure with a structure size close to the resolution limit of the tomography setup could

be resolved. An oscillating structure that was observed around the fibers was qualitatively ex-

plained as a result of the band limit in the reconstruction. A robust segmentation procedure was

developed that allows for the segmentation of individual fibers (labeling of fibers) even in the pres-

ence of noise and oscillating structures. Parameters of individual fibers as surface area/volume,

position, length, volume, orientation, or contact area were obtained from the labeled data sets.

These parameters were used for the statistical characterization of the fiberboard structure and,

furthermore, can be used as input for modeling and optimization of the macroscopic fiberboard

properties. This will give a much better foundation for the applied models than the so far used

random generated input or the limited data obtained from sectioning techniques.
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Chapter 7

Summary and outlook

SRµCT was applied in this work for the three-dimensional characterization of specimens with

spatial resolution in the micrometer range. Further developments were made on the existing

SRµCT setup, especially on the x-ray camera and the reconstruction chain. These developments

enhance the capabilities of SRµCT and allow to make even better use of the special advantages

of synchrotron radiation (no beam hardening) for quantitative measurements. Examples of studies

conducted in the fields of material and medical science were presented.

Quantitative measurements rely on artifact-free reconstructions. Therefore, possible artifact

sources in SRµCT were summarized. The influence of noise in the recorded reference images

was derived. Especially long-range blur in the x-ray camera was intensively discussed, since it

causes blur and may even cause non-linear artifacts in the tomographic reconstructions. Blur-free

x-ray cameras (e.g., lens-less detectors) that would achieve the same spatial resolution of∼1µm

are not available today. However, the suppression of blur in the lens-coupled x-ray camera could

be successfully demonstrated.

In order to physically suppress blur an absorbing coating (black backing) was applied to the

luminescent screen of the x-ray camera. Apparently, this was done for an SRµCT setup for the

first time. The characterization of the camera showed that long-range blur and, additionally, the

visibility of screen defects were strongly suppressed after application of the absorbing backing.

Consequently, and as was shown experimentally, blur and ring artifacts in the reconstruction could

be drastically reduced. Other methods that make use of the same type of x-ray camera, e.g.,

phase-contrast tomography or nano-tomography, should directly profit from the technology of the

presented blur-reduced detector.

The center of rotation in the projection data must be precisely known for the tomographic

reconstruction, but the determination of the center of rotation had been a pending problem for a

long time. No precise and objective method for this purpose had been available. In this work a

robust method for the determination of the center of rotation was developed that achieves sub-

pixel precision. It was implemented into the reconstruction chain, whereby automation of the
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entire reconstruction chain was achieved. In combination with the automation of camera focussing

and magnification measurement that were introduced in this work, the reliability, speed, and user-

friendliness of measurement and reconstruction were thus significantly increased. Moreover, the

objectivity in the obtained data is ensured.

A study on the material flow during friction stir welding of aluminum alloys was performed

and revealed important insights into the influence of the welding tool on the welding process. Ar-

tifacts were observed in these measurements around strongly absorbing objects. The combination

of high contrast and long-range blur in the detector was identified as the source of these artifacts

by a simulation. This simulation furthermore showed that the removal of blur would eliminate

these artifacts.

The removal of blur by application of the backing layer and additionally by deconvolution

of the radiographic images was successfully demonstrated for the measurement of cortical bone.

Blur was partly removed by the black backing and finally removed by the deconvolution operation

performed on the recorded radiographic projections. The combined removal of blur resulted in an

accurate reconstruction of the attenuation coefficient of bone. This is essential for the precise de-

termination of the bone mineral density that can be further used, e.g., for the study of osteoporosis

or as input parameter for finite element models that allow for the simulation of the mechanical

bone properties.

The porosity of hydroxyapatite scaffolds intended for use as implant material was measured at

the nanoscopic scale. The influence on the measurement caused by the partial volume effect and

by the reconstruction algorithm itself was discussed here. A significant shift of the reconstructed

attenuation value was observed that was caused by the applied filtered backprojection algorithm. It

was shown that using a different implementation of the reconstruction according to Ramachandran

and Lakshimarayanan avoids the shift and achieves a precise absolute value for the attenuation

coefficient. This allows insights into the nanoporosity of the scaffolds that can be used as feedback

for the optimization of the manufacturing process.

The microstructure of fiberboard was examined and characterized using 3D image processing

methods. An oscillating structure observed around the cell walls was qualitatively explained as

a direct consequence of the band limit of the system, and could therefore not be removed. A

procedure for the segmentation and labeling of fibers could, however, be developed, based on 3D

image processing methods. Several characteristic parameters for each individual wood fiber in

the fiberboard could hereby be quantitatively determined and can further be used for the statistical

description, modeling, and the optimization of fiberboards.

In this work a number of important steps have been taken to improve the SRµCT method for

quantitative measurements, towards full automation, and by the development of new data analysis

tools. For the future these developments should allow to address an even larger number of scientific

questions in traditional and new scientific fields using SRµCT.
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Appendix A

The interaction of x-rays with matter

A short summary of the fundamental interaction processes of x-rays with matter is presented

here. A more elaborate summary with focus on radiological imaging can be found in the book by

Barrett and Swindell [8, Appendix C].

A.1 Wavelength and energy relation

The relation between wavelengthλ and photon energyE for photons in vacuum is given by de

Broglie’s wavelength of a particle with rest mass zero as

λ =
hc
E
, (A.1)

wherec is the speed of light andh is Planck’s constant. The following numerical expression of the

equation above is helpful in every day use:

λ[nm] ≈
1239.8
E[eV]

. (A.2)

A.2 Attenuation coefficient

A pencil beam of monochromatic photons in a homogeneous medium is attenuated according

to Beer’s law:

Φ(d) = Φ0 exp(−µd) , (A.3)

whereΦ0 is the incident photon flux (photons/s/unit area),Φ(d) is the flux after traveling distance

d, andµ is the linear attenuation coefficient or simply attenuation coefficient of the medium.
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The attenuation coefficient is given in units of mm−1 in this work. In conventional CT the relative

attenuation coefficient is also quantified according to the Hounsfield scale.1

In microtomography the beam travels along a medium with varying attenuation coefficient

µ(s′) along the traveling direction. In this case, the photon flux is given by:

Φ(s) = Φ0 exp

[
−

∫ s

0
µ(s′) ds′

]
. (A.4)

The derivation of this equation is simple. It can be found in the book of Barrett and Swindell [8].

The integral in the exponential function describes the projected attenuation

p =
∫ s

0
µ(s′) ds′ . (A.5)

For a homogeneous object of thicknessd and with linear attenuation coefficientµ0 this gives again

µ0d as the simple form of Beer’s law above.

The mass attenuation coefficient (µ/ρ) is defined by the ratio of the linear attenuation co-

efficientµ and densityρ. It is useful for calculating the mass of material required to attenuate a

primary beam by a prescribed amount, i.e.,

Φ

Φ0
= exp[−(µ/ρ)sm], (A.6)

wheresm = ρs is the mass of attenuator per unit area of beam. Hereρ is the density of the atten-

uator ands is its thickness. The formula can also be used to calculate the materials density from

the measured attenuation coefficient, when the attenuation coefficient (µ/ρ)substof the substance

is known.

Chemical binding energies are so small compared to x-ray energies of interest that chemical

compounds may be treated as mixtures. Themass attenuation coefficient of a mixture that

consists ofI components, each with mass attenuation coefficient (µ/ρ)i , i = 1, ..., I is given by

(
µ

ρ

)
subst
=

I∑
i=1

(
µ

ρ

)
i

Wi , (A.7)

whereWi is the fraction by weight of thei-th component. The linear attenuation coefficient is

obtained by multiplying both sides of the equation by the density of the mixture.

1The linear Hounsfield scale in Hounsfield units (HU) is defined by the signal of distilled water (0 HU) and air
(-1000 HU). The Hounsfield units of common substances in medical CT are: air (-1000 HU), fat (-120 HU), water
(0 HU), Muscle (+40 HU), bone (+1000 HU). The definition of a relative scale in conventional CT is helpful because
of the strong dependence of the attenuation coefficient on the photon energy and the varying photon spectrum used in
different setups.
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A.3 Competing processes

In the energy range 10 keV to 100 MeV, there are three principle ways in which the incident

beam becomes attenuated. They are photoelectric absorption, Compton scatter, and pair produc-

tion. They are usually described by their cross sectionsσPE, ZσC,2 andσPP, with the atomic

numberZ. Here it is assumed that all electrons are free electrons and partake equally in Compton

collisions. For heavy elements and low x-ray energies this is not generally true. The total atomic

cross section is defined as

σtot = σPE + ZσC + σPP . (A.8)

The atomic cross section is related to the attenuation coefficient byµtot = σtotn, wheren is the

volume density in atoms per cubic centimeter. It isρ = n mat, wheremat is the atomic mass.

The total attenuation coefficient is given by

µtot = µPE + µC + µPP . (A.9)

The total atomic cross section is related to the mass attenuation coefficient by

(µ/ρ)tot =
σtot

mat
(A.10)

and equivalently for the individual components. Typically, (µ/ρ) is given in units of cm2 g−1, σ

is given in units of barn,3 and the atomic mass is given in atomic mass units u.4 The following

numerical expression relates the two quantities:

(µ/ρ) [cm2 g−1] = 0.602
σ [barn]
mat[u]

. (A.11)

Figure A.1 shows the components to the atomic cross section of carbon (Z=6) and lead (Z=82)

in units of barn.

Commonly, attenuation is understood as the sum of two effects, namely, photoelectric absorp-

tion and scatter. Pair production does not occur below 1 MeV photon energy. Depending on the

experimental details of theµCT apparatus used, scatter can increase or decrease image contrast.

Fortunately, in mostµCT examinations the contribution by scatter is small compared with that by

photoelectric absorption. Therefore, the term ‘attenuation’ can often be substituted by ‘absorp-

tion’, a procedure frequently followed in theµCT related literature. However, a rigorous treatment

of image contrast has to take into account the effect of scatter [10].

From an imaging standpoint there is an important distinction between absorption and scatter-

ing. A scattered photon has lost all, or almost all, of its ‘memory’ regarding its initial direction of

2σC is given per electron and not per atom
31 barn= 10−24 cm2

41 u= 1.661× 10−24 g
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travel. It no longer appears to emanate from the small focal spot and, therefore, cannot be expected

to cast a sharp shadow image on the detector. Instead, the scattered radiation forms a broad, diffuse

distribution on the detector, severely impairing the contrast of the image formed by unscattered

radiation. Photoelectric absorption presents no such problem. The photon completely disappears,

giving up all of its energy to an electron, and is therefore not detected at all. If, however, we

succeed in making our detector insensitive to scattered photons, either by geometric or electronic

means, then the distinction between absorption and scattering disappears [8]. Scattered radiation

is often rejected by the use of collimators. Compton scattered radiation is shifted in energy with

respect to the incident radiation, which also enables energy discrimination of this type of scatter,

when energy resolving detectors are applied.

The relevance of Compton scatter can be related to the sample diameter, as shall be shown

here. In the tomographic examination of small samples below a diameter of aboutD = 1 cm we

can generally assume that photoelectric absorption is the dominating process. This can be derived

as follows.

