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Abstract

Nowadays, intense research is conducted to understand there lation between microstructural 
features and mechanical properties of hexagonal close-packed (hcp) metals. Due to their hexagonal
structure, hcp metals exhibit mechanical properties such as strong anisotropy, which is more 
pronounced than for construction metals with cubic crystal structure, and tension/compression
asymmetry. Deformation mechanisms in hcp metals, dislocation motion on specific slip systems
and activation of twinning, are not yet completely understood. 

The purpose of this work is to link the physical mechanisms developing during deformation of
magnesium (Mg) on the microscale with the macroscopic yielding properties of texture Mg 
samples. It will be shown that the mechanical behavior of hcp metals may be understood and
reproduced with the help of a visco-plastic model for crystal plasticity and a phenomenological
yield criterion with appropriate hardening behavior. 

The study of single crystal specimens subjected to channel die compression tests reveals the
active slip systems and twinning systems of the material considered. The material anisotropy 
at mesoscale is reproduced by using adequate critical resolved shear stresses (CRSS) for the 
considered deformation mechanisms. In order to describe the macroscopic behavior, texture is
incorporated into polycrystalline Representative Volume Elements (RVEs) and various mechanical
properties of extruded bars and rolled plates can be predicted. For RVEs exhibiting the texture of
rolled plates the numerical results reveal the plate’s anisotropic yielding and hardening behavior
on a mesoscale.

In order to extend the modeling possibilities to process simulations and to allow for time-saving
simulations of structural behavior, a phenomenological yield surface accounting for anisotropy
and tension/compression asymmetry has been established and implemented in a finite element
code. Its numerous model parameters are calibrated by an optimization procedure based on a
Monte-Carlo search and the strain hardening behavior is described by an evolution of the parameters
with plastic strain. This model is finally applied in deep drawing simulations of a cup.



Mikromechanische Modellierung der Verformung in Metallen mit hexagonaler Gitter-
struktur

Zusammenfassung 

Heutzutage wird intensive Forschung betrieben, um den Zusammenhang zwischen mikrostruk-
turellen Eigenschaften und mechanischem Verhalten von Metallen mit hexagonaler Gitterstruktur
zu verstehen. Wegen ihrer hexagonalen Struktur verfügen diese Metalle über Besonderheiten der
mechanischen Eigenschaften wie eine starke Anisotropie, die ausgeprägter ist als für Konstruk-
tionsmetalle mit kubischer Kristallstruktur, und Zug-/Druck-Asymmetrie. Die Verformungs-
mechanismen in Metallen mit hexagonaler Gitterstruktur, wie Versetzungsbewegungen auf
bestimmten Gleitsystemen und Bildung von Zwillingen, sind bis heute noch nicht vollständig
verstanden.

Das Ziel der vorliegenden Arbeit ist es, die physikalischen Mechanismen, die während der Ver-
formung von Magnesium auf der Mikroebene auftreten, mit dem makroskopisches Fließverhalten
von texturierten Magnesiumproben in Korrelation zu bringen. Es wird gezeigt, dass das atypische
mechanische Verhalten dieser Metalle mit Hilfe eines visko-plastischen Modells für Kristallplasti-
zität und eines phänomenologischen Fließkriteriums mit angepasstem Verfestigungsverhalten
verstanden und reproduziert werden kann.

Die Untersuchung von Einkristallproben in so genannten „Channel-Die“-Druckversuchen offen-
bart die aktiven Gleit- und Zwillingssysteme des Materials. Die Anisotropie des Materials auf
Makroebene wird durch entsprechende kritische Schubspannungen (CRSS) für die angenommenen
Verformungsmechanismen reproduziert. Um das makroskopische Verhalten von Polykristallen
zu beschreiben, werden repräsentative Volumenelemente (RVE) als Anordnungen einer Vielzahl
unterschiedlich orientierter Einkristalle betrachtet. Die Orientierungsverteilung wird der makro-
skopisch gemessenen Textur angepasst. Durch numerische Simulationen an diesen RVE kann das
Fließverhalten von extrudiertem Material und gewalzten Blechen vorhergesagt werden. 

Um Simulationen auf makroskopischer Ebene, z.B. von Umformversuchen, mit vertretbarem
Aufwand durchführen zu können, wurde eine phänomenologische Fließfläche, die die Anisotropie
und die Zug-/Druck-Asymmetrie berücksichtigt, in einen Finite-Elemente-Programm implementiert.
Diese Fließfläche erfordert die Anpassung einer großen Anzahl von Modelparametern, die mit einer
Monte-Carlo-Suche angepasst werden. Das Verfestigungsverhalten wird durch eine Entwicklung
dieser Parameter mit der plastischen Vergleichsdehnung nach von Mises beschrieben. Dieses
Modell wird dann für Tiefziehsimulationen eines Napfes eingesetzt.

Manuscript received / Manuskripteingang in TKP:  16. Januar 2008
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Chapter 1

Introduction

In today life it has become very common and easy to travel, either by car or by plane.
Since many car manufacturing companies and firms operating airplanes are present on
the market the travelling possibilities have increased a lot and the travelling costs for the
customer have been reduced at the same time. The main way in reducing the travelling
costs is to reduce fuel consumption. This is particularly true because fuels price has
increased drastically during the last years and will go on increasing constantly in next
decades.
Partly for this reason, magnesium alloys have attracted attention in recent years as
lightweight materials for the transportation industry. Indeed, the low density of magne-
sium (1.74 g/cm3) and its relatively high specific strength make it an excellent candidate
for the development of alloys destined to save structural weight and consequently fuel
consumption in the automotive industry [58, 41, 28]. However, magnesium (Mg) and
magnesium alloys components exhibit unusual mechanical properties for structural
metals, like a pronounced anisotropy and unlike yielding in tension and compression.
These mechanical properties as well as the limited ductility of magnesium wrought alloys
at room temperature is related to their hexagonal close-packed (hcp) structure and the
corresponding deformation mechanisms activated during plastic deformation. Indeed,
metals with hcp crystalline structures present a reduced number of available slip systems
compared to body centered cubic (bcc) and face centered cubic (fcc) geometries, which
makes the accommodation of arbitrary plastic deformation difficult. In hcp metals,
mechanical twinning therefore goes along with dislocation slip during plastic deformation.

A profound understanding of these underlying mechanisms of dislocation gliding
and mechanical twinning for magnesium wrought alloys, at single crystal and polycrys-
talline level, would thus contribute to a knowledge based characterization of those alloys.
Creating such a knowledge is one goal of this work. It is necessary to help in improving
the mechanical performances of magnesium alloys and the fabrication processes of
components made out of these alloys.
Tests on single crystals of hcp metals for various crystallographic orientations are
sophisticated, and the respective literature is scarce. Wonsiewicz and Backhofen [85] as
well as Kelley and Hosford [43, 44] conducted thorough channel die tests on single crystal
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2 Chapter 1. Introduction

Mg specimens, displaying its complex deformation behavior and revealing the active slip
and twinning systems. The data in [43, 44] are used in this work to identify the material
parameters of constitutive equations based on crystal plasticity, which is then used for
predicting the mechanical behavior at mesoscopic level of polycrystalline representative
volume elements (RVEs). In this way the microscopic features developing during plastic
deformation of Mg are linked to the mesoscale and allow for the prediction of yielding
behavior of arbitrarily textured solids as for example extruded bars or rolled plates. The
atypical yielding behavior at single crystal and polycrystalline aggregate level is shown to
be very sensitive to the material parameters identified as well as to the crystallographic
orientation and thus to the material texture.

As simulations of the structural behavior of polycrystalline structures cannot be
performed effectively with models of crystal plasticity, which require much computation-
nal time, models with phenomenological constitutive equations, which do not account for
microstructural events and materials texture, need to be developed. Developing such a
model is another goal of this work. Finally, such models for phenomenological modeling
are used for the design of industrial products because they allow for accurate predictions
of the mechanical behavior of components.
A yield potential proposed by Cazacu and Barlat [19], which accounts for anisotropy
and unlike yielding in tension and compression, is introduced in the present work.
The procedure for the identification of its numerous model parameters, which can be
realized with the help of the yield surfaces generated by the crystal plasticity based RVE
calculations, is presented. Finally, numerical simulations of the deep drawing process of
rolled plates is presented and the structural mechanical behavior of the sheets depending
on the material anisotropy is discussed.

In this work a method linking mechanical behavior at single crystal level and at
structural level, going trough polycrystalline aggregates, is developed and applied to
magnesium. This methodology allows for a deep understanding of micromechanical
features occuring during plastic deformation of Mg and for the prediction of mechanical
behavior of components at structural level by requiring only a reduced amount of
experimental data. The methodology presented here, is not restricted to Mg but may be
applied to any other hcp metal.



Chapter 2

Deformation Mechanisms in Metals

2.1 Crystallographic Structure of Metals

Contrary to plastics or ceramics, whose constitutive molecules are disorganised, metals
have an organised crystallographic structure. The common crystallographic structures
encountered in metals, body centered cubic (bcc), face centered cubic (fcc), and hexagonal
close-packed (hcp) are illustrated in Figure 2.1.
In this figure the spheres represent the metal atoms which are perfectly organised such
that the presented structures are repeated periodically in the three dimensions of space.
For example, α-iron crystallises into the bcc structure while aluminium, copper and nickel
build fcc structures, and magnesium or zinc crystallise into the hcp structure.

2a

3a

1a 2a
1a

3a

c
3a

1a

2a

Figure 2.1: Crystallographic structures of metals: body centered cubic (bcc), face centered
cubic (fcc), and hexagonal close-packed (hcp) lattice structures

As shown in Figure 2.1, planes and directions of the cubic lattice can be represented
easily in the cartesian coordinate system (~a1,~a2,~a3). In the case of hcp metals, planes
and directions of the hexagonal lattice can be described with the Miller-Bravais indices
related to a coordinate system of three basal vectors ~ai and the longitudinal axis ~c, also

3



4 Chapter 2. Deformation Mechanisms in Metals

called c-axis later. Even if metals tend to crystalize in these perfect organised structures
pile up defaults, also named dislocations, appear to be extremely frequent and play a
crucial role in the deformation behavior of metals.

2.2 Slip Mechanism and Hardening Behavior

Deformation of metals may be of two natures, elastic and plastic. A comparison between
elastic and plastic deformations resulting from shear loading is made in Figure 2.2. Elastic
deformation corresponds to pure lattice stretching and is fully reversible as the applied
load is supressed. Plastic deformation instead is irreversible since a residual deformation
remains after the load is supressed, and is controled by slip of dislocations on specific
crystallographic planes and in specific directions which is triggered by mechanical shear
loading.
A given combination of a crystallographic plane and crystallographic direction is defined
as a slip system. This form of plastic deformation is particularly true at low homologous
temperatures, which is of interest in the present work, while at high homologous tempera-
tures additional mechanisms like recrystallisation and grain-boundary sliding for example
may take place.

τ

τ

τ

τ

τ

τ

b

Pure elastic deformation

Pure plastic deformation 

loading

loading unloading

unloading

Figure 2.2: Elastic deformation corresponding to pur stretching of the crystal lattice (up)
and plastic deformation trough dislocation slip (down)

The relative displacement of the two crystal halves resulting in the remaining plastic de-
formation is called the Burgers vector ~b and its magnitude is one atomic distance on the
example of Figure 2.2. Schmid [69] observed that slip for a specific slip system is activated
when a critical value of shear stress is reached. This value is also called critical resolved
shear stress (CRSS) of the slip system.
In the case of a tensile test, schematically represented in Figure 2.3, this observation leads
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to the following relation between critical applied stress σc and critical shear stress τc,

τc = σccos(λ)cos(ϕ) (2.1)

where µ = cos(λ)cos(ϕ) is the so called Schmid factor. This relation is usually called the
Schmid law.
The stress strain curve of Figure 2.3 shows that the applied stress σapplied is a linear
function of the deformation strain ε in the range of elastic deformation corresponding to
σapplied ≤ σc. This mechanical behavior observed at macroscopic scale is called linear
elasticity. As the applied stress becomes higher than σc the macroscopic relation between
stress and strain is not linear anymore and the mechanical behavior is called plastic. As
the sample in unloaded a deformation called plastic deformation remains and the new
critical stress σc to be reached in order to escape the elastic range and to enter into
plasticity is higher, the material is hardening.

ϕλ
Slip direction

Normal to slip
plane

σapplied

ε

σ
c

slip offset

linear elasticity

plastic hardening

τ = σ cos(λ) cos(ϕ)c c

σapplied

Figure 2.3: Relationship between applied stress σapplied and shear stress τ acting on a
specific slip system in a uniaxial tensile test

Indeed, metals harden after the limit of elasticity is reached which is directly related
to dislocations moving into the tested sample as well as an increasing number of such
dislocations and therefore an increasing interaction of the dislocations with the movement
of others. Dislocations may be of different natures, ideally of edge or of screw character
but almost always of mixed edge and screw character. They may interact in many ways
with other dislocations or obstacles like impurities and precipitate creating thus jogs,
vacancies, new dislocation sources and others.
Describing in detail the mechanism of dislocation mechanics is omitted here since this
is beyond the scope of this work. Further information of microstructural observations of
dislocations interactions may be found for example in Cottrell [21] or Seeger [71] and more
detailed information about dislocation mechanics may be found for example in [35, 36, 10].
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2.3 Mechanical Twinning

Mechanical twinning is a deformation mode controled by mechanical shear loading like
slip. Contrary to slip, where the crystallographic orientations remain unchanged, me-
chanical twinning corresponds to a sudden reorientation of a small distinct volume of the
crystal lattice. Figure 2.4 shows an example of mechanical twinning. The planes of sym-
metry, twin planes, separate the twinned region from the untwinned regions of the crystal
lattice. Whether mechanical twinning is triggered by a critical shear stress, as dislocation
slip is, remains an open question.

τ

τ

τ

τ

twin planes

Figure 2.4: Crystal lattice reorientation due to mechanical twinning

This deformation mode may occur in most crystals but hcp metals are particularly sub-
jected to twinning, especially at low homoglogous temperatures. In hcp metals the twin-
ning systems can be activated by either tension or compression of the c-axis, depending
on whether the deformation results in an elongation or a shortening of the c-orientation.

2.4 Deformation of hcp Metals

A non exhaustive list of deformation modes frequently observed in hcp metals are
presented in Figure 2.5. Slip systems are defined via a plane and a direction in which,
and along which, a dislocation may move, respectively, as subjected to external loading.
Mechanical twinning is defined via a plane only, the twin plane.
Their are always several equivalent slip and twinning systems, due to the symmetry of
the hexagonal structure, but only one of each family is displayed in Figure 2.5 for clarity.
As it can be seen in Figure 2.5, which is not even complete, the number of different
families of deformation modes which may occur in hcp metals is high, however, hcp
materials generally have a small number of active modes. The nature of dislocations
in an hexagonal lattice may be regrouped in three families, 〈a〉, 〈c〉 and 〈a + c〉, with
respective Burgers vectors of lengths a, c and

√
a2 + c2, see Figure 2.5. Which of these

slip systems gets activated, depends among other factors on the aspect ratio a/c.
The restricted number of available slip systems in hcp metals, which is due to the low
symmetry of the hexagonal lattice, usually makes the accommodation of arbitrary strains
through dislocation slip only difficult. It becomes especially difficult if the number of
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independent slip systems is less than 5, which have been shown by von Mises [84] to
be the minimum needed to undergo homogeneous deformation by crystallographic slip
in polycrystals. For this reason, twinning is often an additionnal deformation mode in
hcp metals which allows for deformation in c-direction. A detailed review concerning
crystallography and deformation modes of hcp metals can be found in Partridge [61].

Figure 2.5: Frequently observed deformation modes in hcp metals, grey surfaces represent
slip and twinning planes, vectors represent slip directions

2.5 The Special Case of Magnesium

As shown in the previous section, the number of possible deformation modes in hcp
metals is high and identifying those active in a specific material is not a trivial task. In
this section the deformation modes of magnesium are discussed refering to experimental
evidences and numerical studies. The deformation modes mentioned later in this section
are listed in Figure 2.6.

2.5.1 Experimental Evidences

Historically, the deformation mechanisms of magnesium at low homologous temperatures
were found to be mainly basal slip and twinning, see Beck [13]. At room temperature
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tensile twinning has been far the most observed twinning mechanism. At temperatures
above 225 ◦C other slip systems like pyramidal 〈a〉 were supposed to be active in order
to explain the increasing ductility of Mg.
The deformation mechanisms of Mg have been studied further in detail in the 50’s
and 60’s in a wide temperature range from approximately −190 ◦C to above 350 ◦C.
Burke and Hibbard [18] performed tensile tests of magnesium single crystals in different
crystallographic orientations. Basal slip was found to be the only activated deformation
mode in a wide range of orientations, prismatic 〈a〉, pyramidal 〈a〉, and tensile twin
where observed as well. Tensile tests on high purity Mg extrusion samples performed
by Hauser et al. [30, 29] at 25 ◦C revealed basal slip to be the predominant deformation
mechanism. Basal slip was suggested to be the predominant deformation mechanism as
it was found to be uniformly distributed all over the grains, while traces of slip on the
prismatic planes have been observed only in parts of the grain which may have been
subjected to higher stresses such as near corners or reentrant angles.
Since basal slip is identified to be an easy glide slip system in Mg at low temperatures,
Reed-Hill and Robertson [64] as well as Yoshinaga and Horiuchi [89] performed tensile
tests on Mg single crystal with basal plane parallel to the loading direction. This
orientation of the single crystals aims to make non-basal slip much more favorable while
avoiding basal slip. Both studies showed prismatic 〈a〉 glide to be the predominant
deformation mechanism at room temperature in these conditions. At high temperatures
slip markings have been observed in [89] suggesting that pyramidal 〈a〉 slip may have
contributed to plastic deformation. Reed-Hill and Robertson [65] concluded from tensile
tests on notched specimens that pyramidal 〈a〉 slip is not an important mode of plastic
deformation at room temperature.
Basal slip and prismatic 〈a〉 slip constitute 4 independent slip systems, and since pyra-
midal 〈a〉 produces a strictly equivalent shape change than combined basal and prismatic
〈a〉 slip, the number of independent shear systems issued from all 3 deformation modes
observed in magnesium keeps 4. However, 4 independent shear systems is not enough
to satisfy the criterion of von Mises [84]. Indeed, the von Mises criterion stipulates that
5 independent shear systems are required for a polycrystal to undergo homogeneous
strain deformation without change in volume, which is the general assumption in metal
plasticity. Tegart [79] suggested therefore non-basal slip systems having a component in
c-direction to operate in hcp metals.
For the reasons detailed just before further studies have focused on understanding
non-basal deformation mechanisms in Mg. With the expectation to avoid twinning and
slip of pure 〈a〉 nature, Wonsiewicz and Backofen [85] as well as Kelley and Hosford [43]
have performed channel die experiments of single crystals and polycrystalline material. In
these tests no deformation mode with component in 〈c〉 direction, other than mechanical
twinning, could be identified. Stohr and Poirier [74] and Obara et al. [59] have observed
pyramidal 〈a + c〉 glide while performing respectively tension and compression tests on
single crystals at relatively low homologous temperatures. These have been the first
evidences of non-basal slip presenting a contribution for deformation in 〈c〉 direction
in magnesium. Recently, Ando and Tonda [6] also identified pyramidal 〈a + c〉 as an
active deformation mechanism at relatively low homogeneous temperatures. The Critical
Resolved Shear Stress (CRSS) for pyramidal 〈a+ c〉 systems determined in [74, 59, 6] for
the ranges of temperatures analyzed is not identical, which is discussed in detail in Yoo
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et al. [88]. Yoo et al. [87] also introduced a source mechanism for 〈a + c〉 slip based on
geometric and energetic considerations for hcp metals and alloys. This source mechanism
is however unfavorable for Mg.

Figure 2.6: Deformation modes observed in magnesium, grey surfaces represent slip and
twinning planes, vectors represent slip directions

2.5.2 Numerical Investigations

Modeling activities for understanding better the features of plastic deformation in
magnesium alloys started recently and concentrate almost only on the alloy AZ31 and
its variation AZ31B because they are the most common wrought magnesium alloys.
Agnew et al. [4] studied, among others, the relation between mechanical behavior and
texture evolution of AZ31B. In order to reproduce similar textures than those observed
experimentally, 〈a + c〉 slip needed to be taken into account. They even concluded that
prismatic 〈a〉 slip should keep marginal for avoiding undesired features in the simulated
texture. Thus, they have considered only basal, pyramidal 〈a + c〉 and tensile twin
in the mechanical behavior simulations of AZ31B. These considerations showed to be
satisfying at simulating uniaxial compression tests of a plate for both in-plane and
through-thickness orientations.
In later studies, Agnew et al. [3] and Agnew and Duygulu [2] added prismatic 〈a〉 to
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the previous set of deformation modes. Indeed, non-basal slip in 〈a〉 direction has been
shown in [3, 2] to be necessary for modeling the in-plane anisotropy of AZ31B rolled
plates at low temperatures.
Brown et al. [16] emphasize the importance of tensile twin and 〈a+ c〉 slip in contributing
to plastic deformation while modeling texture evolution of AZ31B rolled plates subjected
to in-plane compression.
Staroselsky and Anand [73] could model the macroscopic mechanical behavior in tension
and compression as well as the respective texture evolution of AZ31B extruded rods
and rolled plates without considering any slip system having a deformation component
oriented in 〈a + c〉 direction. The considered deformation mechanisms, basal, prismatic
〈a〉, pyramidal 〈a〉 and tensile twinning, were enough to get good agreement between
experiment and simulation.
The systematic texture simulations of AZ31 conducted by Styczynski et al. [75] showed
that the best agreement between simulated and experimental textures is obtained by
considering basal, prismatic 〈a〉, pyramidal 〈a + c〉 and tensile twinning, which are the
same than in [3, 2].
Yi et al. [86] also studied magnesium alloy AZ31 for understanding the relation between
texture evolution and flow curves. The best concord was achieved using all three 〈a〉 de-
formation modes, basal, prismatic, pyramidal, as well as tensile twin and pyramidal 〈a+c〉.

As a resume, experimental and modeling investigations seem to show that the de-
formation mechanisms acting significantly in Mg and its alloys at low homologous
temperature are still subjected to some discussions. But generally, the use of any 〈a〉
and an 〈a + c〉 non-basal slip system additionally to basal slip and tensile twinning
seems to deliver satisfactory results in modeling. As a consequence, and since pyramidal
〈a〉 slip produce a strictly equivalent shape change than combined basal and prismatic
〈a〉 cross-slip, this system will not be considered in the present work, while basal 〈a〉,
prismatic 〈a〉, tensile twinning on {1012} and pyramidal 〈a+ c〉 will, see Table 2.1.

Deformation Mode Plane Direction
Basal 〈a〉 {0001} 〈1120〉
Prismatic 〈a〉 {1100} 〈1120〉
Pyramidal 〈a+ c〉 {1122} 〈1123〉
Tensile twin {1012} 〈1011〉

Table 2.1: Deformation modes considered in the present work, planes and directions are
expressed in the Miller-Bravais coordinate system, see Figure 2.1



Chapter 3

Modeling using Crystal Plasticity

3.1 Principle and History

Crystal plasticity aims on describing the plastic deformation of single crystals and
polycrystals which results from shearing of specific crystallographic slip systems. In
crystal plasticity models, the physical discrete events of slip are formulated into a
mathematical continuum description. The schematic representation in Figure 3.1 shows
a simplified correspondance between discrete dislocations motions and the continuum
slip theory in an idealized two dimensionnal case.

τ

τ

τ

τ

τ

τ
τ

τ

τ

τ

Figure 3.1: Correspondance between discrete events of slip (above) and the continuum slip
theory (below) in an idealized two dimensionnal case

The description of macroscopic plastic strains in metal single crystals based on a physical
description started with the work of Taylor [78, 77] and Schmid and Boas [70]. Plastic
deformation in ductile crystals was found to result from dislocation motions on certain
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12 Chapter 3. Modeling using Crystal Plasticity

crystallographic slip systems when a critical value of shear stress is reached in these
systems. The mathematical formulation of these discrete events into a continuum was
developed by Hill [33], Teodosiu [80], Rice [66], Hill and Rice [34], and Mandel [54].
Micromechanical observations of crystal lattice defects as for example in Cottrell [21] or
Seeger [71] motivate the need for a description of slip resistance, or slip hardening. In
the case of multiple simultaneous slip the formulation of adapted constitutive equations
for slip hardening is still subject to researches, see for example Kocks [46, 47], Peirce et
al. [62], Bassani and Wu [11], Cuitiñio and Ortiz [22]. Algorithms for crystal plasticity
models adapted to numerical calculations like the finite element method have been
developed recently, by Peirce et al. [62], Needleman et al. [57], Cuitiñio and Ortiz [22],
Anand and Kothari [5] as well as Miehe [55]. Complete descriptions about ”crystal
plasticity and evolution of polycrystalline microstructures” and ”micromechanics of
crystals and polycrystals” are given in Miehe and Schotte [56] and Asaro [7], respectively.

Over the years, different approaches for crystal plasticity have been developed which
varie from the classical crystal plasticity framework established in the works mentioned
above.
Following the work of Taylor [77], Taylor-type models for crystal plasticity assume that
the strain distribution over the whole polycrystalline aggregate is homogeneous. Plastic
strain at microscale is therefore identical to plastic strain at macroscale. This allows for
computing stress and strain components for each grain separately and thus to save much
computationnal time. Generally, in modelling deformation processes Taylor-type models
give qualitative but not always quantitative satisfying predictions of texture evolution.
This is due to the lack of interactions between the grains.
Self consistent models consist in assuming each grain embedded in a matrix which is
attributed the mean mechanical properties of the surrounding polycrystalline aggregate.
The first self consistant models were proposed by Kröner [49] and Hutchinson [39]. The
model of Lebensohn and Tomé [50] may consider fully anisotropic crystalline behavior.
Compared to classical crystal plasticity models, in such models the strains tend to be
more accomodated through soft slip systems in grains which are well orientated for
deformation.
Generalized continuum models aim to incorporate additionnal degrees of freedom in
their constitutive equations compared to classical crystal plasticity models. This allows
in accounting for size effects like the Hall-Petch effect, constrained plasticity in thin
layer and around precipitates for example. These models fill the gap between dislocation
dynamic methods and the classical crystal plasticity which is, at the same time, their
limited range of application.

3.2 The Model Used in This Work

The model for crystal plasticity, which is described just after in this chapter, has been
used in the present work in finite element simulations of single crystals and polycrys-
talline aggregates subjected to different loading hitories. Beside the numerous material
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parameters needed for calibrating the model, the reproduction of lattice crystallographic
orientations and texture of polycrystalline aggregates is a key question for these simula-
tions. Appendix A explains therefore how the crystals’ crystallographic orientations are
introduced into this model and especially how the texture of polycrystalline aggregates is
reproduced. Please note that, in the following, no symbol is used to describe the scalar
products in the mathematical description of the model.

3.2.1 Kinematic

The model of crystal plasticity used in this work employs the framework for classical
crystal plasticity by Peirce et al. [62, 63] and Asaro [7, 8]. The numerical implementation
in the finite element code ABAQUS is based on the user-material routine (UMAT) of
Huang [37] extended to hexagonal structures. The lattice of a crystalline material under-
goes elastic stretching, rotation and plastic deformation. The latter is assumed to arise
solely from crystalline slip. As illustrated in Figure 3.2, the total deformation gradient F
is decomposed as

F = F?Fp (3.1)

where Fp denotes plastic shear of the material to an intermediate reference configuration
in which lattice orientation and spacing are the same as in the initial configuration, and
F? = V?R? denotes stretching and rotation of the lattice. Superscript ? always indicates
the lattice part of the kinematic quantities in the following.

pF

m(α)

n(α)

m(α)

n(α)

n
(α)

m
(α)

(γ (α)

F = FpF F

Figure 3.2: Multiplicative decomposition of the deformation gradient F

The rate of change of Fp is related to the slip rate γ̇(α) of the α slip system by

ḞpḞp−1

=
∑

α

γ̇(α)m(α) ⊗ n(α), (3.2)
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where the sum ranges over all activated slips systems, and the unit vectors m(α), n(α) are
the slip direction and the slip-plane normal, respectively, in both initial and intermediate
reference configurations, which transform to

m?(α) = F?m(α), n?(α) = n(α)F?−1

(3.3)

in the current deformed configuration, where

n?(α)m?(β) = n(α)F?−1

F?m(β) = n(α)m(β) = δαβ. (3.4)

The velocity gradient in the current configuration is given by

L = ḞF−1 = D + Ω, (3.5)

where the symmetric stretching rate, D, and the skew vorticity or spin tensor, Ω, can be
decomposed into lattice and plastic parts

D = D? + Dp, Ω = Ω? + Ωp, (3.6)

with

D? + Ω? = Ḟ?F?−1

, Dp + Ωp =
∑

α

γ̇(α)m?(α) ⊗ n?(α), (3.7)

The elastic properties are assumed to be unaffected by slip, i.e. the stress is determined
solely by F?. Thus, the stretching rate, D, is related to the Jaumann derivative of
Cauchy’s stress tensor, σ, by

∇
σ

?