We discuss the relevance of scatter for the measurement of cylindrical homogeneous objects of

diameterD for the two materials carbon (C) and lead (Pb). The following derivation for these ma-

terials can be seen as a limiting case for most material mixtures, with density and atomic numbers

in between the values of carbon and lead. Generally, we investigate samples at a photon energy, at

which the projected attenuation coefficient isp ≤ 2 (compare Section 3.3.2). From this condition

we find for the mass attenuation coefficient (µ/ρ) ≤ 2/(ρD). For carbon with densityρ = 1 g cm−3

this gives (µ/ρ)opt ≤ 1 cm2g−1. From Figure A.1(a) it can be seen that this value corresponds to

a photon energyEph . 10 keV. In this regime photoelectric absorption dominates. Similarly, for

lead of densityρ = 11.36 g cm−3 we find (µ/ρ) ≤ 0.176 cm2g−1, which is reached for photon ener-

giesEph . 400 keV as can be seen from Figure A.1(b). Again, photoelectric absorption dominates

in this regime. For smaller objects, withD ≤ 1 cm or objects of lower density the photoelectric

effect becomes even more dominant. Thus, for our measurement of small objects, the attenuation

coefficient is dominated by the photoelectric absorption coefficient and we assume that we can

perform our measurements without collimator in front of the x-ray camera. Moreover, we can

identify the attenuation coefficient with the absorption coefficient in this regime.

A.4 Dependence on energy and atomic number

Experimentally it is found that the linear attenuation coefficient for photoelectric absorption

µPE is given by

µPE ≈ k
ρ

mat

Zm

En , (A.12)

wherek is a constant that depends on the atomic shell involved,ρ is the density,mat the atomic

mass,E is the photon energy, andZ the atomic number of the material. The quotient (ρ/mat) gives

the density of atoms. The parametersm andn are slowly varying functions ofZ andE.
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Figure A.1: Mass attenuation coefficient for (a) carbon (atomic numberZ=6) and (b) lead (Z=82) as a
function of photon energy. The dominating components are the photoelectric effect ’PE’, Compton scatter
’C’, and pair production ’PP’, which starts above 1 022 keV. Rayleigh scattering ’R’ is a coherent effect that
is normally negligible in tomography. Note that the mass attenuation coefficient and not the cross section
is plotted here. The attenuation for carbon and lead is obtained by multiplication of the plotted values with
the material’s density. Data compiled from the tables of Plechatyet al. [119].

A general rule of thumb, which works well in the range form 10 to 100 keV, is

µPE ≈ k
ρ

mat

Z4

E3
. (A.13)

A relative variation of the photon energy byδE/E results in a variation of the attenuation co-

efficientδµPE/µPE. The relation between the variations can be approximated by Taylor expansion

of Equation (A.13). Expansion of the energy dependence according to

(1+ x)−3 = 1− 3x+ ... (A.14)

gives the relation

∆µ/µ ≈ −3δE/E . (A.15)

This relation is a good approximation in the limit of smallδE/E� 1.
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Appendix B

Spatial resolution limits of the x-ray

camera

The spatial resolution of the system is determined by diffraction, out of focus light generation,

and the aberration due to the refractive index of the luminescent screen. In the following, simple

approximations are presented that allow to estimate the relevance of the individual effects.

Numerical calculations of MTFs based on a geometrical model and under variation of screen

thickness, x-ray attenuation length, and the numerical aperture were already presented by Busch

[31]. He concluded that the luminescent screen thickness is without influence, when it is signif-

icantly larger than the attenuation length and when light generation takes place over the entire

screen thickness [31, pp. 68–69].

The objective’s optical transfer function (OTF) or MTF as a function of the defect of focus

(out-of-focus distanceδz) can be calculated from the pupil function of the system. The classic

paper on the MTF for the combination of diffraction and focus error is by Hopkins [80]1 and

gives an analytical expression for the OTF as a function ofδz. Kochet al. [96] and Cloetens [36]

presented formulas based on Hopkins [80] formula.

B.1 Diffraction limit

The diffraction limit of microscopes is typically derived from the Fraunhofer diffraction pattern

of a circular aperture. The intensity profile from a circular aperture is given in [25, Chapter 8.5,

Equation (14)].

The resolution limit of a microscope is typically defined by the distance of the central maxi-

mum and the first minimum of the diffraction pattern. The diffractive resolution limit for a micro-

1The paper by Hopkins [80] has been reprinted in [6]. A more recent discussion on formulas describing the defect
of focus in microscopic imaging was presented by Ellenberger [53].
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(a) (b)

10 mm

Figure B.1: (a) Haze on the lens system. (b) Magnification of the central lens region. The rectangular beam
profile is imprinted in the lens.

scope with circular aperture under incoherent illumination is given by Born and Wolf [25, Chapter

8.6, Equation (32)] as

resolvable distance∼ 0.61
λ

A
. (B.1)

The resolvable distance is small (high resolution), when the wavelengthλ is small and the nu-

merical apertureA is big. The aperture of our system typically isA = 0.1 (compare Table 2.3).

This results for the emission wavelength ofλ = 500 nm of the luminescent screen in a resolvable

distance of∼3µm.

High-energetic x-rays that penetrate the luminescent screen and enter the lens system are

known to createhaze on the objective. Figure B.1 shows the imprint that the incident beam

created on the 35 mm objective of our system. Haze degrades the resolution properties of the cam-

era. Thus, the observed diffraction pattern may deviate significantly from the ideal one. Also for

non-inline geometries (using mirrors or reflective objectives) haze remains a problem for the first

optical component.

B.2 Depth of field

From the numerical aperture one can estimate the depth of field of the lens. It should be larger

than the light emitting layer in the luminescent screen, which for this setup with a bulk crystal is

approximately given by the attenuation length of the x-rays in the screen.

Depth of field is determined by the distance from the nearest object plane in focus to that of the

farthest plane also simultaneously in focus. At high numerical apertures of the microscope, depth

of field is determined primarily by wave optics, while at lower numerical apertures the geometrical
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optical circle of confusion dominates the phenomenon. Using a variety of different criteria for

determining when the image becomes unacceptably sharp, several authors have proposed different

formulas to describe the depth of field in a microscope. The total depth of field is given by the

sum of the wave and geometrical optical depths of fields as2

dtot =
λn

A2
+

n
m A

e , (B.2)

wheredtot represents the depth of field,λ is the wavelength of the luminescent radiation,n ≈ 1 is

the refractive index of the medium between screen and objective, andA is the numerical aperture.

The variablee is the smallest distance that can be resolved by a detector that is placed in the image

plane, whose lateral magnification ism.

B.3 Spherical aberrations

The applied objectives are not corrected for spherical aberrations that are caused by the fi-

nite thickness of the luminescent crystals. Some commercial microscope objectives are designed

to compensate the effect of cover glasses (refractive indexnglass ≈ 1.5). But even these do not

correct for the high refractive indexnls of the transparent luminescent crystals that are used in

microtomography as, e.g.,nls ≈ 2.3 for CdWO4. Cloetens [36, Eq.3.73] presented a simple condi-

tion for the maximum crystal thickness, for which spherical aberrations are negligible compared

with the defect of focus. If this condition is solved for the crystal thickness, it reads

t ≤
2n2

ls d

A2 (n2
ls − 1)

. (B.3)

Heret is the thickness of the luminescent screen,nls is refractive index of the luminescent screen,A

is the numerical aperture, and homogeneous light emission over a layer of thicknessd is assumed.

Koch et al.derived a tolerance condition [96, Eq.(6)] for the maximum crystal thickness. It is

based on a tolerance condition for spherical aberrations (maximum deviation of the wavefront of

less than 0.94 wavelength) from Born and Wolf [25]. This condition, again solved fort, requires

the thicknesst of luminescent layer and substrate to be

t ≤ 3.76
λ

A4

n3
ls

n2
ls − 1

, (B.4)

wherenls is the refractive index of the luminescent screen,λ is the wavelength of the luminescent

light, andA is the numerical aperture.

2From http://www.microscopyu.com/articles/formulas/formulasfielddepth.html, 9.1.2006, ‘Basic
Concepts and Formulas in Microscopy: Depth of Field and Depth of Focus’.
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B.4 Energy spread in the luminescent screen

The absorbed x-rays give rise to secondary processes as, e.g., the emission of characteristic

x-rays or Auger electrons. Thus, the generation of luminescent light will take place not only at

the primary interaction side. This spread of energy will contribute to the point spread function of

the x-ray camera. The spread of energy deposited in the scintillator was studied by Kochet al.

[96]. They determined the radial absorbed dose distributions using Monte Carlo simulations. For

100µm thick YAG:Ce crystals they found that the dose decreases rapidly within a few hundred

nanometer and does not limit the high-spatial-frequency response of the detector. They point out

that the tails of the radial energy distribution may have a deteriorating effect on the middle and

low-frequency parts of the MTF. However, for 30 keV x-rays, their plots show a decrease to below

10−4 of the central maximum within 4µm radial distance. This spread is negligible and can be

neglected for our system.
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Appendix C

Calculations

C.1 Light collection efficiency of the lens system

Only part of the luminescent light generated in our x-ray camera enters the aperture of the

lens. The accepted fraction of light as a function of magnification and aperture size (m andk) can

be calculated from geometrical considerations. The calculation was already presented in the PhD

thesis of Busch [31]. His result was correct, except for a missing factor of two [compare Busch’s

Equation (6.18) with Equation (C.4) below]. We shall repeat the calculation here. Moreover, we

will also express the collection efficiency in terms of the numerical aperture (A).

Confusion with the definition of opening angles of light cones, obviously, let to the missing

factor of two in Busch’s result. To avoid any confusion, the half opening angles of light cones will

be explicitly expressed asα/2 andβ/2 in the following, as shown in Figure C.1. Note that this

definition of angular variables differs from the typical representation of the Fresnel equations and

also from the use in the rest of this work. However, the resulting formulas will be independent of

the angular variables.

The reflectivity at the inside crystal surface, which is described by the Fresnel equations, is not

included in the calculation. The generation of luminescent light inside the crystal is assumed to

take place on the optical axis of the imaging system and to have an isotropic angular distribution.

The fraction of luminescent lightεcoll emitted into a cone with half opening angleβ/2 and

solid angleΩcone= 2π [1 − cos(β/2)] is simply given by the ratio of the solid angleΩconeand the

full solid angle, which is 4π. Thus we have

εcoll =
Ωcone

4π
=

1− cosβ2
2

= sin2 β

4
. (C.1)
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x-ray

luminescent
crystal

a/2

b/2

aperture

D

Figure C.1: Scheme of the light path in the x-ray camera. The distance between aperture and screen is not
drawn to scale.

The half opening angleα/2, which is accepted by the optical system is on the other hand given by

α

2
= arctan

(
D/2

a

)
= arctan

(
D m

2 f (m+ 1)

)
= arctan

(
m

2k(m+ 1)

)
. (C.2)

Here f is the focal length,D the diameter of the entrance pupil,a the object distance,m is the

optical magnification factor1, k is the f-number of the objective given byk = f /D, and we have

used the relationa = f (1+m−1).

The relation betweenα andβ is given by the law of refraction

nls sin
β

2
= sin

α

2
, (C.3)

with nls the refractive index of the luminescent screen. Using this relation, the above equations can

be combined into an expression for the fraction of radiation accepted by the aperture as a function

of f-number (k), magnificationm, and refractive indexnls of the luminescent screen:

εcoll = sin2
(
1
2

arcsin

{
1

nls
sin

[
arctan

(
m

2k(m+ 1)

)]} )
. (C.4)

For x� 1 the trigonometric functions can be approximated as sin(x) ≈ arcsin(x) ≈ arctan(x) ≈ x.