+ σ(I : D?) = C : D?, (3.8)

where C is the fourth order tensor of elastic moduli and I the second order identity tensor.
The Jaumann rate in equation 3.8 is the corotational stress rate on axes that rotate with
the crystal lattice, which is related to the corotational stress rate on axes rotating with
the material by

∇
σ

?

= σ̇ −Ω?σ + σΩ? =
∇
σ + (Ω−Ω?)σ − σ(Ω−Ω?). (3.9)

3.2.2 Constitutive Formulations

The crystalline slip is assumed to obey Schmid’s law, i.e. the slip rate γ̇(α) depends on σ
solely through Schmid’s resolved shear stress,

τ (α) = n?(α)ρ0

ρ
σm?(α), (3.10)

where ρ0 and ρ are the mass densities in the reference and current states. The rate of
change of the resolved shear stresses is

τ̇ (α) = n?(α)

[
∇
σ

?

+ σ(I : D?)−D?σ + σD?

]
m?(α). (3.11)
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According to Peirce et al. [62], the constitutive equation of slip is assumed as a viscoplastic
power law,

γ̇(α)

γ̇
(α)
0

=

∣∣∣∣∣τ (α)

τ
(α)
Y

∣∣∣∣∣
n

sign

(
τ (α)

τ
(α)
Y

)
, (3.12)

where γ̇
(α)
0 is a reference strain rate, τ

(α)
Y characterizes the current strength of the α slip

system, and n is the rate sensitivity exponent. Strain hardening is characterized by the
evolution of the strengths

τ̇
(α)
Y =

∑
β

hαβ(γ̄)γ̇(α), (3.13)

with hαβ being the self (α = β) and latent (α 6= β) hardening moduli depending on
Taylor’s cumulative shear strain on all slip systems,

γ̄ =
∑

α

∫ t

0

|γ̇(α)|dτ. (3.14)

Interactions of the different active slip systems is further defined assuming that

hαα = h(γ̄) and hαβ = qαβh(γ̄) for (α 6= β), (3.15)

so that the hardening law can be written as

τ
(α)
Y = τ0 +

∫ t

0

h(γ̄)

(
γ̇(α) + qαβ

∑
α 6=β

γ̇(β)

)
dτ (3.16)

with τ0 = τ
(α)
Y (0) as integration constant. Hardening parameters as well as the values of

the interaction parameters qαβ have to be calibrated by a fitting procedure considering
both, test results of single crystals as well as polycrystals.
Three different hardening laws are applied in this work, namely

• linear hardening

h(γ̄) = h0, (3.17)

• Voce hardening

h(γ̄) = h0

(
1− τ0

τ∞

)
exp

(
− h0γ̄

τ∞

)
(3.18)

with τ∞ beeing the saturation stress,

• and particularly for deformation twinning

h(γ̄) =


h0 for γ̄ ≤ γref

h0

(
γ̄

γref

)m−1

for γ̄ > γref .
(3.19)
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The integrated functions of equations 3.17, 3.18 and 3.19 presenting the different harden-
ing characteristics used in this work are shown in Figure 3.3. The specific hardening law
of equation 3.19 was assumed for deformation twinning in order to model the observed
phenomenon of a sudden increase in stress due to saturation of twinning after a certain
amount of deformation strain has been reached. This phenomenon is particularly well
observed and discussed for the flow curves E and F, as well as LS and TS in [43, 44].
As developed earlier in this work twinning consists in a rotation of a finite domain of the
crystal lattice. Lattice rotation due to twinning is not taken into account in the present
framework of crystal plasticity. Hence, twinning is handled here as additional slip mech-
anism of the type {101̄2}〈101̄1〉 and the reorientation of crystallographic planes due to
twinning is omitted. This way of representation for twinning assumes that, as twinning
has saturated, further plastic deformation occurs only in the untwinned material. Fur-
thermore, it is assumed that both, slip and twinning, can operate simultaneously at a
material point where deformation twinning modeled as crystallographic slip is supposed
to follow Schmid’s law, see equations 3.12, 3.13 and 3.14. Its hardening law is assumed
as in equation 3.19, and the polar character of tensile twinning, which was shown to be the
main twinning mechanism active in magnesium, is taken into account with the restriction,

τ
(α)
Y →∞ for τ (α) ≤ 0, (3.20)

allowing only for extension of the c-orientation.
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Figure 3.3: Integrated functions of equations 3.17, 3.18 and 3.19 presenting the different
hardening characteristics used in the following crystal plasticity calculations



Chapter 4

Modeling using Phenomenological
Yield Criteria

Models for crystal plasticity aim on describing mechanical mechanisms occuring at mi-
croscopic level, taking into account the crystallographic orientations of individual grains
and the deformation modes by slip and twinning related to this orientation. These mod-
els require thus detailled information about deformation mechanisms and texture of the
material considered. Taking these information into account in simulating the deformation
behavior of components during fabrication processes for example, is extremely computa-
tional time consumming. In order to improve the design of industrial products in terms
of costs and time, phenomenological models able to model mechanical behavior of a ma-
terial at structural level are much more efficient tools. Due to the greater lengthscales
of the considered components, in phenomenological models the material is considered as
a continuum having homogeneous mechanical properties which may depend only on the
direction in space, in the case of anisotropic materials. Such models are usually based on
the concept of yield surface, which is well adapted to the continuum approach, and there-
fore appropriate to perform simulations of industrial applications in which large structures
are generally considered. This chapter aims on introducing the concept of yield surface
as well as the concepts of flow rule and hardening behavior related to it.

4.1 The Yield Surface Concept

The concept of a yield surface at a material point, point in the continuum, consists in
the formulation of a scalar equation in a stress space of the Cauchy stress tensor. This
equation aims on separating elastic and plastic deformation behavior of the material
point and stress states inside the yield surface are elastic. This surface’s equation may be
formulated in a simple way as,

Φ
(
σ
)
− Φ0 = 0. (4.1)

The term Φ
(
σ
)

operating on the stress tensor, is the so called yield function and the term
Φ0 is a scalar limiting value of Φ

(
σ
)
, e.g. an initial yield strength. In the case of isotropic

17
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materials the yield function should not depend on the coordinate system in which it is
expressed. For this reason, yield criteria of isotropic materials are generally expressed in
terms of stress invariants. Most metals including Mg are insensitive to the hydrostatic
pressure, denoted p, which is defined as,

p = −σm where σm is the mean stress, σm =
1

3
(σ11 + σ22 + σ33).

The first formulated yield condition was proposed by Tresca [82] and is insensitive to
hydrostatic pressure. This yield criterion is satisfied when the maximum shear stress
reaches a constant critical value σs. The shear stresses are written as functions of the
principal stresses σI , σII , σIII , which are themselves invariants. Finally this condition is
expressed as,

max

(∣∣σI − σII

∣∣
2

,

∣∣σII − σIII

∣∣
2

,

∣∣σIII − σI

∣∣
2

)
− σs = 0 (4.2)

where σs is the yield stress obtained from a simple shear test. Beside Tresca, the mostly
used yield criterion for isotropic materials insensitive to hydrostatic pressure is the von
Mises [83] one. This criterion is expressed as a function of the second invariant of the
deviatoric stress tensor J2 and the yield stress in uniaxial tension σY as,

3J2 − σY
2 = 0 (4.3)

or as a function of the stress components as,

1

6

(
σ22 − σ33

)2
+

1

6

(
σ33 − σ11

)2
+

1

6

(
σ11 − σ22

)2
+ σ12

2 + σ23
2 + σ13

2 − σY
2

3
= 0. (4.4)

The von Mises and the Tresca criterion result in very similar yield locii as shown in
Figure 4.1.
While the von Mises yield locus describes a circle in the deviatoric plane of the principal
stress space, the Tresca yield locus describes a hexagon whose edges lie on the von Mises
circle. Since both yield criteria are insensitive to hydrostatic pressure, the yield locii can
be translated along the hydrostatic axis of vector (1, 1, 1) such that the von Mises and
Tresca yield surfaces represent finally an infinite cylinder with circle and hexagon basis,
respectively, see Figure 4.1.

4.2 The Flow Rule Concept

The flow rule concept aims on linking stress and plastic strain components and thus
completes the yield criterion in describing the plastic behavior of a material. In this
concept the plastic strains are assumed to derive from a potential function called the
plastic potential which consists in a scalar function of the form, ψ = ψ

(
σ
)
. The flow rule

can then be expressed as,

Dp = λ̇
∂ψ

∂σ
. (4.5)
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Figure 4.1: Representation of Tresca and von Mises yield criteria in the space of principal
stresses

Here Dp is the tensor of plastic strain rates, λ̇ is a positive scalar called plastic multiplier,
and ψ is the plastic potential. In many materials and especially for most metals, the
plastic potential ψ can be identified with the yield function Φ such that the flow rule is
said associated. When Φ is defined insensitive to the hydrostatic stress, the condition
of plastic incompressibility, tr

(
Dp
)

= 0, is also satisfied by the flow relation which then
writes:

Dp = λ̇
∂Φ

∂σ
. (4.6)

This flow rule is also named normality rule because all components of the plastic strain
rate tensor are normal, in the stress space, to the yield surface defined by Φ.
Combining the associated flow rule of equation 4.6 with a convex yield surface has been
shown to be sufficient to satisfy Drucker’s material stability postulate [25]. For this reason,
an associated flow rule will be considered later in this work while convexity of the yield
surface has to be ensured.

4.3 The Hardening Concept

For perfectly plastic materials, which present no hardening behavior, Φ0 is constant and
the yield surface shape and position are therefore invariant in the stress space during
plastic deformation. In such cases, the stress state of a material point may simply move
on the invariant yield surface during plastic deformation. This situation is named neutral
loading. Nevertheless, in most cases metals do not behave as perfectly plastic material
but harden as plastic strain increases. A hardening behavior, which is briefly introduced
and explained in Figure 2.3 of section 2.2 for a uniaxial tension case, implies changes for
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the yield surface. Loading is therefore not neutral anymore. Hardening of a material is
often taken into account in adding internal variables to the yield function Φ which may
then be written as,

Φ
(
σ,A

(
Ep
)
, k
(
Ep
))
, (4.7)

where A is a second order tensorial hardening parameter depending on Ep, the plastic
part of the strain tensor E, and k is a monotonically increasing scalar function of Ep.
The hardening parameters A and k are variables that reflect the history of plastic
deformation and inform about the actual state of the yield surface after kinematic and
isotropic hardening, respectively. Indeed, two strain-hardening postulates are commonly
used to describe the evolution of a yield surface in the stress space, namely isotropic and
kinematic hardening. Figure 4.2 illustrates the changes in the yield surface with regard
to both postulates.

O

Yield locus after 
kinematic hardening

Yield locus after
isotropic hardening

σΙ ΙΙ
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σ

σ

von Mises initial
yield locus

Figure 4.2: Evolution of von Mises yield locus in the space of principal stresses for isotropic
and kinematic hardening

While isotropic hardening assumes uniform expansion without translation of the yield
surface in the stress space, kinematic hardening assumes translation without expansion of
the yield surface in the stress space, as plastic strain increases. In both strain-hardening
models the yield surface shape remains unchanged during strain-hardening as shown
on figure 4.2. Indeed, the von Mises yield locus remains a circle after any of both
tranformations. Isotropic hardening is the most widely used strain-hardening concept
and kinematic hardening, combined with isotropic hardening or not, is often introduced
in material models while cyclic loadings are considered. Indeed, kinematic hardening
allows for modeling the Bauschinger effect [12] for example.



Chapter 5

Crystal Plasticity: Channel Die Tests

5.1 Tests Set Up and Finite Element Models

In order to allow for the observation of deformation mechanisms other than the easy glide
basal slip and tensile twinning, Wonsiewicz and Backhofen [85] as well as Kelley and
Hosford [43, 44] performed channel die tests on pure magnesium single crystals [85, 43]
and on pure magnesium samples cut out of a rolled plate [44]. The authors used a steel
channel die experiment, see Figure 5.1a, in which small cuboid samples (approximately
6 × 10 × 13 and 6 × 13 × 6 mm3) were compressed in one direction, while the second
direction was constrained in displacement (rigid die) and the third one was free. The
finite element model of this test is shown in Figure 5.1b for a polycrystalline aggregate.
By changing the initial orientation of both single crystal and polycrystalline samples,
different deformation modes can be activated. The experimental results of Kelley and
Hosford [43, 44] are used here as a reference.

Figure 5.1: Channel die test scheme a) and finite element model b)

In the following, the loading direction is denoted as (1) and the constraint direction as
(2). Table 5.1 gives an overview on the respective crystallograhic orientations for the case
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of the single crystal. The orientations with respect to compression loading and applied
constraint for the polycrystalline case are indicated by two of the letters L (longitudinal
or rolling), T (transverse) and S (short transverse or thickness), where the first letter
denotes the loading direction and the second the extension direction.

Orientation Loading (1) Constraint (2)
A 〈0001〉 〈101̄0〉
B 〈0001〉 〈12̄10〉
C 〈101̄0〉 〈0001〉
D 〈12̄10〉 〈0001〉
E 〈101̄0〉 〈12̄10〉
F 〈12̄10〉 〈101̄0〉
G 〈0001〉 at 45 ◦ 〈101̄0〉

Table 5.1: Crystallographic orientations used in the channel die tests on single crystals by
Kelley and Hosford [43]

Simulations of single crystal and polycrystalline aggregates presented in the following have
been realised in the framework of the finite element method using 8-node 3D elements.
An equivalent discretisation has been chosen for single crystals and polycrystals, a crystal
is described by one single finite element. Consequently, in a polycrystalline specimen the
number of modeled grains corresponds to the number of finite elements. A representative
volume element (RVE) has to consist of a sufficient large number of grains. In the fol-
lowing, 8× 8× 8 grains are considered in the RVE, each represented by an 8-node brick
element having its individual crystallographic orientation.
The detailled investigation presented in [23] concentrated on the effect of discretisation
onto the mechanical response of RVEs made of an hcp material. It was found, within
others, that 100 crystallographic orientations are enough to describe well the plastic
anisotropy of the considered aggregate. The size of the RVE used in this work is thus
satisfying. Another conclusion of this investigation [23] is that 27 integration points per
finite element is sufficient to predict macroscopic stress-strain curves but not intragran-
ular heterogeneities. In this work focus is made on predicting macroscopic stress-strain
curves and the 8-node 3D element, which have only 8 integration points, have been chosen
nevertheless in order to reduce computationnal time.
The 8×8×8 = 512 individual orientations used in the simulations of the channel die test,
and representing the experimental Mg rolled plate texture of Figure 5.2a, are displayed
in Figure 5.2b. On these pole figures one can recognize that the measured distribution of
basal planes is strongly orientated parallel to the thickness direction of the plate, with a
deviation slightly higher around rolling than around transverse direction.
The die and the loading stamp, shown in Figure 5.1b, are modeled by rigid surfaces and
friction between the sample and the rigid surfaces is accounted for, assuming a Coulomb
friction coefficient of 0.05 for all tests. In case of the polycrystalline specimen, surfaces in
extension direction have not been constrained. All simulations assume isotropic elasticity
with Young’s modulus E = 45000 MPa and Poisson ratio ν = 0.3. Since experiments have
been performed with quasistatic loading, the strain rate sensitivity exponent n appearing
in equation 3.12 is put equal to 50, making the simulations almost rate independent. The
reference strain rate for each slip system, γ̇

(α)
0 , is chosen to be compatible with the time
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scale in the finite element simulations, and set to 10−3.