1We define the magnification factorm as a positive quantity here. A different convention, e.g., used by Schröder
[132], defines the magnification as a negative quantity, which logically describes the inversion of the image upon lens
imaging.
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For small apertures, i.e., large f-numbersk, the above equation thus can be reduced to

εcoll ≈

(
1

4nls

m
k(m+ 1)

)2

. (C.5)

The collection efficiency can also be expressed as a function of the numerical apertureA =

nsin(α/2), wheren is the refractive index in the space between object and lens. Our setup has an

air-filled gap with refractive indexn ≈ 1. The numerical apertureA is typically used to characterize

microscopes, while for photographic equipment mostly magnificationmand f-numberk are given.

In the case ofn = 1, numerical apertureA and f-numberk are related by

arcsin(A) = arctan

(
1
2k

m
(m+ 1)

)
, (C.6)

through the magnification factorm.

Equation (C.4) can be rewritten as a function of numerical aperture and becomes

εcoll = sin2
(
1
2

arcsin

{
A
nls

} )
(C.7)

and can for small apertures be approximated by

εcoll ≈

(
A

2nls

)2

. (C.8)

Equations (C.4) and (C.7) give the collection efficiency. For small apertures with accordingly

small values for the argumentsm/[k(m+ 1)] or A/nls, the approximations in Equations (C.5) and

(C.8) can be used.
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C.2 Detective quantum efficiency of a cascaded system

The DQE of the x-ray camera system can be calculated by looking at it as a cascade of statis-

tical processes, also called cascaded event sequence [63] or Markov-chain. In the publication by

Bonse and Busch [23] and more detailed in Busch’s PhD thesis [31] the calculation of the DQE

for x-ray cameras employing powder or luminescent screens was presented. Their derivation of

the DQE makes use of the Burgess variance theorem, which is presented below. The variance the-

orem can be expressed in an elegant form as a function of relative variances. This notation shall be

introduced and used for the derivation of the DQE of the x-ray camera here. The obtained result is

of course the same as the result of Bonse and Busch. Finally, the variance of the CCD signal will

be given and the importance of the statistical distribution of luminescence photons is discussed.

Burgess variance theorem

The Burgess variance theorem (Sect. 6.5, p.425 of Frieden [63]) allows to calculate the DQE

of a cascaded event sequence as a function of the variance introduced by the individual stages and

the variance of the input signal. A proof of the variance theorem was given by Mandel [101] in his

work on ‘Image fluctuations in cascaded amplifiers’.

The Burgess variance theorem: If for thei-th stage of a cascaded system on the averageηi

quanta are generated per incident quantum, then the average number of quanta after thei-th stage

will be

Ni = ηi Ni−1 , (C.9)

whereNi−1 is the average number of quanta of the preceding (i−1)-th stage and the mean variance

after thei-th stage is

∆N2
i = η

2
i (∆Ni−1)2 + Ni−1 (∆ηi)2 . (C.10)

Here, the parametersηi and its variance(∆ηi)2 describe the statistical process involved in thei-th

stage. The recursion formulas in equations (C.9) and (C.10) make up the variance theorem. From

Equation (C.9) directly follows the average number of quanta at them-th stage, which simply is

given by multiplication as

Nm = ηm · ... · η1N0 , (C.11)

with N0 the average number of quanta incident to the 1st stage. This equation describes the obvious

fact, that the quantum efficiency (QE= Nm/N0) of the cascaded system is given by the product

of the quantum efficiencies of the individual stages. [The corresponding equation for our x-ray

camera is Equation (2.12).]

The parametersηi and(∆ηi)2 depend on the statistical process. Amplification processes are

often described by Poisson statistics. Selection processes are described by Binomial statistics. For
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a Poisson process, it isηi the number of quanta generated on average and the variance is

(∆ηi)2 = ηi Poisson. (C.12)

For a selection process, which simply decides wether or not a quantum is detected and produces a

quantum in the next stage, Binomial statistics is applied. Here, it isηi ≤ 1 the fixed probability of

generation of a quantum and the variance is

(∆ηi)2 = ηi (1− ηi) Binomial . (C.13)

The variance theorem can be brought into an elegant form, when the variance is replaced by

the relative variance. We introduce the relative varianceR(x) of a random variablex as

R(x) =
(∆x)2

x2
. (C.14)

Using Equations (C.9) and (C.10), we obtain for the relative variance at thei-th stage as

R(Ni) = R(Ni−1) +
1

Ni−1

R(ηi) , (C.15)

which together with Equation (C.9) is an alternative representation of the variance theorem. The

variances for Binomial and Poisson processes given by Equations (C.12) and (C.13) then have the

corresponding relative variances

R(ηi) =
1
ηi

Poisson (C.16)

and

R(ηi) =
(1− ηi)
ηi

Binomial . (C.17)

The relative variance of the number of quanta at them-th stage can now be found by recursive

application of Equation (C.15), which results in:

R(Nm) = R(N0) +
1

N0

R(η1) +
1

η1 N0

R(η2) + . . . +
1

ηm−1 · . . . · η1 N0

R(ηm) . (C.18)

In the special case, when the inputN0 is a Poisson distributed signal, it isR(N0) = 1/N0 and

the relative variance becomes

R(Nm) =
1

N0

[
1+ R(η1) +

1
η1

R(η2) + . . . +
1

ηm−1 · . . . · η1
R(ηm)

]
. (C.19)
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Table C.1: Statistical description of the incident radiation and the statistical processes 1 to 3.

Stage Description Distribution Average Relative variance

– Incident x-ray quanta Poisson N0 R(N0) = 1/N0

1 Probability of x-ray absorption Binomial η1 R(η1) = (1− η1)/η1
2 luminescence photons per x-ray Poisson η2 R(η2) = 1/η2
3 Probability of lum. photon detection Binomial η3 R(η3) = (1− η3)/η3

Detective quantum efficiency of the x-ray camera

We will now employ the Burgess variance theorem for the calculation of the relative variance

at the x-ray camera output. From this we will derive the detective quantum efficiency (DQE) of

the system.

The statistical processes of the system are given for the x-ray camera by the elements (ε’s and

νlum) of Table 2.2. All efficiencies (ε’s) correspond to selection processes and are governed by

Binomial statistics. The process of photon generation, with on the averageνlum generated photons

per absorbed x-ray, is an amplification process that is generally assumed to obey Poisson statistics.

The average number of generated quanta of a stageηi is assigned the correspondingε or νlum value.

The associated relative variancesR(ηi) of the processes are given according to Equations (C.16)

for Poisson processes and (C.17) for Binomial processes.

For the calculation, we define three processes in the x-ray camera: The absorption process

in the x-ray screen is the first stage of our system, withη1 = εabs and relative varianceR(η1) =

(1 − η1)/η1. The generation of luminescence photons is the second stage, withη2 = νlum and

R(η2) = 1/η2. The order of the following stages (e.g., those described by the ‘light collection

efficiency’ and ‘transmission efficiency’) is somehow arbitrary. In fact, the calculation turns out

to be independent of the order of these selection processes. When calculating the relative variance

according to (C.19), the result is simply a function of the product of all the selection process

efficiencies. The third stage of our system is thus described by the total probability for the detection

of a luminescence photon in the CCD, given byη3 = εccdεt,covεt,ls εt,ob j εcoll, and with the relative

varianceR(η3) = (1− η3)/η3. We shall further assume in the following that the number of quanta

N0 incident to the first stage is Poisson distributed,2 with relative varianceR(N0) = 1/N0. An

overview of the statistical processes is given in Table C.1.

The relative variance at the output of the third stage is obtained by entering the relative vari-

ancesR(η1), R(η2), andR(η3) into Equation (C.19), which gives

R(N3) =
1

N0

1+
1
η2 η3
η1

. (C.20)

2This assumption is generally made and implies that the photon noise in the x-ray beam is uncorrelated. This has
been discussed by Busch [31] in more detail.
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The DQE has been defined in Equation (2.9) as ratio of signal-to-noise ratios as DQE=

(SNR2
out/SNR2

in). The signal-to-noise ratio is by its definition closely related to the relative vari-

ance. Expressed for thei-th stage, we have

SNR2
i =

1
R(Ni)

. (C.21)

We can thus determine the detective quantum efficiency of the cascaded system from the ratio

of the relative variance of the lastm-th stage, given by Equation (C.19), and the varianceR(N0) =

1/N0 of the Poisson distributed input as

DQE=
SNR2

m

SNR2
0

=
R(N0)
R(Nm)

=

[
1+ R(η1) +

1
η1

R(η2) + . . . +
1

ηm−1 · . . . · η1
R(ηm)

]−1

. (C.22)

Entering the relative variancesR(η1), R(η2), andR(η3) into Equation (C.22) gives the DQE of

the signal output at the third stage as

DQE=
η1

1+
1
η2 η3

. (C.23)

This result depends on only two quantities. Introducing the variableγ = η3 η2 and using the

identity εabs= η1, the DQE can be rewritten as

DQE=
εabs

1+ γ−1
. (C.24)

The obtained DQE is directly proportional to the absorption efficiencyεabs and depending on the

quantityγ, which describes the number of detected luminescence photons per absorbed x-ray. This

is further discussed in Section 2.3.

The DQE in Equation (C.24) describes the relative degradation of the SNR from the 0th to

the 3rd stage of the system, i.e., from the signal of incident x-ray photons to the signal of charge

carriers in the CCD. So far, we have not looked at the digitization of the charge carrier signal

that takes place during CCD readout, and which will introduce electronic readout noise. In the

following section, we derive the variance and the SNR from the DQE in Equation (C.24) and

introduce readout noise into these expressions.

Variance SNR in the CCD output signal

Of practical interest for tomography is the variance in the recorded CCD images. Thus, we

shall present the variance as a function of the signal in digital units of the recorded images rather

than as a function of the input intensity. This enables the estimation of the noise level in the

recorded images, which are used as input for the reconstruction. (Of course, the noise level can
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also be experimentally determined from the variance in two or more identical measurements). We

will also introduce the CCD gaing and the CCD readout noisenel, which are given for our CCD

in Appendix G.

SubstitutingN0 = (η3 η2 η1)−1 N3 into the expression for relative variance in the output of the

third stage, given as Equation (C.20), we obtain

R(N3) =
1

N3

(1+ η2 η3) . (C.25)

The variance of the output signal is thus given by

∆N2
3 = R(N3) N3

2
= N3 (1+ η3 η2) . (C.26)

The signalN3 gives the number of charge quanta (electrons) created in a CCD pixel. The CCD

readout noise can be described as an additive term to this variance. With the readout noisenel in

units of electrons, we obtain

(∆N3)2 = N3 (1+ η3 η2) + n2
el . (C.27)

This quantity models the noise behavior at the CCD output. The influence of quantization noise

(limited resolution of the CCD output due to digitization) is typically smaller than the readout

noise and is neglected here.3

From now on, we will writeN in place ofN3 for the measured signal in units of charge quanta

(electrons). WithN = N3 and by introduction of the quantityγ = η3 η2 in the above equation, the

variance of the electronic signal at the CCD output can be rewritten as

(∆N)2 = N (1+ γ) + n2
el . (C.28)

The corresponding signal-to-noise ratio is given by

SNR=
N√

(∆N)2

=
N√

N (1+ γ) + n2
el

. (C.29)

These expressions for the variance and the SNR are given in units of charge quanta. They must be

related to the digital output of the CCD, which is given in units of the analog-to-digital converter

unit (ADU). The average output signalNADU of the CCD in units of ADU is assumed to scale

linearly with N as

NADU = g−1 N , (C.30)

whereg is the CCD gain factor. The noise at the output scales also withg. Hence, the variance at

3For our system the readout noise of 15 electrons corresponds to 3 analog-to-digital convert units (ADU).
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the CCD output in units of ADU is given by

(∆NADU)2 = g−2 (∆N)2 , (C.31)

where(∆N)2 is the variance from Equation (C.28). Thus, the signal-to-noise ratio for the CCD

output signalNADU in units of ADU is still given by the SNR in Equation (C.29).

Statistical distribution of the luminescence process

In the above derivation the luminescence process, i.e., the generation of theη2 luminescence

photons with averageη2 = νlum, was assumed to obey Poisson statistics. This assumption is a

strong simplification.

The absorption of an x-ray quantum is a complex process. The probability distribution of

η2 will depend on how the x-ray energy is split into different channels (processes). If the only

channel was the generation of luminescence photons of energyElum, then a fixed numberE0/Elum

of luminescence photons would be generated for each absorbed x-ray photon of energyE0. Such

a process can obviously not be described by Poisson statistics.

Fortunately, the statistical distribution of the amplification process has little influence on the

derived result as pointed in the original work by Mandel [101]. He expressed the variance of the

luminescence process as

(∆η2)2 = kη2 , (C.32)

wherek describes the deviation of the observed variance from the variance of a Poisson distribution

signal with the same expectation value.4 Mandel showed [101, Eqs.(7,8)] that the factork can be

neglected, when the amplification is a large number,η2 � 1. This is a direct consequence from

application of the variance theorem. The variance of the following stage is then determined by the

variance of the previous stage. In the luminescence process in our camera it isη2 = νlum ≈ 272

photons. Hence, we can neglect the deviation from a Poisson processes in application of the

variance theorem.

The probability distribution of the luminescence process is of great interest in energy resolving

detectors, where the x-ray energy is to be determined from the number of generated photons. (See

for example the discussion of energy resolution in scintillator materials by Moses [105] and Swank

[140]).

4The factork was first introduced by Fano to describe the variance of the number of ions produced when stopping
electrons and is called the Fano factor.



152 A C. C

C.3 Noise in the projection images

In microtomography, the projected attenuation coefficientp is determined from measurements

of an attenuated signalN and the reference signalN0 according top = − ln(N/N0), where the

signalsN, N0 can be described as random variables. We will determine the expectation value

of the measured projected attenuation〈p〉 and its variance〈(∆p)2〉, with ∆p = p − 〈p〉. In the

following, the variance will be written without braces as〈∆p2〉 = 〈(∆p)2〉. In the derivation, we

will later assume that the number of quanta measured in the attenuated beamN and in the refer-

ence beamN0 obey Poisson statistics. The quantitiesN, N0 correspond to the number of charge

quanta detected in the CCD and are related to the CCD count by the CCD gain factor. The exact

calculation would have to be based on the transformation of the probability distributions (integral

transformation described by the ‘Transformationssatz’5). For the calculation here, simply a Taylor

series expansion of the logarithm as, e.g., shown by Hawkins [72]6 is used as an approximation.

Taylor series expansion of logarithm

The attenuationp in each image pixel is calculated from the random variablesN, N0 as

p = − ln
N
N0
= − ln N + ln N0 . (C.33)

Here, the logarithm splits into a sum.7

We write forN (and equivalently forN0)

N = 〈N〉 + ∆N , (C.34)

with the average〈N〉 and the deviation∆N whose average is〈∆N〉 = 0. Using this together with

the Taylor expansion for ln(1+ x) = x− 1
2x2 + 1

3x3 − 1
4x4 + . . ., we can derive

ln N = ln 〈N〉 +
∆N
〈N〉
−

1
2

(
∆N
〈N〉

)2

+ . . . (C.35)

and its average

〈ln N〉 = ln 〈N〉 −
1
2
〈∆N2〉

〈N〉2
+ . . . . (C.36)

Equivalently〈ln N0〉 is derived. We obtain for the average measured attenuation coefficient

〈p〉 = −〈ln N〉 + 〈ln N0〉 = − ln
〈N〉
〈N0〉

+
〈∆N2〉

2〈N〉2
−
〈∆N2

0〉

2〈N0〉
2
+ . . . . (C.37)

5Seehttp://de.wikipedia.org/wiki/Transformationssatz
6Hawkins refers in large parts to Barret and Swindell [8].
7Because the expression splits up into a sum and since the noise inN and the noise inN0 are uncorrelated, the two

terms can in principle be studied independently of each other.
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Assuming Poisson distributed signals with variances〈∆N2〉 = N and〈∆N2
0〉 = N0, the above

expression simplifies to

〈p〉 = − ln
〈N〉
〈N0〉

+
1

2〈N〉
−

1
2〈N0〉

+ . . . (C.38)

= p̂+
1

2〈N0〉

(
ep̂ − 1

)
+ . . . , (C.39)

where in the second line the true attenuation coefficient p̂ in form of the relation〈N〉 = 〈N0〉 exp(−p̂)

was introduced. The Taylor series expansion converges rapidly for〈N〉 � 1 and〈N0〉 � 1.

For the variance〈∆p2〉 = 〈(p− 〈p〉)2〉 of the measured attenuation, we find

〈∆p2〉 =
〈∆N2〉

〈N〉2
+
〈∆N2

0〉

〈N0〉
2
+ . . . , (C.40)

where we have neglected higher order terms. We would have obtained the same result by error

propagation.8

In the case of Poisson distributed signalsN, N0, the above equation simplifies to

〈∆p2〉 =
1
〈N〉
+

1
〈N0〉

+ . . . (C.41)

=
1
〈N0〉

(
ep̂ + 1

)
+ . . . . (C.42)

The two elements of the sum in Equation (C.41) describe the noise caused by the projection image

i and the reference imager. The square root of the variance is the noise of the signalp

σp =

√
〈∆p2〉 ≈

1

〈N0〉
1/2

(
ep̂ + 1

)1/2
, (C.43)

which is plotted as a function of ˆp and independent of the count rate in Figure C.2(a).

In the case of a well known reference signal, with variance〈∆N2
0〉 ≈ 0, the variance simplifies

to the expression9

〈∆p2〉 =
1
〈N〉
+ ... . (C.44)

The average measured〈p〉 in Equation (C.39) and its variance〈∆p2〉 in Equation (C.42) are

valid approximations in the limit〈N〉 � 1 and〈N0〉 � 1.

8Assuming uncorrelated random variablesN, N0, error propagation gives:
〈∆p2〉 = 〈∆N2〉 (∂p/∂N)2 + 〈∆N2

0〉 (∂p/∂N0)2.
9For x-ray tubes systems, the referenceN0 is well known and is typically treated as a constant with variance zero.
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Shift of attenuation value

We can now compare the average of the measured attenuation〈p〉 with the real attenuation

coefficient p̂. From Equation (C.39), we find the difference

〈p〉 − p̂ ≈
1

2〈N0〉

(
ep̂ − 1

)
. (C.45)

This describes a shift of the measured attenuation towards higher values. This was expected be-

cause the logarithm is not a linear function.

In the limit of large numbers〈N0〉 → ∞, the difference converges towards zero and〈p〉 con-

verges towards the real attenuation coefficient p̂. At the same time, the variance〈∆p2〉 vanishes.

It should be noted that repetition of the measurement (averaging of attenuation coefficients)

will not generally reduce the observed shift in the data. The shift is present in the average of mea-

surements! Only the increase of the average number of measured quanta in a single measurement

will thus reduce the shift. This can be achieved by adding (or averaging) individual measurement

values ofN andN0, before the logarithm is calculated. Fortunately, the shift is very small and not

of relevance for our measurements, as can be easily shown in an example.

Example:Assuming a measurement with a very low count rate, with only〈N0〉 = 5000 charge

quanta in the CCD (equivalent to 1000 ADU for our CCD gain ofg = 5) and a rather high attenu-

ation coefficient of p̂ = 3 and accordingly〈N〉 = 5 000 exp(−3) ≈ 249. Even in this extreme case,

the difference is only〈p〉 − p̂ ≈ 8.2×10−4 and can be neglected. Only for an extremely low aver-

age number of counts〈N〉 the shift will be of importance. Note that Equation (C.39) neglects the

higher-order terms of the Taylor expansion and is valid only for〈N〉, 〈N0〉 � 1. It will, therefore,

not give a quantitatively correct result at low average number of counts.

Optimum signal-to-noise ratio

From the variance in Equation (C.42), the relative variance ofp directly follows as

R(p) =
〈∆p2〉

p̂2
≈

1
〈N0〉

ep̂ + 1
p̂2

. (C.46)

The relative noise is just the square root of this function, which is

σp

p̂
≈

1

〈N0〉
1/2

(
ep̂ + 1

p̂2

)1/2

. (C.47)

It corresponds to the inverse signal-to-noise ratio (SNR). The relative noise is plotted as a function

of p̂ and independent of count rate in Figure C.2(b). Relative noise and relative variance obey a

minimum atp̂ ≈ 2.218, which correspond to about 11% transmission. Thus, this is the attenuation

value that can be measured with the best signal-to-noise ratio.
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Figure C.2: (a) Noise and (b) relative noise of the measured projected attenuation coefficientp, plotted as a
function of the projected attenuation coefficient p̂. The functions are plotted independent of count rate〈N〉:
noise asσp 〈N0〉

1/2, with σp from Equation (C.43) and relative noise as (σp/p̂) 〈N0〉
1/2, with the relative

noise (σp/p̂) in Equation (C.47).

So far we have assumed that the reference signalN0 is determined from a single measurement.

In the case of a well known reference signal (N−1
0 → 0) the variance ofp is given by Equation

(C.44), and Equation (C.46) becomes

R(p) =
〈∆p2〉

p̂2
≈

1
〈N0〉

ep̂

p̂2
. (C.48)

The minimum of this function is at ˆp = 2, whereby we obtain the conditionµD = 2 given by

Grodzins [68] for optimal tomographic measurements of an object of thicknessD.

To find the optimal value forp and thus the optimal photon energy for the measurement it was

implicitly assumed above, that the number of incident x-ray quanta〈N0〉 is fixed and identical at all

photon energies. In reality, the photon spectrum will be given and one might rather be interested

in optimization of the required measurement time or in minimization of the radiation dose.

In practice, we try to select a photon energy that results in the optimum attenuation value of

p ≈ 2 at maximum. The exposure time is then selected such that the CCD almost reaches its

maximum value in the reference image. The average number of incident quanta〈N0〉 is then given

by the maximum CCD capacity for charge quanta in a pixel.





157

Appendix D

Measurement procedure

D.1 Characterization of the spatial system response (MTF/PSF)

The spatial system response of our system is characterized using the method for calculation of

the MTF from an edge trace (edge profile) that was presented by Jones [91]. For the measurement

of the spatial system response, we assume that the system is linear shift invariant (LSI) and radially

symmetric. In this case the MTF can be determined by

1. measurement of the edge spread function ESF(t),

2. calculation of the line spread function LSF(t) by derivation of the ESF(t),

as given by Equation (2.39), and

3. calculation of the MTF(w) by Fourier transform of the LSF(t),

as given by Equation (2.41).

This was theoretically derived in Section 2.4.1 and Section 2.4.2. We shall now describe the prac-

tical realization of these three steps for the determination of the MTF in detail. The determination

of the point spread function (PSF) is not described explicitly. However, the reconstruction (see

previous section) of the PSF from the LSF that is obtained in step 2 is straightforward.

1.) An edge profile of the incoming radiation is realized by an edge device that is opaque for the

incident x-rays. A gold plate or a block of Densomed are available at the microtomography setup

as edge devices. The edge is positioned close to the luminescent screen, to avoid effects from the

beam divergence or from x-ray scatter. Three sub-frame images are recorded in an approximately

symmetric region around the edge: a CCD image of the edge profileiE, a reference image (beam

without edge)r, and a dark imaged. A normalized edge profile is calculated from the recorded

images as

normalized edge image=
iE − d
r − d

. (D.1)
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Figure D.1: Calculation of the one-dimensional edge spread function (ESF) from an (a) edge profile using
a (b) tilted detector grid. (c) – (d) Calculation steps as explained in the text.
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The reference image should ideally be a flat image with constant intensity and infinite extension

(infinite field of view). In reality the recorded images and the impinging x-ray beam are limited

in size. This fact hinders the measurement of long-range contributions (tails) present in the PSF

and ESF.