ROLLING 
DIRECTION

TRANSVERSE 
DIRECTION

Figure 5.2: (left) Experimental [44] and (right) simulated (0001) pole figures of a pure
magnesium rolled plate sample

In order to evaluate the mechanical response of single and polycrystals, the following
definitions of true stresses and true (logarithmic) strains are respectively used,

ε11 =

∥∥∥∥ln( l011 + ∆l11

l011

)∥∥∥∥ =

∥∥∥∥ln(1 +
∆l11
l011

)∥∥∥∥, (5.1)

σ11 =
f

A0

F

(
1 +

∆l11

l011

)
. (5.2)

Here, l011 and A0 are the RVE’s original length in loading direction and original section
with regard to loading direction, respectively. F denotes the absolute value of the load and
f = 0.89 is the friction correction coefficient introduced by Kelley and Hosford [43, 44].
The above expression for true stresses is obtained by assuming constant volume of the
RVE during plastic deformation.

5.2 Identification of Material Parameters for the

Crystal Plasticity Model

The determination of the parameters required in a model is generally a complex task.
Their identification usually requires solving inverse problems because numerical simu-
lations are calibrated to test data defined as reference. This task becomes especially
complicated as the number of parameters to be identified is high, which is often the case
in today developed material models, like in the present case. Various procedure exist
nevertheless in order to solve this problem, starting from manual fitting, going to neural
networks, in passing through trial and error, see the review articles [53, 15].
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The constitutive model for crystal plasticity presented in chapter 3 requires three types
of parameters per deformation mode α considered, the material constants for isotropic
elasticity (Young’s modulus and Poisson’s ratio) excepted. These parameter types are,

• 2 parameters for the viscoplastic law, γ̇
(α)
0 and n, see equation 3.12,

• between 2 and 4 hardening parameters depending on the respective hardening law,
τ0, τ∞, h0, γref , m, see equations 3.17, 3.18 and 3.19,

• parameters of latent hardening describing the interaction between the various de-
formation modes considered, qαβ, see equation 3.16.

Regarding the numerous parameters to be determined, lots of fundamental questions, like
the uniqueness of a parameter set, the sensitivity of the mechanical response to variations
of these parameters and the design of appropriate tests capable of identifiing all or certain
model parameters, are posed. None of these questions are answered here, as the focus is
on the performance of the model and as test data have been taken from literature.
Based on these data, parameter identification has been realized here as a systematic trial
and error procedure, since optimization methods were found inappropriate due to their
lack of any physical background. The parameter identification required thus high exper-
tise and insight knowledge of constitutive theories as well as experimental mechanics, and
the resulting parameter set cannot claim to be the best possible fit.
For simplification, it has been assumed that all deformation modes belonging to the
same basic mechanism have identical direct hardening parameters, and identical latent
hardening parameters with respect to deformation modes belonging to a different basic
mechanism. The four basic mechanisms are basal slip, prismatic slip, pyramidal slip and
tensile twinning. Linear hardening of equation 3.17, with two parameters τ0 and h0, is
assumed for basal slip. Voce hardening of equation 3.18, with three parameters τ0, τ∞
and h0, is assumed for prismatic and pyramidal slip. And the combination of linear, τ0
and h0, and power law hardening, γref and m, of equation 3.19 is assumed for tensile
twinning. These assumptions are motivated by the deformation behavior observed in the
tests, see discussion below. Finally, this adds up to 2 + 2 × 3 + 4 = 12 parameters for
direct hardening to be calibrated, see Table 5.2.

Basal 〈a〉 Prismatic 〈a〉 Pyramidal 〈a+ c〉 Twinning
hardening law equation 3.17 equation 3.18 equation 3.18 equation 3.19
τ0 [MPa] 1 20 40 5
τ∞ [MPa] – 150 260 –
h0 [MPa] 10 7500 7500 200
γref – – – 0.11
m – – – 10

Table 5.2: Direct hardening parameters, calibrated using experimental data of Kelley and
Hosford [43, 44]

Latent hardening is described by 4× 4 = 16 interaction parameters qαβ to be calibrated,
see Table 5.3. The material parameters of Tables 5.2 and 5.3 have been determined by
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fitting simulation results to the test data of Kelley and Hosford [43, 44], namely channel
die tests on single crystals of orientations A to G, see Table 5.1, and on specimens of
orientations LT, LS, TL, TS, SL, ST, cut out from a textured rolled plate.
In the single crystal tests different deformation modes are activated depending on the
respective crystallographic orientations of specimens.

HH
HHHHα

β
Basal 〈a〉 Prismatic 〈a〉 Pyramidal 〈a+ c〉 Twinning

Basal 〈a〉 qαβ = 0.2 qαβ = 0.5 qαβ = 0.5 qαβ = 0.5
Prismatic 〈a〉 qαβ = 0.2 qαβ = 0.2 qαβ = 0.2 qαβ = 0.5
Pyramidal 〈a+ c〉 qαβ = 1. qαβ = 1. qαβ = 0.2 qαβ = 0.25
Tensile twinning qαβ = 1. qαβ = 1. qαβ = 0.2 qαβ = 0.2

Table 5.3: Interaction (latent hardening) parameters, qαβ, calibrated using experimental
data of Kelley and Hosford [43, 44]

This allows for a selective identification of the hardening parameters for a particular
familly of deformation modes, provided that the respective mechanism is exclusively ac-
tivated in the model. This requires that parameters for latent hardening have values
different from zero. The actual values of the latent hardening parameters, in Table 5.3,
cannot be concluded from the single crystal tests alone, but call for the polycrystal tests
results. The discussion of the simulation results in next section will elucidate this more
clearly.

5.3 Channel Die Tests of Mg Single Crystals and

Polycrystals

Due to the reduced number of integration points used in the following simulations and the
merely qualitative mapping of the texture, only approximate predictions of the specimens’
deformation behavior while subjected to channel die tests can be expected.
A comparison of simulation and test results for single crystals of orientations A to G,
see Table 5.1, is shown in Figure 5.3. Beside a general qualitative agreement between
experimental and simulated results, the simulations capture the following specific features:

• Nearly identical stress-strain curves with high yield stress and strong but saturating
hardening for orientations A and B, where the loading direction is 〈0001〉;

• Nearly identical stress-strain curves with (compared to A and B) lower yield stress
for orientations C and D, where the constraint direction is 〈0001〉;

• Anomalous hardening behavior of orientations E and F with relatively low yield
stress and almost no hardening at strains smaller than 0.06, followed by a sudden
increase in stress,

• Saturation stress of orientation E exceeding that of A and B.
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• Saturation stress of orientation F about that of C and D.

• Very low stress level for orientation G.

The simulated stress increase in orientation F is delayed compared to that obtained in
the tests. As the simulations aimed at a unique set of model parameters, this deviation
between test results and model predictions has been accepted. Note also, that the occur-
rence of stress rising for orientation E is not unambiguous in the tests, either. Considering
the general assumptions made with respect to the hardening laws and the considerably
large number of hardening parameters summarized in Table 5.2, the accordance between
test and simulation results is considered as quite good.
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Figure 5.3: Channel die tests of pure Mg single crystal, tests (Kelley and Hosford [43])
and simulations with parameter set of Tables 5.2 and 5.3

The numerical simulations allow also for an analysis of the mechanisms causing the de-
formation of the single crystal samples. Figure 5.4 shows the evolution of the relative
activities of the 4 deformation modes considered with increasing strain for each test. Rel-
ative activity describes the contribution of a specific deformation mode to the total plastic
strain increment. It is calculated with respect to the increase of deformation,

activity =
γ

(α)
j+1 − γ

(α)
j−1∑

α γ
(α)
j+1 −

∑
α γ

(α)
j−1

, (5.3)

providing information on the actual state of the respective mechanism.
Assuming non-zero values for the latent hardening parameters, the activation of the de-
formation modes for the different orientations occurs selectively. Only curves A and B
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show more than one family of mechanisms acting simultaneously, namely prismatic and
pyramidal slip. Curves C and D are dominated by prismatic slip and curve G by basal
slip over the whole range of strain. For orientations E and F, which favor plastic defor-
mation resulting in an elongation of the c-axis, the transition from twinning to pyramidal
slip occurs within a very small range of strains.
Because of its low critical resolved shear stress (CRSS) τ0, tensile twinning is easily ac-
tivated, and as saturation according to the power law 3.19 occurs, elastic deformation
increases the stresses until the CRSS of pyramidal glide is reached, which explains the
sudden increase of stresses at about 0.06 strain in Figure 5.5. This selectivity in the
activation of slip mechanisms facilitates an efficient determination of the CRSS and the
hardening parameter values of the different slip systems.
The comparison of Kelley and Hosford’s [43, 44] channel die tests on polycrystalline sam-
ples with orientations LT, LS, TL, TS, SL, ST, cut out of Mg rolled plates with the
simulation results is depicted in Figure 5.5. The two letters denote the orientation with
respect to the loading and the direction of the channel die, respectively; L is the longitudi-
nal or rolling direction, T the transverse and S the short transverse or thickness direction.
The general trend is well reproduced for all curves except for curve LT where hardening
is too small compared to the experimental data.
Due to the rolling process, the c-axes of the grains are orientated approximately parallel
to the thickness direction of the plate with a slightly higher deviation in rolling than in
transverse direction. This pronounced texture results in some qualitative similarities, of
the flow curves between single crystals, Figure 5.3, and polycrystals, Figure 5.5. Polycrys-
tals of orientations LT, TL, ST, SL show a monotonous hardening as the single crystals
of orientations A, B, C, D. Those of orientations TS and LS exhibit the same striking
hardening behavior as the single crystals of orientations E and F, namely relatively low
yield stresses and little hardening at strains smaller than 0.04, followed by a sudden in-
crease in stress.
Some differences of the hardening behavior of the polycrystals to that of single crystals
are worth mentioning, however. The texture difference between the L and T orientation of
the polycrystals is minor, see Figure 5.2, which levels the differences between the respec-
tive curves in Figure 5.5. The saturation stresses reached in the polycrystal specimens
of orientations ST and SL are lower than those of the single crystals of orientations A,
B, C and D, respectively, and the differences in the stresses of LS and TS are smaller
than those between E and F. The curves A, B, C, D in Figure 5.3 saturate, whereas
the curves LT and TL in Figure 5.5 do not. The specific shapes of the flow curves can
be understood by the analysis of activated slip systems displayed in Figure 5.6 and are
discussed below.
Despite the qualitative similarities in the hardening behavior between single crystals and
textured polycrystals, the test data from polycrystals have great importance for the cal-
ibration of the material parameters, particularly the latent hardening parameters, qαβ.
Indeed, due to the varying orientations of grains in the RVE, more than one deformation
mode has to be activated at the same time. This is manifested by Figure 5.6, which shows
the ”integral” activity of the respective slip systems in the RVE. The above statement
even holds on the level of a material point, where (different from the single crystal case)
several slip mechanism are active simultaneously. Hence, the latent hardening parameters
affect the macroscopic response of the sample significantly and have to be identified from
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Figure 5.4: Deformation modes’ relative activity depending on the initial crystallographic
orientation in simulated channel die tests of Mg single crystals

the tests on polycrystals rather than on single crystals.
The relative activation of slip systems shown in Figure 5.6 helps in understanding the flow
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Figure 5.5: Channel die tests of textured Mg rolled plate material, tests (Kelley and Hos-
ford [43]) and simulations with parameter set of Tables 5.2 and 5.3

curves of Figure 5.5. In the specimens of orientations LT and TL, about 60% of the plas-
tic deformation results from prismatic slip with Voce hardening (τ0 = 20 MPa, τ∞ = 150
MPa), nearly 30% from basal slip with linear hardening (τ0 = 1 MPa). For the specimens
of orientations SL and ST, pyramidal (Voce hardening, τ0 = 40 MPa, τ∞ = 260 MPa)
and basal slip (linear hardening, τ0 = 1 MPa) contribute nearly equally by about 40%
and prismatic slip (Voce hardening, τ0 = 20 MPa, τ∞ = 150 MPa) by about 20%. The
low yield strength and hardening for the orientations LS and TS is due to the activation
of tensile twinning (τ0 = 5 MPa), which contributes to the plastic deformation by about
40%, and the sudden increase of stresses beyond 0.05 strain results from the saturation
of twinning going along with the activation of pyramidal slip.
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Figure 5.6: Deformation modes’ relative activity depending on the initial crystallographic
orientation in simulated channel die tests of textured Mg rolled plate samples



Chapter 6

Crystal Plasticity: Mechanical
Properties of Extruded Rods

In the previous chapter all material parameters necessary for the crystal plasticity model
used in this work have been calibrated with the help of channel die tests of Mg single
crystals and polycrystalline aggregates out of rolled plates. In this chapter the significance
of the calibrated material parameters is checked by performing uniaxial tension and com-
pression tests on a virtual material with texture different than rolled plate. The virtual
material chosen is made of Mg crystals and represents a typical extruded rod texture.
Extruded rods out of magnesium alloys show a strong yielding asymmetry in tension and
compression along the extrusion direction, see [51, 73, 45, 26, 27] and Figure 6.1. A simi-
lar mechanical behavior of the virtual material is expected which would confirm that the
material parameters identified are somehow realistic.