In the measurement, the edge is oriented almost horizontally but with a slight tilt with respect

to the CCD rows. The slight tilt of the edge profile results in a sampling interval better (smaller)

than the 9µm pitch of the CCD pixels. The calculation of a one-dimensional representation of the

edge profile from the measured data is schematically shown in Figure D.1. Figures D.1(a) and (b)

represent the two-dimensional edge profile and the tilted two-dimensional detector. The vertical

line represents the true position of the edge. The small effect of the edge tilt on the square shape of

the pixels is neglected in the calculation. Figure D.1(c) shows the one-dimensional representation

of the edge profile that is to be determined. The sampling function of the detector (see below)

is a rectangular function shown in Figure D.1(d). Its width corresponds to the pixel edge length.

Thus the measured signal is the convolution of the edge profile with this rectangular function. The

sampling points are given at a resolution that is given by the tilt. Figure D.1(e) schematically

shows how the position of the sampling points is related to the edge position. Here the sampling

points have been coded with the color of the detector rows, according to Figure D.1(b). For the

further evaluation of the data new software has been implemented in this work. The alignment

of the data requires the knowledge of the edge position in each detector row. It is determined by

linear interpolation of the position, at which the normalized intensity raises to above 0.5 with sub-

pixel resolution. From the recorded data and the edge position, the intensity of the edge profile at

any distance from the edge can now be determined by linear-interpolation for each row. A new

sampling grid of 0.5 pixel resolution and with a grid point on the edge position is defined, as shown

in Figure D.1(g). The edge profile of each detector row is now linearly interpolated to values on

the new sampling grid, and the contribution of the individual rows is added up. It is possible to

describe the linear interpolation as convolution with the triangular function shown in D.1(f).1

2.) The LSF is the derivative of the ESF. It is calculated from the difference of every two

neighboring ESF values, which is the reason why the resulting LSF has one sampling point less

than the ESF. The number of sampling points of the LSF is thus even and the sampling point

resolution (0.5 bin) is maintained. The LSF obtained in this way will not be fully symmetric,

which is mainly a consequence of noise in the recorded images. However, for a radially symmetric

system that we assume, the LSF must be symmetric too. To force radial symmetry of the resulting

PSF/MTF we have to symmetrize the data now.

Other authors simply calculated the Fourier transform from the non-symmetric LSF. They

then used the real part or the absolute of the result as the MTF. This approach gives an MTF

that describes a radially symmetric system with a PSF that is a real function as required, but it

1Other sampling grids and interpolation schemes can be realized. Grids with higher sampling density than 0.5 pixel
are possible, but they won’t have a strong influence on the result. Using, e.g., nearest neighbor interpolation (that can
be described by the convolution with a rectangular function) instead of linear interpolation will give a different result.
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does not make optimal use of the given data. The software implemented in this work calculates a

symmetric ESF in real space. This is done by replacement of the data on one side of the LSF with

data from the other side.2 Here the LSF from the dark side of the beam profile is used to replace

the LSF on the bright side. This approach profits from the fact that the noise level on the dark side

of the recorded edge profiles is lower, which is a direct consequence of photon noise. The lower

noise level can directly be seen, e.g., in the LSFs of Figures 4.4(c) and (d). The implemented

symmetrization results in an LSF with less noise. Additionally, the influence of beam profile

fluctuations is minimized, since these influence the edge profile less strongly on the dark side than

on the bright side.

3.) The MTF is calculated from the symmetrized LSF using the fast Fourier transform (FFT).

The absolute of the result is calculated in order to convert all values to real numbers and gives our

MTF. The MTF is purposely not (!) normalized to MTF(0,0) = 1 as reported in other publications.

Normalization was already achieved by calculation of the normalized edge profile in Equation

(D.1) and is not required. For long tails in the PSF we, in fact, expect MTF(0,0) < 1, and the

deviation of the MTF from unity indicates how much of the intensity spreads to the region outside

the field of view. By normalization to MTF(0,0) = 1 the MTF would be overestimated.

Influence of sampling function and interpolation

The influence of the sampling function and the interpolation step in the above calculation of

the LSF can be described as convolution operations. One of these convolution operations is due to

the so called ‘detector sampling function’, while the other is due to the calculation itself. The two

convolution operations can be described by multiple convolution with a rectangular function as is

shown in the following.

The active area of a CCD pixel defines the sampling function. For the CCD we shall neglect

the gap between adjacent pixels and assume that the response of the pixel is constant over the pixel

area. The sampling function of such a pixel is given by the product of a normalized rectangular

(box car) function along the horizontal and the vertical direction. We shall reduce our discussion

to the one-dimensional case, which is sufficient for the description of the edge profile. Then the

rectangular function is defined as

srect(x) =

 1/d, |x| ≤ d/2 = const

0, else
, (D.2)

whered is the edge length of a detector pixel. The effect on the measured signal is described by the

convolution of the signal and this sampling function. Equivalently in Fourier space, the sampling

function contributes to the MTF of the system by the multiplication with the Fourier transform of

2Alternatively, the software also performs symmetrization by calculation of the average of the LSF and the reversed
LSF. This actually corresponds to taking the real part of the Fourier transform as described before and provides no
additional advantage.
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Figure D.2: The calculated MTF of a perfect and tilted edge (dashed line) in comparison with the expected
MTF(u)=S3

rect(u). The Fourier transform of a single normalized rectangular functionSrect(u) is also shown.

srect(x), which is

Srect(u) =
sin(πdu)
πdu

. (D.3)

This function is plotted in Figure D.2 and results in a reduction of the determined MTF values

at high frequencies. At the Nyquist frequencyu = 1/(2d), the functionSrect(u) has dropped to

the value 2/π. A properly measured MTF cannot take values above this function, i.e., it will be

MTF(u) < Srect(u) for all frequencies.3

The interpolation step in the calculation of the MTF can be described by the convolution with

the triangular function that is shown in Figure D.1(f). This triangular function can be described as

convolution of the rectangular function with itself assrect(x) ∗ srect(x) or equivalently in frequency

space as the multiplication withS2
rect(u). The combined effect of the detector sampling function

and the MTF calculation gives the maximum achievable MTF ofS3
rect(u). This curve is plotted in

Figure D.2.

The MTF calculation was tested with simulated data of a perfect and tilted edge. The simulated

edge image was calculated for 400 detector rows of 1000 pixel length and a centered edge with

tilt 0.025, i.e., the edge running over 400× 0.025 = 10 pixel. The value of 0 or 1 was assigned

to the corresponding sides of the edge. The pixel that is intersected by the edge was assigned the

fractional value that corresponds to the position of the edge on the pixel. The calculated MTF for

this test object is shown as the dashed curve in Figure D.2. There is a slight difference between this

simulated MTF of the perfect edge and the expectedS3
rect(u). The difference is probably caused

by the selection of the new sampling points. Apart from that, the theoretically expected curve is

well described by this simulated MTF.

3The measured MTF(u) may take values aboveSrect(u), when the edge is not tilted in the measurement.
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Remarks on deconvolution using the MTF/PSF

It was shown above how the calculation of the MTF degrades the resulting MTF values. For

the correct calculation of the MTF (or PSF) corrections must be applied. In fact the correction is

important, when the PSF or the MTF are to be used for deconvolution. For the reconstruction of

the two-dimensional MTF or PSF, not only the effect from the calculation must be corrected. It

must further be corrected for the detector’s sampling function. The sampling function, generally,

is not a radially symmetric function and, typically, is a rectangular function for CCDs. The MTFs

presented in this work have not been corrected and, hence, under-estimate the MTF of the system.

It should be kept in mind, which further simplifications are made when using linear systems

theory for the description of the x-ray camera by a PSF. The assumption of a linear and space

invariant system might be incorrect. Thus, the space-dependent variation of the PSF must be

carefully investigated. Especially, long-range components of the detector PSF might vary as a

function of position. Recently, measurements of pinhole images have been recorded with our setup

that will enable direct comparison of the point-spread function at different detector positions.

Both the long and the short range contributions to the PSF are difficult to measure: The

short range contributions are influenced by any additional blur in the system (imperfections of

the edge profile, scatter), while the long-range contributions are difficult to measure with a non-

homogeneous beam profile. A good measurement of the PSF and thus a major improvement by

deconvolution seems to be achievable in the range of approximately 5 to 100 pixels PSF radius.

D.2 Tomographic acquisition schemes

Different acquisition schemes can be used in a tomographic scan that shall be referred to as

‘scan modes’ in the following. During this work a variable ‘scanmode’ was introduced into the

reconstruction software. It can take the values ‘180deg’ or ‘360deg’. The processing software was

adapted such that it automatically performs the appropriate operations for either mode.

The ‘180deg’ mode is used for the typically performed tomography scan, in which projection

images are recorded over a range of 180o. The center of rotation lies approximately in the middle

of the reconstruction [see Figure D.3(a)], whereby the sample diameter is limited to the field of

view of the detector. Examination of samples larger than the field of view of the detector (or larger

than the x-ray beam) is basically possible. The sample must then be scanned (sampled). Projection

images are recorded at each position and combined into the entire projection image.

Scanning the sample along the rotation axis (z-direction) is easily possible with the built-in

motor of the rotation stage. This results in additional independent projections that can be stacked

after reconstruction [Figure D.3(c)]. Horizontal scanning (perpendicular toz-direction) is more
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(a) ‘180deg’ (b) ‘360deg’ (c) stacked scan
‘180deg’

Figure D.3: Implemented acquisition schemes for the tomographic scan. (a) ‘180deg’ scan mode with the
center of rotation (red solid line) in the center of the field of view (black box). (b) ‘360deg’ scan mode with
the center of rotation at the side of the field of view. The mirror projection (indicated as dashed box) is used
for combination of the entire projection image. (c) In a stacked scan the sample is translated parallel to the
rotation axis.

troublesome, since a precise horizontal shift of the rotation axis or a very good alignment proce-

dure (registration) for the images is required. However, we can easily increase the field of view to

almost double width, when the scan is performed over 360o.

In the ‘360deg’ mode the center of rotation is set to one side of the field of view rather than to

its center [Figure D.3(b)]. Tomographic projections are recorded over a range of 360o, whereby

almost one half of the sample is outside the field of view. Two projection images recorded at

180odisplaced projection angles are subsequently combined into the full projection image, with

almost the double width of the field of view. The center of rotation is positioned such that mirror

images have about 10% overlap. The number of sampling pointsNt in each mirror projection

(typically Nt = 1536) is thereby increased to almost 2Nt in the combined projections. Thus even

samples with a diameter of almost double the width of the field of view can be investigated. For

the larger number of sampling points the time required for reconstruction is also prolonged (see

Section 3.2.4), and the noise in the reconstruction increases (see Section 3.3.2). Therefore, it is

often made use of binning (on-chip binning or binning of recorded images) in the ‘360deg’ mode.

In the standard setting, projections are recorded in steps of∆θ = 0.25o. Thus, the number of

recorded projections isNθ = 720 in both the ‘180deg’ and ‘360deg’ scan mode. In ‘360deg’ scan

mode, actually 2Nt = 1440 projection images are combined into half the number of projections.

Typically Nd = 4 dark images (optical shutter of the CCD closed) are measured before each scan.