0 , 0 0 0 , 0 5 0 , 1 0 0 , 1 5 0 , 2 00

1 0 0

2 0 0

3 0 0

4 0 0

 

 

 

T r u e  S t r a i n  [ . ]

Tru
e S

tre
ss 

[M
Pa

]  

  T e n s i o n  
  C o m p r e s s i o n

Figure 6.1: Experimental results of the mechanical behavior, for uniaxial tension and
compression test in extrusion direction, of an extruded AZ31 rod. Data: Bohlen J., private
communication, GKSS Research Centre, Geesthacht, and published in [51]
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6.1 Finite Element Model of Uniaxial Tension and

Compression Tests

The finite element model and the extruded rod texture which are used in the simulations
of uniaxial tension and compression tests are displayed in Figure 6.2. The transfer from

RADIAL
DIRECTION

RADIAL 
DIRECTION

EXTRUSION
DIRECTION

COMPRESSION
LOADING

TENSION
LOADING

Figure 6.2: Finite element model of uniaxial and compression tests (left) and typical
(0001) pole figure of an Mg alloy extruded rod (right)

the micro to the macroscale is performed here, as in previous chapter, by means of rep-
resentative volume elements (RVEs). As in the previous chapter each grain is attributed
a specific crystallographic orientation and is described by a single 8-node brick finite ele-
ment, and 8× 8× 8 grains constitute the RVE, see Figure 6.2. Differently from the RVEs
of previous chapter, additional periodic boundary conditions are considered to ensure the
microstructure’s periodicity.
The texture of extruded rods made out of magnesium and magnesium alloys typically
shows the c-axis of the hexagonal structure to be orientated in radial direction of the rod,
see for example [73, 45, 26]. The virtually generated texture of an extruded rod, illustrated
in the (0001) pole figure of Figure 6.2, shows therefore strong preferred crystallographic
orientations with c-axis in radial direction.

6.2 Extruded Rods Subjected to Uniaxial Tension

and Compression Tests

Figure 6.3 displays the flow curves (EDt, EDc, RDt and RDc) of extruded Mg rods
subjected to tensile and compression tests in both extrusion and radial direction. The
stress-strain curves noted EDt and EDc in Figure 6.3, which correspond to tension and
compression tests in extrusion direction, respectively, show very similar behavior than
experimentaly observed. Indeed, this behavior is very comparable to the experimental
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flow curves for tensile and compression tests in extrusion direction of rods made of Mg
and AZ31B which are presented in [27, 73], respectively. The flow curves EDt and EDc
in Figure 6.3 show an important difference in yield stress (σY ), the ratio EDtσY /EDcσY

being almost two. The yield stress of RDt and RDc is also much different and inter-
estingly, in this configuration, the yield stress in compression RDcσY is higher than the
tension one RDtσY . While the yield stress of EDt is relatively high compared to EDc,
RDt and RDc, its hardening is very low above 0.025 true strain compared to the other
curves. The hardening behaviors of EDc and RDt consisting in a low hardening rate in
the first few percents of deformation and a sudden rapid increase after 0.05 strain recall
that of the flow curves E, F, LS and TS observed in the channel die tests of previous
chapter.
The slope of the macroscopically observed linear elastic behavior for all stress-strain curves
of Figure 6.3 is different. Moreover, for all curves, this slope is different from Young’s
modulus E = 45000 MPa introduced in the calculations, where isotropic elasticity was
considered. Non negligible plastic behavior of single grains occurs therefore already far
below the observed macroscopic yield stresses affecting thus the slope of the macroscopi-
cally observed elastic behavior.
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Figure 6.3: Flow curves of extruded Mg rods, with texture shown in Figure 6.2, for uniax-
ial tension and compression tests in extrusion (EDt, EDc) and radial direction (RDt,
RDc), respectively

Explanations for such unusual mechanical behaviors may be found in analysing the rela-
tive contribution of the 4 families of deformation modes considered to the overall plastic
deformation. In Figure 6.4, which allows for such an analysis, the term relative activity
indicates the contribution of a specific deformation mode to the plastic strain increment,
as the latter is set to 1. Figure 6.4 reveals for example that mechanical twinning is active



34 Chapter 6. Crystal Plasticity: Mechanical Properties of Extruded Rods

in the three cases EDc, RDt and RDc during the first percents of deformation and is
replaced after by pyramidal slip as it saturates. This phenomenon, which has already been
observed for curves E, F, LS and TS in previous chapter, explains the lower macroscopic
yield stress of EDc, RDt and RDc compared to EDt as well as the sudden increase in
stress after 0.05 strain for EDc and RDc. The relatively low yield stress results from the
large contribution of twinning (τ0 = 5 MPa) to plastic deformation at true strains less
than 0.05, and the sudden increase of stresses beyond 0.05 true strain results from the
saturation of twinning going along with the activation of pyramidal slip (τ0 = 40 MPa).
The different hardening behaviour of curve RDc compared to EDc and RDc, which do
not reveal such a sudden increase of stresses beyond 0.05 true strain even if mechanical
twinning is active, may result from the activation of pyramidal slip already at the early
stage of plastic deformation. The contribution of twinning is than reduced and so its
influence onto the macroscopic flow curve.
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Figure 6.4: Deformation Modes’ relative activity for uniaxial tension and compression
tests of Mg alloy extruded rods in extruded and radial direction

One can also see in Figure 6.4 that in the very beginning of deformation, at strains less
than about 0.015, rapid changes in the level of relative activity of the different defor-
mation modes occur. After this range, some kind of an equilibrium is achieved and the
relative activities remain almost constant. Plastic deformation occurs thus from almost
the beginning of mechanical testing and reduces thus considerably the elastic modulus of
the RVE. This explains why Young’s moduli different from 45000 MPa are observed for
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each of the curves EDc, EDc, RDt and RDc. The yield stress observed at macroscopic
level seems to correspond to the achieved equilibrium of the deformation modes relative
activity at strains above 0.05.
Since the flow curves EDt and EDc reflect well, in a qualitative way, experimental obser-
vations [27, 73] of Mg and AZ31 extruded rods, the material parameters, which have been
identified in previous chapter have demonstrated to be quite realistic. Further studies
on magnesium polycrystalline aggregates, with other virtual or arbitrary textures, may
also deliver realistic results. Moreover the use of combined channel die tests of hcp single
crystals and polycrystals reveals to be an interesting method for the calibration of the
numerous material parameters required in crystal plasticity models in general.
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Chapter 7

Crystal Plasticity: Building Yield
Surfaces from Biaxial Tests

In this chapter yield surfaces of single crystals and polycrystalline aggregates are gener-
ated by simulating biaxial tests. The shape of the yield surfaces are shown to be very
anisotropic at both single crystal and polycrystalline levels. Their shape is also shown
to be very dependent on the crystallographic orientations and texture, as well as on the
material parameters introduced into the crystal plasticity model. These biaxial tests pro-
vide thus a deep understanding of the relationship between microstructural features and
macroscopic mechanical behavior. Moreover the generated yield surfaces will be used
later in this work as references while defining model parameters for a phenomenological
yield criterion destined to simulate the mechanical behavior of structures of large length
scales.

7.1 Finite Element Models of Biaxial Tests

The finite element models of single crystals and polycrystalline aggregates subjected to
biaxial tests with loading path of constant ratio σ2 /σ1 = arctan(ρ), i.e. proportional
loading, are illustrated in Figure 7.1.
As it was previously done in this work, one crystal is modeled by a single 8-node brick
finite element. The single crystal subjected to biaxial loading is thus modeled by only one
finite element and symmetric boundary conditions are applied to ensure the periodicity of
the microstructure. In the case of a polycrystalline aggregate subjected to biaxial loading,
the RVE is, as it was previously done in this work, modeled by 8× 8× 8 finite elements
describing the equivalent number of grains. Each grain is attributed a specific crystallo-
graphic orientation and the distribution of these orientations in space, representing the
texture of the aggregate, is described in Appendix A. The RVE is attributed periodic
boundary conditions in order to ensure the microstructure’s periodicity.
As shown in Figure 7.1 the loading path is stress controled which allows for ensuring the
ratio σ2 /σ1 = arctan(ρ) to remain constant during the test. In order to retrieve informa-
tion about the yielding behaviour of the tested material in the whole space of stresses, σ1

37
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and σ2, 16 loading paths are realised with equally spaced angles ρ ∈ [0 ◦, 360 ◦]. Usually
yield surfaces of a hardening material are displayed as isocontours of the plastic equivalent
strain εp. Therefore a number of unloading steps are realised along each loading path.
This unloading steps inform about the state of the residual plastic strains and finally
allow for building isocontours of equivalent plastic strain.

σ1

σ2Isostrain 
and/or
isowork 
contours 

Loading path

?

ρ

σ2

σ2

σ1

σ1

Figure 7.1: Finite element models of a single crystal (top left) and a polycrystalline
aggregate (down left) subjected to a biaxial test with loading path of constant ratio
σ2 /σ1 = arctan(ρ) (right)

In this chapter, isocontours of equivalent plastic strain but also of equivalent plastic work
Wp are shown. The amount of accumulated workW is known using the following equation,

W j = W j−1 +
2∑

i=1

1

2

(
σ

(j)
i + σ

(j−1)
i

)(
ε
(j)
i − ε

(j−1)
i

)
, (7.1)

where the indices j denotes each time increment in the simulation and W = Wp after each
unloading step is completed.
In the following, the isocontours of equivalent plastic strain are plotted for εp = 0.01 to
0.15 with an increment ∆εp = 0.01. In order to allow for the comparison between isostrain
and isowork contours, the isocontours of plastic work are plotted for the levels of plastic
work corresponding to the values of equivalent plastic strains in direction 1 (ρ = 0).
Therefore, the level of stresses for (ρ = 0) are always identical for both representations
of the yield surface evolution. In the following no isostrain contours of γ̄, the internal
variable defining the state of plasticity in the crystal plasticity model, are ploted since
those contours have shown very similar yield surfaces shapes than for εp.
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7.2 Yield Surfaces of Single Crystals

Since the mechanical properties of magnesium rolled plates are of main interest in this
work, the yield surfaces of single crystals presented in this section have been restricted to
a minimum, meaningful for understanding the mechanical features which may occur for
such textures. As it was already said in chapter 5, the texture of Mg rolled plates is such
that the grains crystallographic orientations, in term of the c-axis, are mainly orientated
in plate thickness direction. As a consequence, the simulation results shown in this section
consider only crystallographic orientations with c-axis mainly in 3-direction while loading
occurs in 1 and 2-direction.

7.2.1 Yield Surfaces Depending on Crystallographic orientation

The strain hardening evolution of the yield surface of a single crystal with c-axis orien-
tated in 3-direction, is illustrated in Figure 7.2. The material parameters used in these
calculations are those identified in chapter 5 and are given in Tables 5.2 and 5.3. These
yield surfaces reveal to be strongly anisotropic especially regarding their unlike behavior
in tension and compression.
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Figure 7.2: Yield Surface of a single crystal with c-axis orientated in 3-direction, evolving
with increasing von Mises equivalent plastic strain (εp = 0.01, 0.15 ∆εp = 0.01) (left) and
with increasing plastic work (right), obtained by simulations of biaxial tests on RVEs in
the (1,2)-plane

At the very beginning of plastic deformation, the single crystal yield surface shape is al-
most convex, except for ρ = 45 ◦, but a sharp non-convexity of the yield surface develops
soon at ρ = 135 ◦ and 315 ◦, already after small values of plastic strain around 0.02. The
yield surface shape thus changes much and rapidly until the residual plastic strain reaches
values of about 0.1 and tends to remain unchanged. The yield surface shape remains un-
changed for all values of ρ except for the biaxial compression case with equal values of σ1



40 Chapter 7. Crystal Plasticity: Building Yield Surfaces from Biaxial Tests

and σ2, ρ = 225 ◦. All these observations hold independently whether the yield surfaces
are defined as isocontours of equivalent plastic strain or of plastic work, see Figure 7.2.
Since convex yield surfaces are desired in the context of phenomenological modeling, see
chapter 4, the sharp non-convexity (ρ = 135 ◦ and ρ = 315 ◦) observed in both isocontour
representations seem to indicate that the state of plastic deformation may not be defined
here by the single scalar values, εp or Wp. This affirmation is at least true at the level of a
single crystal. Nevertheless, the main difference between both isocontour representations
of Figure 7.2 exists in the third quadrant. Indeed, in the case of biaxial compression the
yield surface reaches much faster higher stresses (in absolute value) in the case of isowork
contours than for isotrain contours.
Figure 7.3 illustrates the contribution of the 4 deformation modes considered to the over-
all plastic deformation of the sample, and thus help for analysing the highly anisotropic
yield surface shapes in more detail. One can first notice that basal slip is never active in
any of the 16 loading paths, even if its CRSS is far the smaller of all deformation modes
considered, see Table 5.2. This is due to the crystallographic orientation, indeed the loads
σ1 and σ2 are orientated 90 ◦ to the basal plane, which implies a Schmid factor µ = 0.
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Figure 7.3: Relative accumulated shear strain for the 4 considered deformation modes at
0.01, 0.05 and 0.10 equivalent plastic strain for biaxial tests in the (1,2)-plane on a Mg
single crystal with c-axis orientated in 3-direction

Figure 7.3 also reveals that plastic deformation is controled mainly by prismatic slip and
mechanical twinning over all loading paths. Twinning dominates plastic deformation for
ρ ∈]135 ◦, 315 ◦[ and prismatic for ρ ∈]315 ◦, 0 ◦]∪ [0 ◦, 135 ◦[. The transition from one dom-
inant mode to the other one, at ρ = 135 ◦ and ρ = 315 ◦, results in the sharp non-convexity
of the yield locus mentioned previously. This is a very interesting result since, for exam-
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ple, the corners of the Tresca yield criterion may be interpreted as the transition from
one slip system to another which is at least an analogon. In Figure 7.2 the non-convexity
is an additional effect of the different CRSS of the various slip systems and especially of
their different hardening behaviors.
The slight non-convexity of the yield surfaces in Figure 7.2, for ρ = 45 ◦ already at small
strains, is due to the activation of only pyramidal slip, instead of prismatic for lower and
higher values of ρ, and this at all strains εp from 0.01 to 0.1. Pyramidal slip is also shown
in Figure 7.3 to be active at relatively high strains (εp = 0.1) in the third quadrant after
twinning has saturated, which is a phenomenon already observed in the two previous
chapters. In addition, due to the crystallographic orientation the CRSS of pyramidal slip
is reached earlier around ρ = 180 ◦ than around ρ = 270 ◦ and the corresponding relative
accumulated shear strain is therefore higher for ρ = 180 ◦ than for ρ = 270 ◦. This ex-
plaines the enormous difference in stresses at high strains εp = 0.15 for these angles which
is absent at ε = 0.01, see Figure 7.2.
Hot rolled plates made out of magnesium show the predominant crystallographic orien-
tation of the c-axis tilted typically from 10 to 20 ◦ from the plate thickness direction. In
order to quantify the effect of such a variation of the crystallographic orientation from 3-
direction onto the predicted yield surface, the previous single crystal is rotated 10 ◦ around
1-direction and new biaxial tests are performed. The evolution of the yield surface for
this new single crystal model, with c-axis in the (2,3)-plane 10 ◦ away from 3-direction,
is displayed in Figure 7.4. The contribution of the deformation mechanisms to plastic
deformation of this new single crystal model is illustrated in Figure 7.5.
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Figure 7.4: Yield Surface of a single crystal with c-axis pointing in the (2,3)-plane 10 ◦

away from direction 3 evolving with increasing von Mises equivalent plastic strain (εp =
0.01, 0.15) (left) and increasing plastic work (right), obtained by simulations of biaxial
tests on RVEs in the (1,2)-plane