One or several reference images are usually measured after every eight projections, as well as

before and after the scan.

The scan duration is determined by the CCD exposure timetexp, the CCD readout time, time

for sample moves (rotation, in/out translation for the measurement of reference images). For a

typical exposure time oftexp= 1 s, a scan in the 180o-mode takes about 2 hours for full-frame CCD

readout without on-chip binning andNθ = 720 projections. During the scans the exposure time

is automatically adjusted to compensate for the exponentially decaying beam intensity. Hereby

optimal use of the dynamic range of the x-ray camera is made.
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D.3 Setting up the apparatus for a tomographic scan

Before a tomographic scan is started, the apparatus is aligned and the x-ray camera settings are

adjusted. During this work several enhancements were made to the microtomography apparatus

and its control software that simplify (automate) the setup procedure. After the description of the

procedure details the setup sequence is summarized in form of a list at the end of this section.

Magnification selection and automated focussing

The magnification factor is determined by the distance between CCD and luminescent screen

and by the focal length of the lens system. Before a tomographic scan the position of CCD-camera

and lens system are set approximately to those positions that give the desired optical magnification

factor. Finally, focusing is performed by fine-tuning of the lens position.

An automated focussing procedure was implemented in this work that iterates the lens posi-

tion until a sharp image is obtained. The procedure makes use of the MTF measurements that

were described in Section D.1. Maximization of the integral over the determined MTF curve is

performed.4 The MTF is calculated at each iteration step and stored. When the final iteration step

(depending on final resolution setting) is reached, the objective returns to the best lens position

and the final resolution valuea10 (corresponding to an MTF value of 10%, compare Section 2.4.3)

is determined in units of the effective pixel sizeτ. All images recorded for the MTF calculation

are deleted, except for those recorded for the final focussing position.

Conversion to the absolute resolution is possible only after determination of the optical mag-

nification factorm that also determines the effective pixel sizeτ = τCCD/m. A procedure for the

automated determination of the optical magnification factor was implemented in this work that can

be run directly after the auto-focussing procedure has finished. Here the same edge that is used for

auto-focussing is translated by a known distance∆z along thez-direction. Projection images are

recorded before and after translation of the edge. From the distance of the edge position in units of

pixels, together with the known absolute distance, the effective pixel sizeτ and the optical magni-

fication factorm are calculated. The measurement is carried out two times. First, an approximate

value is found with only a small translation of the edge, which ensures that the edge (typically in

the center after MTF measurement) does not leave the field of view. In the second measurement,

the edge can already be quite well positioned. A translation over∼90% of the vertical direction of

the field of view is performed. From the known translation distance, againτ andmare calculated.

A precision of∼1 pixel is reached by this method. The precision inm andτ depends on the size

of the field of view and is typically better than 1%.

The magnification value determined by this method is now used in our reconstruction chain

for the alignment of stacked data sets from the known z-translation of the sample.

4Other measures as the gradient in the images would probably be more appropriate. More ideas can be found in the
literature on auto-focussing techniques.
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Alignment of x-ray beam, CCD camera and rotation axis

As described in Section 5.1.1 (with help of Figure 5.1), the rotation axis must be oriented

perpendicular to the incident x-ray beam, when the reconstruction is to be calculated as a stack

of two-dimensional reconstructions. Additionally, it should be oriented perpendicular to the CCD

rows. Thereby each row of the CCD acquires the data needed for the reconstruction of one tomo-

graphic slice, and resolution losses by rotation of the CCD images (requires interpolation) can be

avoided. The required alignment of the rotation axis is performed at the start of each measurement

period or after relevant system changes have been made.

The rotation axis (z-direction) is aligned perpendicular to the incident beam direction by ro-

tation of the entire apparatus (including rotation platform and camera). The deviation from the

perpendicular orientation is measured from radiographic projections. A test device of diameter

d = 240mmis mounted on the sample holder and two mirror projections atθ = 0o and 180o are

recorded. From the vertical offset of the same feature in both images, the orientation is corrected

until the offset is in the range of one pixel. The apparatus is set to the highest optical magnification

m= 6 for this measurement. Here the effective pixel size isτ = 1.5µm and an angular precision of

∆ϑ ≈ τ/d ≈ 6.25× 10−6 rad is reached. We can assume that the sample has a maximum diameter

that is equal to the width of the CCD withNt = 1536 pixels. Thus, the projecting rays, when they

pass through the sample, travel a distance along thez-direction that is∆z = ∆ϑNt ≈ 0.01 pixel

at maximum. Hence we can apply two-dimensional reconstruction techniques. The orientation

of the aligned apparatus is regularly checked by the reading of an electronic water level that was

implemented at the apparatus during this work. Hereby, the accurate position of the axis is moni-

tored and an influence of mechanical moves (apparatus height, lens system, or CCD camera) can

be detected.

The rotation axis is aligned parallel to the detector columns by rotation of the CCD. Two

mirror projections of a gold mesh are used to measure the tilt of the CCD with respect to the

rotation axis. From the vertical displacementδz in units of pixels of a corresponding feature in

both mirror projections, the tilt is calculated. For a measurement at the side of the projections

of width Nt = 1536, the tilt is given byϕ = δz/Nt. By this manual procedure a precision of

one pixel and∆ϕ ≈ 1/Nt ≈ 6.5 × 10−4 is reached. Higher precision is reached using an image

registration procedure that was developed and implemented during this work. The procedure uses

the entire projection images of the grid recorded at 0oand 180oand calculates the optimum tilt of

the projections. Simultaneously the position of the rotation axis is determined as a by-product. The

procedure converges at a precision that is significantly better than the manually reached precision.

Its precision has not been validated yet.
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Setup sequence

1. The photon energy is selected with the monochromator. The aim is to achieve the optimum

projected attenuation coefficient of p . 2. (Compare Section 3.3.2).

2. The magnification factor is set and automated focussing is performed (see above). The

resolution parametera10 and the magnificationmare determined from projection images of

a gold edge.

3. The objectives aperture is set to achieve a good compromise between the flux of lumines-

cence photons and resolution.

4. [The required alignment of the rotation axis is performed (see above). First, the rotation

axis is aligned perpendicular to the incident beam direction by tilt of the entire apparatus.

Secondly, the rotation axis is aligned parallel to the detector columns by rotation of the

CCD.]5

5. The position of the center of rotation (rotation axis) is set depending on the scan mode (see

above): to the center of the field of view in ‘180deg’ mode, and to the side of the field of

view in ‘360deg’ mode.

6. The x-ray aperture is closed to about the size of the field of view for suppression of stray

radiation. When deconvolution of the images is planned, the aperture should be closed to

slightly below the field of view.

7. The sample is mounted and positioned in the center of the rotation axis with the xy-positioning

stage.

8. The sampling parameters are selected: number of projectionsNθ, on-chip binning factorsbt,

bz, CCD sub-frame sizeNt × Nz. Equation (3.31) can be used to estimate the noise level in

the reconstructions and for selection of the optimal number of projectionsNθ. The sampling

conditionNθ & (π/2)Nt should be met. Usually, the resolution isa10 > τ, which allows to

relax the condition by replacingNt with (τ/a10) Nt (compare Section 3.2.3).

D.4 Recording projection images

In the tomographic scan radiographic images of the samplei, reference images of the beam

profile r, and dark images with no illuminationd are recorded. The attenuation imagep is calcu-

5Only performed at the start of each measurement period or after relevant system changes have been made.
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lated as

p = − ln
(i − d)/ti

(r − d)/tr

= − ln
i − d

r − d
+ ln

ti
tr
, (D.4)

whered is an average dark image that will be described in the next section. The expression in the

denominator of the first line of Equation (D.4) is in fact an interpolated reference image that will

be calculated below. The imagesi and r are corrected for the CCD dark image by substraction

of d and normalized to their exposure timesti andtr . The normalization to the exposure times is

necessary, since the exposure time is constantly adjusted during the measurement. The exponen-

tially decaying intensity of the synchrotron radiation is thereby compensated. As to be seen from

the second line of Equation (D.4), different exposure timestr andti would cause a constant offset

in p without normalization.6

The dark-image-corrected reference image (r − d)/tr in Equation (D.4) is actually a linear

interpolation of two corrected reference images recorded before and after the radiographic pro-

jection i. Hereby, the effect of a varying beam profile is minimized. We introduce the recording

timesTr1 andTr2 of the reference imagesr1 andr2, and the recording timeTi of the radiographic

projectioni. The corrected reference image is then calculated as

(r − d)/tr =
Tr2 − Ti

Tr2 − Tr1

(r1 − d)/tr1 +
Ti − Tr1

Tr2 − Tr1

(r2 − d)/tr2 . (D.5)

Noise in the images can eventually cause the term (i − d)/(r − d) in Equation (D.4) to become

negative. In this case, the logarithm would be undefined. The corresponding pixels of the absorp-

tion image are replaced by an average of the values calculated for neighboring pixels of the same

line. Since this happens only rarely and statistically distributed over the CCD area, it does not

affect the tomographic reconstruction considerably.

The calculated absorption images are finally resorted in increasing order of projection angle;

the so formed sinograms are stored. The implemented image processing software allows for bin-

ning of the recorded images before calculating the absorption images. This generally improves

the signal-to-noise ratio in the data at the cost of a reduction in spatial resolution, which is further

discussed in Section 3.3.4. In the case of binning, the image correction can be calculated after

binning of the raw data.

6It might be assumed that a constant offset is not relevant for the tomographic reconstruction. The filtered back-
projection theoretically filters out the zero frequency component. However, the constant background would impose
a problem for reconstruction, during which the sinograms are zero-padded. Moreover, there is an influence of the
zero-frequency component to the “RALA”-type reconstruction. (Compare Chapter 3).
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D.5 Calibration and correction of CCD images

This section briefly describes the correction applied to the raw CCD images. General details

concerning the calibration of CCD images can be found, e.g., in the publications by Barnaet al.

[7], Gruneret al. [70], and a software manual by Diffraction Ltd. [43].

Each CCD chip has a different bias level (zero point), dark current (sensitivity to temperature),

and sensitivity to light. These effects don’t just vary from camera to camera; they vary from pixel

to pixel in the same camera. Each of these effects corrupts the intensity represented in every

pixel of the image in a specific way [43]. The bias level adds a constant value to the readout

of each pixel, independent of exposure time. A bias frame (no illumination, exposure time:∼0

sec.) can be used for correction. Dark current accumulates during the exposure at a different rate

within each pixel. The dark frame (no illumination, finite exposure time) therefore depends on

the exposure time. The dark current of our camera with Peltier cooling is very low, with 0.1 –

0.2 electrons/pixel/sec at -10oC. Individual pixels that show an increased amount of dark current

are called hot pixels. With only a few hot pixels in our camera and otherwise negligible dark

current, dark frame or bias frame can be used equivalently for correction, since the influence of

the exposure time can be neglected. We therefore correct the reference and projection images

by substraction of an average dark image. The average dark image is calculated from several

CCD dark images that are recorded before each tomographic scan. The Zinger removal procedure

described below is used for averaging. Besides the average it provides a value for the variance

of each pixel. For our camera the mean variance of a single pixel in an average ofNd = 4 dark

images is below 2.0 ADU of the CCD, which agrees well with the specified CCD readout noise of

3.0 ADU (corresponding tonel = 15 electrons).

So called Zingers are another source of error in the recorded images. Zingers are unwanted,

localized random events in an image that are caused by cosmic rays, decay of radioactive isotopes

present in the material of the detector itself, or, at synchrotron sources, hard stray radiation from

sources other than the direct beam [7]. The identification of Zingers and their correction is known

as dezingering, which is also referred to as ‘cosmic ray removal/rejection’ in astronomy or ‘outlier

detection’ in so called ‘robust statistics’. During this work a simple procedure was implemented

that rejects the contribution of pixels with outlying values, when calculating the average of several

otherwise identical images. A more sophisticated algorithm for Zinger removal is implemented in

the XVISTA package.7 The simple Zinger removal used here is applied for the calculation of the

averaged dark image only. Because of the short exposure times in our tomographic scans, Zingers

are observed only very occasionally in the radiographic images and make a negligible contribution

to the reconstruction.