The yield surfaces shapes of Figure 7.4 show very similar features than those of Figure 7.2,
for both the isocontours of equivalent plastic strain and plastic work. Nevertheless, the
stress levels in Figure 7.4 compared to Figure 7.2, tend to reduce (in absolute value) such
that the slight non-convexity for ρ = 45 ◦ and the sharp non-convexity for ρ = 135 ◦ almost
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disappeared. After Figure 7.5 the new crystallographic orientation is much more favorable
for basal slip in the whole range ρ ∈ [0 ◦, 360 ◦] which explains the general diminuation of
the stress levels in the yield surfaces of Figure 7.4 compared to Figure 7.2. The CRSS of
basal slip systems is indeed low, see Table 5.2.
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Figure 7.5: Relative accumulated shear strain for the 4 considered deformation modes at
0.01, 0.05 and 0.10 equivalent plastic strain for biaxial tests in the (1,2)-plane on a Mg
single crystal with c-axis pointing in the (2,3)-plane 10 ◦ away from direction 3

A much more detailled study concerning the influence of crystallographic orientation on
the mechanical properties of hcp single crystals has been realised during the time of this
work and is available in [72]. The investigation in [72] shows for example that the more
c-axis is tilted out of the 3-direction, rotating around 1-direction (as it has been done
here), the more the values of the stress component in 2-direction become small (in abso-
lute value) as noted just before. This is due to an increasing contribution of basal slip
to the plastic deformation. Rotating instead the c-axis around 2-direction away from 3-
direction affects the values of the stress component in 1-direction, they tend to get small
(in absolute value) the more the c-axis is tilted away from 3-direction.
The two examples of biaxial tests presented above emphasize the strong dependence of
the yield surface shape on the crystallographic orientation with respect to the c-axis.

7.2.2 Yield Surfaces Depending on Material Parameters

In this section, biaxial tests of a hcp single crystal with c-axis orientated again in 3-
direction are simulated under the same conditions as described at the beginning of the
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present chapter. The direct hardening parameters displayed in Table 5.2 are introduced
into the crystal plasticity model but the interaction parameters in Table 5.3 are not, they
are put equal to zero instead. The evolution of the yield surfaces resulting from these
biaxial tests, see Figure 7.6, are to be compared to those of Figure 7.2, which emphasizes
the influence of the material parameters onto the yield surface shape of hcp single crystals.
Indeed, both figures show yield surfaces of very different shapes.

- 1 5 0 - 1 0 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
- 1 5 0

- 1 0 0

- 5 0

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

 I s o w o r k  c o n t o u r s  

σ 2 [M
Pa

]

σ 2 [M
Pa

]

σ1  [ M P a ]  σ1  [ M P a ]  

 I s o s t r a i n  c o n t o u r s  

- 1 5 0 - 1 0 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
- 1 5 0

- 1 0 0

- 5 0

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

 

Figure 7.6: Yield Surface of a single crystal with c-axis orientated in 3-direction with
increasing von Mises equivalent plastic strain (εp = 0.01, 0.15) (left) and with increasing
plastic work (right), obtained by simulations of biaxial tests on RVEs in the (1,2)-plane

Beside the obvious difference in the yield surfaces’ shapes, the stresses reached at 0.15
strain in Figure 7.6 are far lower than reached in Figure 7.2. Some similarities between
both figures nevertheless exist. From the early stage of plastic deformation to approxi-
mately 0.10 plastic strain, the yield surface shape changes much and rapidly. After 0.10
plastic strain it remains unchanged. The non-convexity of the yield surface for ρ = 135 ◦

and 315 ◦ is less sharp in Figure 7.6 but still exists and it is still due to the transition
between prismatic and twinning deformation modes which dominates plastic deformation,
see Figure 7.7. This figure displays the contribution of the 4 deformation modes consid-
ered to the overall plastic deformation of the sample, in terms of the relative accumulated
shear strain.
According to Figure 7.7, and similarly to observations made in Figure 7.3, basal slip is
not activated in these calculations. This is again due to the Schmid factor µ = 0 of the
respective crystallographic orientation and loading directions. Differently to Figure 7.3,
in Figure 7.7 pyramidal slip is more active in the first quadrant, for ρ ∈ [0 ◦, 90 ◦], but
not anymore in the third one, except for ρ = 225 ◦. Here, prismatic slip overtakes plastic
deformation after mechanical twinning has saturated, instead of pyramidal slip which was
observed many times in this and previous chapters.
Regarding the enormous dissimilarity of Figures 7.6 and Figure 7.2, as well as of Fig-
ures 7.7 and Figure 7.3, it can be concluded that the identification step of the material
parameters is of crucial importance.
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Figure 7.7: Relative accumulated shear strain for the 4 considered deformation modes at
0.01, 0.05 and 0.10 equivalent plastic strain for biaxial tests in the (1,2)-plane on a Mg
single crystal with c-axis orientated in 3-direction

7.3 Yield Surface of Polycrystalline Aggregates

7.3.1 Non-Textured Material

A non-textured polycrystalline material is characterized by the absence of preferred crys-
tallographic orientations. Billet materials for example, generally do not show any preferred
crystallographic orientation because they are not subjected to any external deformation
during their fabrication process. The discrete crystallographic orientations, representing
a non-textured material and introduced into the RVE which subjected to biaxial tests, are
generated via the procedure described in Appendix A. The corresponding stereographic
pole figure of the virtual material thus created is shown in Figure 7.8. The yield surface
describing the mechanical behavior of this material and its evolution with increasing plas-
tic strain and plastic work is displayed in Figure 7.9.
Concerning both plots of Figure 7.9 one can first notice that they show very similar fea-
tures. It is even difficult to differentiate them from each other. The elliptic yield surfaces
shapes observed at the small strain εp = 0.01 and at higher strains ε > 0.10 are typical
for an isotropic von Mises material. This indicates that the non-textured material be-
haves almost isotropically at these strains. It means thus that the initial yield surface is
isotrope and that the hardening is isotropic too since the yield surface is centered on the
origin and its extension is relatively homogeneous and independant on the loading paths.
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Similarly to previous calculations in this work, saturation in the hardening behavior is
almost reached at 0.15 strain.

Figure 7.8: (0001) pole figure of a non-textured material in stereographic projection

The isotropic mechanical behavior described just above nevertheless does not strictly hold
for the strain range 0.02 to 0.10. In this range, and on the axes of principal stresses σ1

and σ2, a noticeable yielding asymmetry in tension and compression is apparant. This
effect is particularly strong when comparing the loading paths for ρ = 45 ◦ and ρ = 225 ◦

in Figure 7.9. A non neglectable asymmetry in the material’s mechanical behavior, ob-
servable in the range 0.02 to almost 0.10 plastic strain, seems thus to be induced.
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Figure 7.9: Yield Surface of a non-textured Mg polycrystalline aggregate evolving with
increasing von Mises equivalent plastic strain (εp = 0.01, 0.15) (left) and with increasing
plastic work (right), obtained by simulations of biaxial tests on RVEs in the (1,2)-plane

The deformation modes’ relative activity in dependence on the loading path is displayed
in Figure 7.10. Relative activity describes the contribution of the 4 deformation modes
considered to the overall plastic deformation of the sample, and this reveals surprisingly
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that mechanical twinning in not responsible for the induced asymmetry observed. This
was actually expected by the author regarding all previous calculations in this work which
were showing twinning to be the main deformation mode contributing to plastic defor-
mation in the case of biaxial compression, ρ ∈ [180 ◦, 270 ◦]. After Figure 7.10 twinning
contributes almost equally and for less than 10% to the increase of plastic strain, in the
whole range ρ = [0 ◦, 360 ◦]. As plastic strain increases the contribution of mechanical
twinning becomes even less. The relative activity of pyramidal slip show that this defor-
mation mode may also not explain the induced anisotropy since it is also almost equally
distributed in the whole range ρ = [0 ◦, 360 ◦] for the three values of plastic strain εp =0.01,
0.05 and 0.10.
The activity of basal and prismatic slip in Figure 7.10 show more interesting features
instead. Both oscillate and this happens in opposite phase which emphasizes the compe-
tition between both deformation modes for participating to plastic deformation. Indeed,
both family of slip systems allow for plastic deformation in a-direction and compete there-
fore. The CRSS of basal slip is much smaller than the one of prismatic slip, see Table 5.2,
which explains why the relative activity of basal slip is higher than prismatic slip on the
whole range ρ = [0 ◦, 360 ◦]. The higher activity of basal slip and comparatively lower
activity of prismatic slip for ρ = 180◦ and 270◦, compared to ρ = 0◦ and 90◦, may ex-
plain well the unlike yielding behavior between tension and compression which has been
noticed previously at strains from 0.02 to 0.10. The same observations concerning the
unlike stress levels for ρ = 45 ◦ and 225 ◦ hold, see Figure 7.10.
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Figure 7.10: Relative activity of the 4 considered deformation modes at 0.01, 0.05 and
0.10 equivalent plastic strain for biaxial tests in the (1,2)-plane on a non-textured Mg
polycrystalline aggregate
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In the case of hcp metals, the strong asymmetry observed at single crystal scale is not
compensated completely by the fact that the material is non-textured. It seems that a
certain asymmetry, induced here by the competition between basal and prismatic slip,
can still be noticed at macroscopic level.

7.3.2 Textured Rolled Plates

Kelley and Hosford [44] have determined yield loci in the (L,T)-plane of rolled plates
experimentally for varying levels of the largest principal strain εI , as 1, 5, 10%, using the
experimental results presented in Figure 5.5 as well as uniaxial tension and compression
tests in L-,T- and S-direction. A comparison of test and simulation results of the uniaxial
tests is presented in Table 7.1.
As in the biaxial loading case of this chapter, the simulations of uniaxial tension and
compression tests of polycrystalline aggregates in L, T and S-direction were performed
on RVEs of 8 × 8 × 8 solid elements, one finite element represents one physical grain,
having the same discrete crystallographic orientations as presented in the pole figure of
Figure 5.2. Periodic boundary conditions were also applied on the surfaces of the RVE to
ensure the microstructure periodicity.

1% principal strain 5% principal strain 10% principal strain
Exp. Sim. Exp. Sim. Exp. Sim.

L-tens. [MPa] 68.3 75.0 100.0 153.9 – 169.9
S-comp. [MPa] 66.2 65.9 127.6 97.5 147.5 108.7
T-tens. [MPa] 129.6 105.2 173.7 176.0 194.4 188.1
L-comp. [MPa] 26.9 30.2 54.5 89.1 146.2 164.2
T-comp. [MPa] 28.3 53.4 71.7 109.4 172.4 204.1

Table 7.1: Yield stresses of textured polycrystalline specimens in L-, T-, and S-orientation
at three strain levels under uniaxial tension and compression; comparison of test results
from Kelly and Hosford [44] with results of RVE simulations

The simulated stresses in Table 7.1 overestimate the experimental ones for L-tens, L-
comp, and T-comp while the experimental stresses are underestimated for S-comp and
at 1% principal strain for T-tens. Nevertheless, the levels of stresses, which is very dif-
ferent depending on the test considered, is qualitatively well reproduced. The two most
notable aspects of the yield behavior for magnesium plates are thus satisfactory repro-
duced by the simulations, namely anisotropy and tension-compression asymmetry. In view
of a number of approximations and imponderabilities in the simulations, particularly with
respect to the parameter identification and the mapping of the texture, as well as possible
uncertainties in the evaluation of the test data, the coincidence of experimental and nu-
merically simulated tests is satisfying and encouraging for the generation of qualitatively
realistic yield surfaces of the rolled plate material.
Figure 7.11 shows subsequent yield surfaces for mesoscopic stresses under increasing equiv-
alent plastic strain from εp =0.01 to 0.10 with an increment ∆εp = 0.01. At low values
of plastic strain the RVE exhibits a strong anisotropy and a high asymmetry of yielding
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between tension and compression while, with increasing plastic strain the anisotropy and
yielding asymmetry reduce considerably.
As in previous representations of yield surfaces in this chapter, the isocontours of plastic
work are also displayed in Figure 7.11. It can be noticed again on Figure 7.11 that the
yield surface is not convex at low values of dissipated work. As in the single crystalline
case the main differences in the isoline shapes is located at the early stage of deformation
where twinning is activated. This observation emphasizes again that neither the equiva-
lent plastic strain nor the dissipated work are adequate quantities to qualify the degree of
plasticity in such a material, and this neither at single crystal level (see Figure 7.2) nor
at polycrystalline level.
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Figure 7.11: Yield surface of textured Mg rolled plate material evolving with increasing
von Mises equivalent plastic strain (εp = 0.01 to 0.15) (left) and with increasing plastic
work (right), obtained by simulations of biaxial tests on RVEs in the (L,T)-plane

The evolution of the relative accumulated shear strain of the 4 deformation modes con-
sidered in the calculations is presented in Figure 7.12 in dependence on the angle ρ of
the loading path. The contributions of basal and prismatic slip oscillate with a period
of approximately 180 ◦ and a phase shift of about 90 ◦ to each other. Both deformation
modes act equally in tension and compression. The phase shift of 90 ◦ points out that
both, basal and prismatic slip, which act in 〈a〉 direction, compete with each other. This
phenomenon has already been observed in previous section and it has been identified to
be at the origin of induced anisotropy in the material.
Even though the texture of a rolled plate is not actually the most favorable for basal slip,
it is, in average over the whole range ρ ∈ [0 ◦, 360 ◦], the most active deformation mode
due to its extremely low CRSS. Interestingly, the relative contribution of basal slip to
the accumulated shear strain tends to decrease with increasing strain while that of the
prismatic slip tends to increase. This is probably also related to the difference in CRSS
for both deformation mechanisms implying that basal slip is more active at the beginning
of the deformation, where stresses are lower, than at the end, and prismatic slip becomes
more active at higher strains.
As expected, tensile twin is activated for ρ ∈ [120 ◦, 330 ◦] only, where compression is
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present and, due to the texture, elongation in c-direction is favored. The highest twin-
ning activity is concentrated in the range ρ ∈ [180 ◦, 270 ◦], where compression states exist
in both longitudinal and transverse direction of the plate. Pyramidal slip is significantly
active in the range ρ ∈ [0 ◦, 90 ◦], where shortening along the c-axis is favored. Following
the same principle as in orientations E and F in Figure 5.3, as well as LS and TS in Fig-
ure 5.5, pyramidal slip 〈a+ c〉 for ρ ∈ [120 ◦, 330 ◦] is absent at low strains and activated
at higher strains once twinning saturates.
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Figure 7.12: Relative accumulated shear strain for the 4 considered deformation modes at
0.01, 0.05 and 0.10 equivalent plastic strain for biaxial tests in an Mg textured rolled plate
plane

7.4 Influence of Texture on the Yield Surface of

Rolled Plates

The previous section has shown that the mechanical properties of Mg rolled plates can
be well captured by the crystal plasticity model together with the material parameters of
Tables 5.2 and 5.3. In the present section yield surfaces for rolled plates having a texture
slightly different than in previous section are generated. The purpose of this investigation
is to get some information about the sensitivity of the generated yield surfaces shapes of
the RVEs regarding variations in the rolled plate texture.
In section 7.2.1 of this chapter it was shown that even small changes in the crystallograhic
orientation of single crystals, with respect to the plane of principal stresses, influenced
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considerably the resulting yield surfaces’ shapes, and thus the mechanical properties,
of the sample tested. In case observations similar to those made at single crystal level
hold at polycrystalline level these would be of high interest for improving the mechanical
properties of Mg rolled sheets, see [42]. Indeed, parameters like the thickness reduction
for each path or the final reduction in thickness may be tuned during the sheet fabrication
process in order to obtain a desired specific texture, which has itself being predicted to
have specific desired mechanical properties.
The RVEs which are subjected to biaxial loading tests in this section are attributed
the discrete crystallographic orientations of the pole figures shown in Figure 7.13.
These textures are slightly different from the rolled plate texture of Figure 5.2, used in
previous section as well as in chapter 5. In this section also the discrete crystallographic
orientations are generated after the description in Appendix A, for a rolled plate texture.
But compared to the texture in the previous section, the centers of the two texture
components (assumed in Appendix A) in Figure 7.13, are chosen to be at a greater
distance d from the pole figure origin. The standard deviation σsd, also defined in
Appendix A, is chosen smaller in this section than in the previous one, see Figure 5.2.
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Figure 7.13: (0001) pole figures of two rolled plate textures differing sligthly from that of
Figure 5.2

For both pole figures of Figure 7.13, the Figures 7.14 and 7.15 compare the yield surfaces
resulting from the biaxial tests and the relative accumulated shear strain of the 4
deformation modes considered depending on the loading path, respectively. The material
parameters introduced into the crystal plasticity model are the one listed in Tables 5.2
and 5.3.
After Figure 7.14, at small strains, the variations in the proposed virtual textures tend
to reduce the unlike yielding in tension and compression in directions L and T of the
plate. The anisotropy regarding each of these directions increases instead. Indeed, the
ratio of yield stresses in tension for ρ = 0 ◦ and 90 ◦, and in compression for ρ = 180 ◦ and
270 ◦, tends to move away from 1. At relatively high strains εp = 0.15, the stress levels
(in absolute value) tend to increase for ρ = 90 ◦ and 270 ◦ and to decrease for ρ = 0 ◦ and
180 ◦. These differences in the stress levels are nevertheless small in the tension cases
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(ρ = 0 ◦ and 90 ◦) while in the compression cases it is about 50 MPa in both L and T
directions (ρ = 180 ◦ and 270 ◦) of the plate, which is significant.
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Figure 7.14: Yield surface of the two Mg polycrystalline aggregates, with textures of Fig-
ure 7.13, evolving with increasing von Mises equivalent plastic strain (εp = 0.01, 0.15) and
are obtained by simulations of biaxial tests on RVEs in the (L,T)-plane
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Figure 7.15: Relative accumulated shear strain for the 4 considered deformation modes
at 0.01, 0.05 and 0.10 equivalent plastic strain for biaxial tests of two Mg textured rolled
plates with textures of Figure 7.13

The curves of relative accumulated shear strain in Figure 7.15, compared to those of
Figure 7.12, indicate that the deformation modes activated in the different loading paths
of the biaxial tests are not variing much except in the range ρ ∈ [180 ◦, 270 ◦] where
the activity of twinning tends to decrease and is compensated by an increase of basal
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slip. This observation explains well the reduction of asymmetry in yielding between
tension and compression tests, in both L and T directions of the plate, which was
noticed previously. The variations in the rolled plate texture tend to be profitable for
the activation of basal slip on almost the whole range ρ ∈ [0 ◦, 360 ◦], whether that of
prismatic slip tends to decrease slightly. This phenomenon has already been observed in
section 7.2.1 of this chapter. The activity of pyramidal slip remains relatively small for
all loading paths.

The investigations in this section seem to indicate that variations in the rolled
plate texture lead to non neglectable changes in the plate’s mechanical properties. The
variation of the plate mechanical properties under tension loadings seem nevertheless
to be restricted to small strains. The ductility and ultimate stress of Mg plates, while
subjected to tensile loads, may thus not be improved substantially in variing the plate’s
texture.



Chapter 8

Phenomenological Modeling: a Yield
Criterion for Mg Plates

Simulations of the deformation behavior of structures with length scales far above that of
crystallographic grains cannot be performed effectively with crystal plasticity models but
require phenomenological constitutive equations for yielding and hardening under multi-
axial stress states. The transportation industry is especially interested in thin products,
sheet metals, which are fabricated via a rolling process. Due to the metals crystallographic
structures and the characteristics of this process, which generates large plastic deforma-
tions, the mechanical properties of sheet metals are usually affected by an important
anisotropy. This has already been observed in chapter 7 of this work while considering
the case of Mg rolled plates. The anisotropy of the mechanical properties is of two natures:
the anisotropy of the yield stress and that of the plastic strain. While the anisotropy of
the yield stress for magnesium plates and its dependence on the material’s texture has
already been well observed and discussed in chapter 7, both the anisotropy of yield stress
and plastic strain are discussed in the present chapter.

8.1 Definition of the Yield Criterion

As illustrated in Figure 7.11 the yield locus of magnesium plates is far from being isotropic
but shows strong anisotropy and yielding asymmetry between tension and compression.
As demonstrated in chapter 4, yield criteria like those of Tresca and von Mises can thus
not be adapted to phenomenological modeling of the yielding behavior of magnesium
plates. Accounting for the asymmetric yielding in tension and compression shown in
Figure 7.11 which shifts the center of the yield surface out of the origin of the deviatoric
plane, requires including the third invariant of the stress tensor, see Drucker [24]. The
yield criterion proposed by Cazacu and Barlat [19] which includes the third invariant,

Φ =
(
Jo

2

) 3
2 − Jo

3 − τY
3 = 0, (8.1)

has been shown to be suited to model yielding behavior of hcp metals [20] and especially
magnesium and its alloys [19]. Please note that the scalar model parameter c introduced

53



54 Chapter 8. Phenomenological Modeling: a Yield Criterion for Mg Plates

in [19] in front of Jo
3 is omitted here since it can be distributed inside Jo

3 . In the above
equation τY is the yield stress in pure shear and the quantities Jo

2 and Jo
3 are the gener-

alization to orthotropy of the second and third invariants of the deviatoric stress tensor,
respectively. They are expressed as functions of the stress components as,

Jo
2 =

a1

6

(
σx − σy

)2
+
a2

6

(
σy − σz

)2
+
a3

6

(
σx − σz

)2
+ a4σ

2
xy + a5σ

2
xz + a6σ

2
yz, (8.2)

and
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3 =

1

27

(
b1 + b2

)
σ3

x +
1

27

(
b3 + b4

)
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y +
1

27
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2
(
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)
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]
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−1

9
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)
σ2
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1

9

(
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)
σ2

y −
1

9

[(
b1− b2 + b4

)
σx +

(
b1− b3 + b4

)
σy

]
σ2

z

+
2

9

(
b1 + b4

)
σxσyσz + 2b11σxyσxzσyz −

σ2
xz

3

[
2b9σy − b8σz −

(
2b9 − b8

)
σx

]
−
σ2

xy

3

[
2b10σz − b5σy −

(
2b10 − b5

)
σx

]
−
σ2

yz

3

[(
b6 + b7

)
− b6σy − b7σx

]
. (8.3)

The indices x, y, z, correspond to the coordinate system associated with orthotropy. For
the magnesium rolled sheets considered in this work, the coordinate system (O, x, y, z)
corresponds to (O,L, T, S) where L, T, S, represent the plates longitudinal, tranverse,
and short direction. The latter indices will be used in the following mathematical
notations. The yield criterion of equation 8.1 reduces to von Mises [83] yield criterion as
the model parameters ai = 1 and bi = 0.
In the three dimensional case, 17 model parameters are necessary for a full description of
the yield criterion of equation 8.1, which is a great number that one can hardly pretend
to fit accurately. Nevertheless, in the plane stress case the number of model parameters
reduces to 10 and the quantities Jo

2 and Jo
3 can be rewritten as,

Jo
2 =

a1

6

(
σL − σT

)2
+
a2

6
σ2

T +
a3

6
σ2

L + a4σ
2
LT , (8.4)

and

Jo
3 =

1

27

(
b1 + b2

)
σ3

L +
1

27

(
b3 + b4

)
σ3

T −
1

9
b1σTσ

2
L −

1

9
b4σLσ

2
T

−σ
2
LT

3

[
− b5σT −

(
2b10 − b5

)
σL

]
. (8.5)

Since the identification of the model parameters will be realised in this work using the
yield locii of Figure 7.11 resulting from biaxial tests in the (O,L, T ) plane and since
no information on the influence of the component σLT is available for such tests, model
parameters a4, b5, b10 are chosen to be equal to 1, 0, and 0, respectively. These values are
chosen because they correspond to an isotropic material with von Mises yield criterion.
The quantities Jo

2 and Jo
3 are finally rewritten as,

Jo
2 =

a1

6

(
σL − σT

)2
+
a2

6
σ2

T +
a3

6
σ2

L + σ2
LT , (8.6)
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and

Jo
3 =

1

27

(
b1 + b2

)
σ3

L +
1

27

(
b3 + b4

)
σ3

T −
1

9
b1σTσ

2
L −

1

9
b4σLσ

2
T . (8.7)

The yield criterion in the plane stress case is thus defined by 7 model parameters only:
{a1, a2, a3, b1, b2, b3, b4}. The yield stress in pure shear τY will be expressed by the yield
strength σY L as measured from the uniaxial tension test in L-direction. The yield condi-
tion of this uniaxial test simplifies to,

Φ = σY
3
L

([
1

6

(
a1 + a3

)] 3
2

− 1

27

(
b1 + b2

))
− τ 3

Y = 0, (8.8)

which gives the following formulation for τY ,

τY = σY L

([
1

6

(
a1 + a3

)] 3
2

− 1

27

(
b1 + b2

)) 1
3

. (8.9)

Because of its quadratic form, making yielding independent of the sign of σij, J
o
2 cannot

describe the unlike yielding in tension and compression but is able to describe anisotropic
yielding behavior if any ai 6= 1, see Figure 8.1. The quantity Jo

3 is therefore responsible for
allowing to model the asymmetric yielding in tension and compression, as bi 6= 0, because
of its non quadratic form, see Figure 8.2 and Drucker [24].
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Figure 8.1: Influence of model parameters ai onto the yield surface shape. σ0 is the yield
stress for uniaxial tension in L-direction. Continous line represents von Mises yield locus
(ai = 1 and bi = 0)

Beside anisotropy and yielding asymmetry of the initial yield locus, Figure 7.11 also shows
the yield locus changing its shape as the material hardens. As illustrated in Figure 4.2
of chapter 4, neither isotropic nor kinematic nor even a combination of both is able to
account for this evolution of the shape of the yield surface in the course of hardening.
Another concept for strain-hardening therefore needs to be developed. In order to allow
for the modeling of this phenomenon, a strain-hardening concept is adopted in this work
in which the remaining model parameters {a1, a2, a3, b1, b2, b3, b4}, in the plane stress case,
are functions of an internal variable which is defined as a positive scalar value, the equiv-
alent plastic strain after von Mises. As it is discussed in chapter 7 scalar values seems
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not to be adequate candidates to describe the state of plastic deformation in Mg but the
equivalent plastic strain is still chosen here for the sake of convenience.
In this concept, which is displayed in Figure 8.3, a yield locus defined for any given value
of the equivalent plastic strain εnp must be entirely inside the yield surface defined for
another value of this plastic strain εn+1

p greater than εnp . This condition of the yield locii
is also satisfied in the case of isotropic hardening, but a uniform growth of the yield locus
with increasing plastic strain, which is an additionnal property of isotropic hardening, is
not required in the concept presented here.
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Figure 8.2: Influence of model parameters bi onto the yield surface shape. σ0 is the yield
stress for uniaxial tension in L-direction. Continous line represents von Mises yield locus
(ai = 1 and bi = 0)

Since this strain-hardening concept allows for considering yield surfaces evolving with
increasing plastic strain, mechanical behavior like deformation-induced anisotropy may
be modeled and phenomena like flow localisation may be predicted more reliably. These
features are extremely attractive in modeling plastic deformations for engineering appli-
cations. This advantage is nevertheless restricted to applications in which the material
point is subjected to monotonic loading since no strain-hardening similar to kinematic
hardening is considered here.
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Figure 8.3: Evolution of the strain-hardening concept with model parameters depending
on plastic strain for arbitrary loading paths

8.2 Mathematical Existence of the Yield Function

and Yield Surface Convexity

The identification of model parameters for the yield surface of equation 8.1 has to be done
ensuring the mathematical existence and convexity of the yield surface. Since the model
parameters {ai, bi} are functions of the scalar internal variable εp, the equivalent plastic
strain after von Mises, the existence and convexity of the yield surface has to be checked
for all values of the plastic strain.
It is first assumed that τY is a positive monotonic function increasing with plastic strain.
Since the relation τY > 0 must be true for all values of plastic strain it implies that,