7The PICCRS routine of XVISTA optimally combines frames with outlier rejection. It was originally written for the
statistical removal of cosmic rays from Hubble space telescope data. XVISTA is a software package for astronomical
image processing, largely written in FORTRAN 77 and available online athttp://ganymede.nmsu.edu/holtz/

xvista/ [visited June, 10th 2006].
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Each pixel in the CCD camera has a slightly different sensitivity to light. Typical CCD sen-

sors have a pixel-to-pixel variation of the light sensitivity that is in the order of 1% [43]. The

photoresponse non-uniformity of our camera is 1% (see Appendix G). Moreover, imperfections

in the optical system (e.g., vignetting, which describes a decrease of intensity towards the edges

of the image) may result in a spatial variance of the camera sensitivity. Fortunately, we are not

interested in absolute measurements, but rather in the ratio of reference images and radiographic

projection in Equation (D.4). Therefore, pixel-to-pixel variations will be automatically corrected

upon calculation of the intensity ratios for each pixel.

The linearity within each CCD pixel as a function of incident intensity is of much more im-

portance for the calculation of correct intensity ratios. It is specified as the photoresponse non-

linearity, which for our CCD is 1%. This is the maximum deviation of the pixel response to a

straight line fit. Thus the intensity ratio is also known with about 1% precision or better.

D.6 Image-processing chain and reconstruction

The recorded CCD images are stored in 16-bit integer representation (CCD output has 14-bit

resolution) and are processed for the determination of the projected attenuationp as described

above. Binning of the recorded images can be applied for the reduction of noise as described in

Section 3.3.4. The finally calculated projections are stored in 32-bit floating point representation.

The entire projection data is a three-dimensional arrayp = pθi (t j , zh) that contains a value for

each pixel position (t j , zh) and projection angleθi . The calculated projections are given as an image

for each projection angleθi . Using an IDL-routine, the projections are resorted into sinograms,

i.e., two-dimensional files for each slicezh that can be independently reconstructed (because of

the parallel-beam geometry). For projection data recorded in ‘360deg’ mode, the sinograms are

combined into a complete sinogram with projections over a range of only 180o. New projections

are combined from mirror projections by linear interpolation. The width of the new projections is

N′t . 2Nt.

The center of rotation in the sinogram data is determined from the average of 20 sinograms

(from the center of the scan) using the method for the determination of the center of rotation

developed during this thesis and presented in Chapter 5. The obtained optimum center of rotation

(tr ) is used as input parameter for the reconstruction, which now starts automatically.

The standard reconstruction is performed with the filtered backprojection algorithm “BKFIL”

of the RECLBL library described in Chapter 3. The butterworth filter “BUTER” with the para-

meters “ORDERX”= 0.5 and “FREQX”= 10.0 is applied to the discrete Fourier transform of the

projections. The routine ‘BIN’ is used for backprojection and performs linear interpolation of the

inverse Fourier transformed data onto the reconstruction grid. The rotation axis lies in the center

of the reconstruction grid, which is of the sizeN2
t , whereNt is the number of pixels in a projection

image row (number of sampling points). The reconstructed slices contain values corresponding to
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the attenuation per sampling distanceτ in the (binned) projections. Division byτ gives the attenu-

ation coefficient. Reconstruction of the sinograms is performed on an extendable computer cluster.

An average speed of one tomographic slice in 7 seconds for a 1536× 1536 pixel reconstruction

grid is achieved with parallel computation at the moment. A full scan withNz = 1024 slices, thus,

is reconstructed within two hours.

The reconstructed slices are stored as 32-bit floating point values. The size of a reconstructed

data set for a full field scan is 9 GByte. This number is reduced by a factor of four by conversion of

the reconstructed slices to 8-bit images in the uncompressed tiff file format. A range of attenuation

values betweenµmin andµmax is selected and rescaled to values between 0 and 255. Values below

µmin are assigned the values 0 and values aboveµmax are assigned the value 255. The selection of

a gray value range is also known as windowing. The parametersµmin, µmax have to be selected

by the user (typically after analysis of the histogram) over all slices and are stored in a log-file

together with the reconstructed data.

Another IDL procedure is used to create volume data sets from the tiff images. The tiff images

of several scans that were performed at different heights (z-position of the sample) can be stacked

into one data set. The known translation distance between the scans and the known sampling

distanceτ (pixel size divided by magnification) enables the alignment of the data. The new stack

is created by interpolation of the single stacks along thez-axis. Stacks of up to eight scans have

already been created in this way. The reduction to a certainxyzrange as well as additional binning

is possible upon stack generation. The stacks can be loaded into the software package VGStudio8

for volume visualization (rendering) of the data.

D.7 Verification of negligible beam divergence

The angular distribution of the x-ray beam, its divergence, determines the amount of geomet-

rical blur that is introduced in the imaging step. A pinhole measurement was carried out in this

work to measure the beam divergence at beamline BW2.

The characteristic distribution of the radiation intensity (from the wiggler) at the sample po-

sition is a function of position and angle. The resulting distribution depends on the size and

divergence of the electron distribution in the ring, the characteristic of the radiation cone (depend-

ing on electron energy and wiggler parameters), and the source to sample distanceL. The effective

horizontal source sizeσX and the effective vertical source sizeσZ of the wiggler can be calculated

as described, e.g., in the PhD thesis of Busch [31].

However, these calculated values do not incorporate the influence of the optical components

in the beamline. In particular the influence of the (bent) monochromator crystals or the beamline

windows is neglected. Therefore the beam divergence was measured in this work at BW2 at a

photon energy of 24 keV. For this purpose, a pinhole was placed in a known distance in front of the

8VGStudio, supplier: Volume Graphics GmbH,http://www.volumegraphics.com/.
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Figure D.4: Pinhole images recorded with the x-ray camera at beamline BW2 for pinhole-detector distances
(a) 10 mm and (b) 100 mm. The photon energy was 24 keV. The images are averages of ten images and were
corrected by the average of ten dark images. A subregion of 30× 30 pixels from the images is shown.

x-ray camera into the center of the x-ray beam. The transmitted radiation was then observed with

the x-ray camera. From the extension of the projected pinhole in the image, both, the horizontal

and vertical beam divergence, were estimated. This gave an indication of the amount of blur that

can be expected in the tomography measurements. Furthermore, the pinhole measurements were

compared with the result of the MTF measurement.

The applied pinhole is a hole of 5µm diameter that was lithographically prepared into a 100µm

thick gold foil with an aspect ratio of 1:20. This allowed to image the source, since the pinhole

and the detector form a pinhole camera. Collimation effects can be neglected, since the beam

divergence is much less than the limit imposed by the aspect ratio. The foil with the pinhole was

mounted onto the sample holder with parallel orientation to the holder. Hereby vertical orientation

was achieved. Then the sample holder was rotated until maximum intensity was transmitted by the

pinhole, whereby the pinhole was perfectly aligned with the x-ray beam. The measurement was

carried out at beamline BW2, at a photon energy ofEph = 24.0 keV, optical magnificationm =

3.347 (corresponding to an effective pixel size ofτ = 2.69µm), and using a CdWO4 luminescent

screen of 300µm thickness with absorbing backing.

Figures D.4(a) and (b) show pinhole images that were recorded in 10 mm and 100 mm distance

behind the pinhole. The images were dark image corrected. The observed intensity distribution is

only a few pixels in diameter. The spread of intensity was determined from the square root of the

second order moment of the images. The calculation was performed according to

Spread2 =
∑

Pixels

(
Distance to center-of-mass2 Intensity in pixel

Total intensity

)
. (D.6)

The spread values obtained from the images according to this calculation are given in Table

D.1. For increasing camera distance an increase of spread is observed predominantly for the
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Table D.1: Spread of intensity in the pinhole images of Figure D.4(a) and (b).

Pinhole-to-camera distance Spread (H× V)
Image [mm] [µm]

(a) 10 6.578× 6.444
(b) 100 10.754× 6.859

horizontal direction, i.e., in the plane of the storage ring. An upper limit of the beam divergence

can be estimated from the maximum spread in 10 mm distance as

Maximum beam divergence=
Spread

Pinhole-to-camera distance
. (D.7)

This gives a maximum beam divergence of 0.108 mrad. In a tomographic measurement the

sample-detector distance is in the order of 2W, whereW is the detector width. Thus, the beam

divergence causes a spread of the recorded image by 0.108× 10−3 W. This can be compared with

the sampling distance given byτ = W/Nt ≈ 0.651× 10−3 W for the number of sampling points

Nt = 1536. The beam divergence can, thus, be neglected. At any magnification of the x-ray

camera, the added blur will also be much less than the width of the detector resolution.

The detector resolution was determined with an edge profile measurement (see Chapter 2).

From a horizontally oriented (slightly tilted with respect to the detector grid) gold edge in short

distance to the x-ray camera (∼2 mm) the resolution parametera10, corresponding to 10% MTF,

was determined asa10 = 4.779µm. Assuming a Gaussian intensity profile and approximating the

pinhole as an aperture with Gaussian profile with spread of 5µm, we can calculate the expected

spread. The convolution of the two (assumed) Gaussians is given by (4.7792+52)−1/2 = 6.917µm,

which agrees well with the observed spread at 10 mm distance.
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Appendix E

Model systems (computer phantoms)

Model systems (often called ‘computer phantoms’) are used to study the performance of CT

reconstructions. A model system is the mathematical description of an ideal tomographic slice

f (x, y), from which projectionspθ(t) can be calculated. Note that the term ‘phantom’ can also

refer to the real objects that are used for the test of CT setups.

Model systems are typically built from a combination of simple geometrical objects, for which

the projections can be analytically calculated. The projections of the whole phantom are simply

the sum of the projections of the individual objects. This follows directly from the linearity of the

Radon transform. Generators for projection data are, e.g., included in the 2D reconstruction soft-

ware of the RECLBL library and in the SNARK051 programming system. In the latter software

the following elemental objects are implemented for the model system: triangles, rectangles, el-

lipses, circles, segments of a circle, and sectors of a circle. All of these are objects of homogeneous

(attenuation) value.

Projectionspθ(t) of the elemental objects can be calculated analytically, which is important

for the creation of exact projection data. Calculation of the projection data from only a finite

representationf (xi , yi) of f (x, y) of the tomographic slice could introduce systematic error, with

oscillations of one projection bin period. This would be critical for the study at subbin resolution,

presented in Chapter 5. Using the analytical expressions given below, projection data can be

calculated exactly and for any given combination of projection angleθ and positiont.

The calculation of projections has been implemented in this work for two elemental objects:

the well known ellipse, and an ellipse with gradient. Sinograms and reconstructions that were

calculated as an example for both objects are shown in Figure E.1. The ellipse with gradient

apparently has not been reported in the literature before. In contrast to the simple ellipse the

ellipse with gradient shows a continuous variation of the attenuation value along one axis. It was

developed in this work for the test of the entropy-based metric presented in Chapter 5, for which

the normal objects with continuous attenuation coefficient are too ’simple’.

1The SNARK05 manual [32] is available online athttp://www.snark05.com/. [visited May, 25th 2006]
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(a) (b)

(c) (d)

Figure E.1: (a) Projection data for an ellipse with center point (x0, y0) = (0.2,0.1), axis lengthesA = 0.6,
B = 0.4, tilt angleα = 20o, and attenuationρ = 2.0, calculated atNt = 400 positions and forNθ = 627
projection angles. (b) Projection data of the same ellipse but with gradientg = 0.75. (c),(d) Reconstructions
of the projection data calculated on a 400× 400 pixel reconstruction grid.

E.1 Ellipse

The calculation of the projections of an ellipse is, e.g., described by Kak and Slaney [93]. We

first present the result for a centered, and not tilted ellipse and afterwards generalize the result for

an ellipse of arbitrary position and orientation.

The centered ellipsef (x, y) [shown in Figure E.2(b)] is defined as

f (x, y) =

 ρ for x2

A2 +
y2

B2 ≤ 1

0 else
. (E.1)

This ellipse is symmetric around the coordinate center and has axes of lengthA and B that are

parallel to thex andy-axis respectively. The projection of the ellipse under an angle ofθ is given

as

pθ(t) =

 2ρAB
a2(θ)

√
a2(θ) − t2 for x2

A2 +
y2

B2 ≤ 1

0 else
, (E.2)
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Figure E.2: (a) The geometrical parameters used for the description of an ellipse are the center point
(x0, y0), the half length of the axesA andB, and the tilt angleα. (b) The formation of the projection under
projection angleθ for a centered and non-tilted ellipse is shown. The midpoint of the intersection of line
integral and ellipse, projected onto thex-axis, determines the positionx.

with

a2(θ) = A2 cos2 θ + B2 sin2 θ . (E.3)

The projection of any arbitrary ellipse [Figure E.2(a)] with center at (x0, y0) and tilted by an angle

of α can be given in terms of the projections of the centered and not tilted ellipse as

p′θ(t) = pθ−α[t − scos(γ − θ)] , (E.4)

with s=
√

x2
0 + y2

0 andγ = arctan(y0/x0).

E.2 Ellipse with gradient

Similarly to the definition off (x, y) above, a centered and non-rotated ellipse with a gradient

can be defined as

fg(x, y) =

 ρ
(
1+ x

Ag
)

for x2

A2 +
y2

B2 ≤ 1

0 else
, (E.5)

where the gradient is determined by the factorg. The value off (x, y) changes along thex-axis

over the range of the ellipse fromρ(1− g) to ρ(1+ g).

The projectionspg,θ(t) of fg can be derived using the projectionspθ(t) given above. In the line

integrals, which have to be evaluated to obtainpg,θ(t), the value offg(x, y) changes linearly over
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the region of the ellipse. Therefore, the average of the integral over the range of the ellipse is equal

to the value offg at the center of the intersections that the line integral makes with the ellipse. The

projections are thus given by

pg,θ(t) = pθ(t)

(
1+

x
A

g

)
, (E.6)

wherex in Figure E.2(b) is the midpoint between the intersections projected onto thex-axis (di-

rection of the gradient).

The pointx is found by solvingxcosθ + ycosθ = t for y and substituting the result into the

ellipse equation. The resulting quadratic equation is

x2 −
2A2t cosθ

A2 cos2 θ + B2 sin2 θ
x+

A2
(
t2 − B2 sin2 θ

)
A2 cos2 θ + B2 sin2 θ

= 0 . (E.7)

It can easily be solved with the well known solution of a quadratic equation of the formx2+px+q =

0, which isx1,2 = −p/2±
√

p2/4− q. Herex1 andx2 are the x-values at the intersection points.

Only the midpointx of x1 andx2 is of interest. It is given by

x(θ, t) =
x1 + x2

2
= −

p
2
=

A2t cosθ

A2 cos2 θ + B2 sin2 θ
, (E.8)

which corresponds to the first fraction in Equation (E.7).

This result can be generalized for the projections of any arbitrary ellipse with center at (x0, y0)

and tilted by an angle ofα as done before for the normal ellipse, now substituting the projections

pg,θ(t) into Equation (E.4). Forg = 0 the ellipse has no gradient and corresponds to the basic

ellipse described above.
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Appendix F

Demonstration of the iterative scoring

procedure

The method for the determination of the center of rotation presented in Chapter 5 is based

on the iterative minimization procedure with multi-resolution approach described in Section 5.3.

For demonstration of the iterative optimization, the method using metricQIA was applied to the

multicircle model system of Figure 5.6(c). The five reconstructions calculated in each iteration

step are shown in Figure F.1. The metric values of each of these sets of reconstructions have been

calculated and are plotted in Figure F.2. The reconstruction that corresponds to the minimum value

of QIA(t̃r ) in the plots has been marked by an asterisk in Figure F.1 at each resolution.

During iteration the resolution of the reconstruction is increased until resolutionδtr = 1 is

reached. Reconstructions in Figures F.1(A) – (D) have been reconstructed from the sinogram

binned with binning factorb = δt, the others without binning (b = 1). All reconstructions are

shown in the same length scale. The size of the reconstruction grids varies due to the adapted zero

padding as described in Section 5.3 .

At low resolution the artifacts caused by the wrong center of rotation are clearly visible.

At increasing resolution visual detection of differences in the reconstructions becomes almost

impossible at least without adjustment of the windowing parameters, i.e., the image scaling.

However, even at resolutionδt = 0.05 bin, the plots of the metric in Figure F.2(J) still exhibit

a clear minimum.
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Figure F.1: The iterative scoring procedure for the determination of the center of rotation is illustrated for
the multicircle model system from Figure 5.6. Reconstructions were calculated during the iteration with
resolutionδt: (A) 16.0, (B) 8.0, (C) 4.0, (D) 2.0, (E) 1.0, (F) 0.5, (G) 0.25, (H) 0.125, (I) 0.06125, and (J)
0.05 pixel. The reconstruction with minimum metric valueQIA corresponding to the plots in Figure F.2 is
marked with an asterisk.
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Figure F.2: Plots of the metric valueQIA calculated during the iterative optimization for the reconstructions
shown in Figure F.1. The different resolutionsδt are given as the parameter ‘dtr’ in the plots. At all
resolutions a unique minimum is found. Notice the increase of abscissa and ordinate resolution towards
smallerδtr , this is from (A) to (J).
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Appendix G

X-ray camera component

characteristics

Entrance window Black Kaptonr foil (thickness 25µm), double

layer with total thickness 50µm

Luminescent screens

Material Cadmium tungstate (CdWO4) single crystals

Coating Absorbing backing formed by a layer of black

lacquer paint on the screen´s back surface;

complex refractive index of coating at 500 nm:

1.485+ j 0.085 (see Section 4.2.3)

Thickness 80µm – 1000µm

Refractive indexnls 2.2 – 2.3

Scavenging gas (optional) Helium or other, applied through crystal holder

Conversion efficiency εconv ≈ 3.4% or 13.6/[keV], according to Equa-

tion (2.16)

Central emission wavelength 500 nm (see Figure 2.6)

Decay timeb 5µs

Afterglowb <0.1% (after 3 ms),<0.02% (after 100 ms)

Lens systems Objectives (photographic lenses) operated in

retrofocus position are used. The focal length (in

mm) and the minimum f-number are given.

50 mm system:

Model, supplier Nikkor, 50 mm f/1.2, Nikon Inc.

Magnification range 0.7 – 4.1

Transmission (95.8 %)a at 500 nm
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35 mm system:

Model, supplier Nikkor, 35 mm f/1.4, Nikon Inc.

Magnification range 1.4 – 6.0

Transmissiona (93.2 %) at 500 nm

CCD camera

Model, supplier KX2, Apogee Instruments Inc.

Digitization 14 bits at 1.3 MHz

System gaing 5 electrons/ADU

Pixel binning 1× 1 to 8× 64, on chip

Frame sizes Full frame, subframe

Exposure time 0.03 sec to 17 min

Optical shutter Melles-Griot, 35 mm iris

Cooling Peltier and water cooling (operated at -15oC)

Readout time 1.2 sec (full frame, no binning)

Image data size 3.2 MB (full frame, no binning)

CCD chip

Model, supplier KAF-1600, Eastman Kodak Company

Technology Front side illuminated, transparent gate, full

frame CCD

Resolution (H×V) 1536× 1024 pixels

Pixel size 9× 9µm2

Sensitive area 14.0× 9.3 mm2

Saturation chargeb Nsat 1× 105 electrons

Photoresponse non-linearityc Nom. 1%, max. 2%

Photoresponse non-uniformityd Nom. 1%, max. 3%

Dark current 0.1 - 0.2 electrons/pixel / sec (at -10oC)

Readout noisenel 15 electrons rms

Readout bias ∼550 ADU

Dynamic range (Nsat/nel) 6310:1 (equal to 76 dB or 12.7 bits)

Charge transfer efficiency: ∼0.99998

Quantum efficiency 12% at 450 nm, 35% at 550 nm, 35% at 650 nm,

(see Figure 2.6)

aTechnical design value. From correspondence with Nikon GmbH, Nikon Professional Service (NPS),

Nov./Dec. 2005.

bData from van Eijk [146].

cWorst case deviation from straight line fit, between 1% and 90% of saturation voltage.

dOne Sigma deviation of a 128× 128 sample when CCD illuminated uniformly.



183



184

References

[1] C. Antoine, P. Nygård, Ø. W. Gregersen, R. Holmstad, T. Weitkamp, C. Rau. 3D images of

paper obtained by phase-contrast X-ray microtomography: image quality and binarisation.

Nucl. Instrum. Methods Phys. Res. A, 490:392–402, 2002.

[2] D. Atkinson, D. L. G. Hill, P. N. R. Stoyle, P. E. Summers, S. Clare, R. Bowtell, S. F. Keevil.

Automatic compensation of motion artifacts in MRI.Magnetic Resonance in Medicine,

41:163–170, 1999.

[3] A. Authier. Dynamical Theory of X-ray Diffraction. Oxford Univ. Press, reprint with

corrections edition, 2005.

[4] S. G. Azevedo, D. J. Schneberk, J. P. Fitch, H. E. Martz. Calculation of the rotational centers

in computed tomography sinograms.IEEE Trans. Nucl. Sci., 37(4):1525–1540, 1990.

[5] R. M. A. Azzam and N. M. Bashara.Ellipsometry and Polarized Light. Elsevier Science

B.V., 4th edition, 1999.

[6] L. Baker, editor. Selected papers on optical transfer function – foundation and theory,

volume MS 59 ofMilestone Series. SPIE Opt. Eng. Press, 1992.

[7] S. L. Barna, M. W. Tate, S. M. Gruner, and E. F. Eikenberry. Calibration procedures for

charge-coupled device x-ray detectors.Rev. Sci. Instrum., 70(7):2927–2934, 1999.

[8] H. H. Barrett and W. Swindell.Radiological Imaging, volume 1. Academic Press, 1981.

[9] A. Becker, I. S̈otje, C. Paulmann, F. Beckmann, T. Donath, R. Boese, O. Prymak, H. Tie-

mann, and M. Epple. Calcium sulfate hemihydrate is the inorganic mineral in statoliths of

scyphozoan medusae (cnidaria).Dalton Trans., 8:1545–1550, 2005.

[10] F. Beckmann, U. Bonse, F. Busch, and O. Günnewig. X-Ray Microtomography (µCT)

Using Phase Contrast for the Investigation of Organic Matter.J. Comput. Assist. Tomogr.,

21:539–553, 1997.

[11] F. Beckmann.Entwicklung, Aufbau und Anwendung eines Verfahrens der Phasenkontrast-
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