τY =
[(
Jo

2

) 3
2 − Jo

3

] 1
3 ≥ 0 (8.10)

and therefore,(
Jo

2

) 3
2 − Jo

3 ≥ 0; (8.11)

which requires that J0
2 ≥ 0 resulting in the condition,

Jo
2 =

a1

6

(
σL − σT

)2
+
a2

6
σ2

T +
a3

6
σ2

L + σ2
LT ≥ 0 (8.12)

in the plane stress case. Both conditions 8.11 and 8.12 have hence to be fulfilled to
ensure the existence of the yield function, and the model parameters have to be chosen
appropriately for all values of the plastic strain εp ∈ [0,∞[.
After Rockafellar [67], in order to ensure convexity of the yield surface the Hessian matrix
of the yield function Φ must be positive semi-definite with respect to the principal stresses.
The Hessian H of a function f

(
x1, x2, ..., xn

)
with respect to x1, x2, ..., xn is the Jacobian
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In the plane stress case with biaxial loading in the (L, T )-plane, along L- and T -directions,
the yield surface is a function of σL and σT only, which are the principal stresses. The
Hessian matrix for this problem is therefore defined as,

H =

 H11 H12

H21 H22
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The components of the Hessian matrix are calculated as follows,

H11 = −2

9

(
b1 + b2

)
σL +

2

9
b1σT +

3

(
a3

3
σL +

a1

3

(
σL − σT

))2

4

√
a3

6
σL

2 +
a1

6

(
σL − σT

)2
+
a2

6
σT

2

+
1

2

(
a1 + a3

)√a3

6
σL

2 +
a1

6

(
σL − σT

)2
+
a2

6
σT

2

H22 =
2

9
b4σL −

2

9

(
b3 + b4

)
σT +

3

(
a3

3
σT +

a1

3

(
σL − σT

))2

4

√
a3

6
σL

2 +
a1

6

(
σL − σT

)2
+
a2

6
σT

2

+
1

2

(
a1 + a2

)√a3

6
σL

2 +
a1

6

(
σL − σT

)2
+
a2

6
σT

2

H12 = H21 =
2

9
b1σL +

2

9
b4σT +

3
a3

3
σL +

a1

3

(
σL − σT

)(a2

3
σT −

a1

3

(
σL − σT

))
4

√
a3

6
σL

2 +
a1

6

(
σL − σT

)2
+
a2

6
σT

2

+
a1

2

√
a3

6
σL

2 +
a1

6

(
σL − σT

)2
+
a2

6
σT

2

.



8.3. Numerical Implementation of the Yield Criterion 59

(8.15)

To ensure the existence of each component Hij the following condition has to be fullfilled,

a3

6
σL

2 +
a1

6

(
σL − σT

)2
+
a2

6
σT

2 > 0, (8.16)

which is equivalent to the condition described in equation 8.12 as σLT = 0. From the
equation, det

(
H− λI

)
= 0, the eigenvalues of the Hessian matrix are calculated as,

λ± =
1

2

[(
H11 +H22

)
±
√(

H11 +H22

)2 − 4
(
H11H22 −H12

2
)]

(8.17)

and the existence of the eigenvalues λ± is thus controlled by the condition,(
H11 +H22

)2 − 4
(
H11H22 −H12

2
)
≥ 0. (8.18)

As a resume, the three conditions described in equations 8.11, 8.12 and 8.18 need to
be fullfilled in order to obtain a physically meaningfull yield surface. Additionally, the
conditions λ− ≥ 0 and λ+ ≥ 0 assure the yield surface to be convex in the (L, T )-plane.
Since the model parameters are assumed to be functions of the equivalent plastic strain
εp, all these restrictions must be taken into consideration for the identification of model
parameters in the whole range of plastic strains εp ∈ [0,∞[.

8.3 Numerical Implementation of the Yield Criterion

8.3.1 Kinematics

In continuum mechanics the deformation gradient F as basic kinematic variable is defined
by

F =
∂x

∂X
(8.19)

where x and X are the position vectors of the material point in the current and reference
configuration, respectively. The velocity gradient tensor L in the current configuration is
defined as,

L = ḞF−1 = D + Ω, (8.20)

where D and Ω denote the symmetric and antisymmetric part of L, respectively. These
tensors are obtained from,

D =
1

2

(
L + LT

)
and Ω =

1

2

(
L− LT

)
(8.21)

where LT denotes the transposed of tensor L. Since the rate of the deformation tensor D
is an objective tensor it is taken as strain measure in the constitutive relations. During
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elastic-plastic deformation the elastic strains are assumed to be small compared to the
plastic ones which makes the additive decomposition of the strain rates into an elastic
and plastic part acceptable. The strain rate tensor is therefore written as,

D = De + Dp (8.22)

where De and Dp are the elastic and plastic parts of the strain rate tensor, respectively.
The stress measures used in the constitutive relations are the Cauchy stress tensor,

σ = σijei ⊗ ej and its Jaumann rate
∇
σ =

∇
σijei ⊗ ej. (8.23)

The symbol ek denotes the unit vectors of the Cartesian coordinate system related to the
current configuration. The spin tensor Ω links the Cauchy stress and its Jaumann rate
through the equation,

∇
σ = σ̇ −Ωσ + σΩ (8.24)

where σ̇ is the time derivative of the Cauchy stress tensor.

8.3.2 Constitutive relations

Depending on the value of the yield function Φ, a material volument element may deform
elastically Φ < 0, or elasto-plastically, Φ = 0. In both cases, the elastic part of the
deformation rate is assumed to follow Hooke’s law. The Jaumann rate of the Cauchy
stress tensor is thus,

∇
σ = Ce : De (8.25)

where Ce is the fourth order tensor of elastic moduli. The integration of equation 8.25 is
performed in a corotational way as described in [38] which allows for writing the strain
tensor E as

E = Ee + Ep (8.26)

where Ee and Ep are the elastic and plastic parts of the strain tensor, respectively. The
Cauchy stress tensor is thus given as

σ = Ce : Ee = Ce :
(
E− Ep

)
. (8.27)

Plastic deformation is assumed to be governed by an associated flow rule, see equation 4.6
in chapter 4. By assuming that plastic deformation can be reduced to a single scalar value
derived from Odqvist’s parameter p [60] defined as,

p =

∫ t

0

√
Dp : Dpdt where ṗ =

√
Dp : Dp, (8.28)

the equivalent plastic strain rate ε̇p of expression,

ε̇p =

√
2

3

(
Dp : Dp

) 1
2 (8.29)
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is introduced into the constitutive equations. This definition of the equivalent plastic
strain rate is traditionally used in J2-plasticity in order to express plastic dissipation in
terms of the equivalent von Mises stress and plastic strain. This definition is chosen here
for the sake of convenience because of the lack of a better one adapted to anisotropic
yielding. By combining now equations 4.6 and 8.29 we can write,

ε̇p = λ̇

√
2

3

(
∂Φ

∂σ
:
∂Φ

∂σ

) 1
2

. (8.30)

Finally, the plastic multiplier is eliminated from the contitutive equations by inserting
equation 8.30 into equation 4.6 such that the plastic strain rate tensor becomes,

Dp =

∂Φ

∂σ
ε̇p√

2

3

(
∂Φ

∂σ
:
∂Φ

∂σ

) 1
2

. (8.31)

The yield condition and the related consistency condition can be written in a general form
as,

Φ
(
σ, εp

)
= f

(
σ, εp

)
− h
(
εp
)

= 0 (8.32)

and

Φ̇ =
∂f

∂σ
:
∇
σ +

∂f

∂εp
ε̇p −

dh

dεp
ε̇p = 0, (8.33)

respectively. Here f is a function of the stress tensor σ and the equivalent plastic strain
εp while h is a function of the equivalent plastic strain only. For the yield criterion of
equation 8.1 the functions f and h are defined as,

f =
(
Jo

2

) 3
2 − Jo

3 and h = τ 3
Y (8.34)

where the quantities Jo
2 , Jo

3 and τY are defined in equations 8.2, 8.3 and 8.9, respectively.
In these equations the model parameters ai and bi are functions of the equivalent plastic
strain εp.
Rewriting the consistency equation 8.33 including Hooke’s law 8.25, the strain rate de-

composition 8.22 as well as equations 4.6 and 8.30, and using
∂Φ

∂σ
=
∂f

∂σ
following from

equation 8.32, the expression below is obtained,
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From this expression the plastic multiplier can be identified as,
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Inserting now equation 8.36 for the plastic multiplier into Hooke’s law 8.25 the following
expression is obtained,

∇
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After some manipulations this last expression can be rewritten as,

∇
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∂f

∂σ
:
∂f

∂σ

) 1
2
[
∂f

∂εp
− dh

dεp

]]
 : D. (8.38)

Finally, the elastic-plastic tangent modulus can be identified from the latter expression
as,

Cep = Ce −
Ce :

∂f

∂σ
⊗ ∂f

∂σ
: Ce

∂f

∂σ
:

(
Ce :

∂f

∂σ

)
−
√

2

3

(
∂f

∂σ
:
∂f

∂σ

) 1
2
[
∂f

∂εp
− dh

dεp

] . (8.39)

8.3.3 Numerical Integration of the Constitutive Equations

The algorithm for the numerical integration of the constitutive equations presented
in the previous section is summarised in Figure 8.4 and described in detail in the following:

Step A
A strain-controlled problem is assumed in which the strain increment tensor ∆E between
time t and t + ∆t is known. Also known are the state of all stress and strain quantities
at time t. The aim of the numerical integration is to solve for the values of all stress and
strain quantities at time t+ ∆t.
Due to the complexity of simultaneously integrating the evolution equations presented
in previous section, a numerical technique is used here. A fully implicit Euler backward
scheme is chosen for this integration because of its unconditional stability which allows
for the use of relatively large time increments compared to an explicit integration method.
This consists in establishing all the equations constituing the problem with unknown
expressed only at time t+ ∆t. The stresses and strains at time t+ ∆t are expressed as,

t+∆tσ = tσ + t∆σ, t+∆tE = tE + t∆E and t+∆tEp = tEp + t∆Ep. (8.40)

where the tensors tσ, tE and tEp are expressed in the current configuration.
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Step B
It is assumed first that the deformation increment is of pure elastic nature which leads
after equation 8.25 and 8.26 to the trial predictor stress,

t+∆tσtr = tσ + Ce :
(

t+∆tE− tEp
)

(8.41)

and to the expressions for the trial plastic strains,

t+∆tεp
tr = tεp and t+∆tEptr = tEp. (8.42)

For these trial values of stresses and plastic strain at time t+ ∆t the yield condition of
equation 8.32 is then evaluated. In the following steps almost all quantities are expressed
at time t+∆t and the corresponding superscripts t+∆t are omitted to simplify the notation.

Step C
If the inequation,

Φtr = f
(
σtr, εp

tr
)
− h
(
εp

tr
)
≤ 0, (8.43)

is true then the strain increment is accepted as purely elastic and the variables at time
t+ ∆t are updated to σ = σtr and εp = εp

tr. The elastic-plastic tangeant modulus is also
updated to the elastic modulus Cep = Ce.

Step D
If the inequation 8.43 is not satisfied the strain increment is not of purely elastic nature and
plastic deformation occurs, which requires that the relations Φn+1 = 0 and σ = Ce : Ee

are satisfied. The following system of equations needs thus to be solved,


Φ = f

(
σ, εp

)
− h
(
εp
)

= 0

Γ = σ − Ce :

 E−

∂f

∂σ
εp√

2

3

[
∂f

∂σ
:
∂f

∂σ

] 1
2

 = 0
, (8.44)

where the plastic strain tensor Ep has been replaced by the following expression after
corotationnal integration of equation 8.31,

Ep =

∂f

∂σ
εp√

2

3

(
∂f

∂σ
:
∂f

∂σ

) 1
2

. (8.45)

The variable Γ is introduced to simplify future notations. The total increment of strain
E is known since a strain controlled problem is assumed. Since the hardening state is
assumed to be described by a single scalar value εp, the number of unknown for the
system of equations to be solve at time t+ ∆t is reduced to the equivalent plastic strain
εp and the components σij of stress tensor σ. This system of nonlinear equations is solved
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A. Initial desired values defined in the current configuration
Ce, tσ, tεp,

tE, tEp

B. Compute trial values for plastic strain, stresses and yield potential
t+∆tεp

tr = tεp
t+∆tσtr = Ce :

(
t+∆tE− tEp

)
t+∆tΦtr = f

(
t+∆tσtr, t+∆tεp

tr
)
− h
(

t+∆tεp
tr
)

In the following steps all quantities are expressed at time t+ ∆t and the
corresponding superscripts t+∆t are omitted to simplify the notation
C. If Φtr ≤ 0, than elastic range

C.1 Update equivalent plastic strain and stresses
εp = εp

tr and σ = σtr

C.2 Update tangeant modulus
Cep = Ce and go to E

D. If Φtr > 0, than plastic range and Φ = 0 and σ = Ce : Ee must be fullfilled
D.1 Start values for Newton-Raphson iteration (m = 0)

εp
(0) = εp

tr and σ(0) = σtr

D.2 Compute the stress residues
Φ(m) = f

(
σ(m), εp

(m)
)
− h
(
εp

(m)
)

Γ(m) = σ(m) −

 Ce :

 E−
∂f

∂σ(m)
εp

(m)

√
2
3

[
∂f

∂σ(m)
: ∂f

∂σ(m)

] 1
2

 
D.3 Compute the partial derivatives

∂Γ(m)

∂σ(m)
,

∂Γ(m)

∂εp(m)
,

∂Φ(m)

∂σ(m)
and

∂Φ(m)

∂εp(m)

D.4 Solve the system of nonlinear equations for t∆σ(m) and t∆εp
(m)

∂Γ(m)

∂σ(m)

∂Γ(m)

∂εp(m)

∂Φ(m)

∂σ(m)

∂Φ(m)

∂εp(m)


 t∆σ(m)

t∆εp
(m)

 =

 −Γ(m)

−Φ(m)


D.5 Update equivalent plastic strain and stresses

εp
(m+1) = εp

(m) + t∆εp
(m) and σ(m+1) = σ(m) + t∆σ(m)

D.6 If Φ(m+1) >Tolerance, than iterate again
m = m+ 1 and go to D.2

D.7 If Φ(m+1) <Tolerance, than update tangeant modulus

Cep = Ce−
Ce : ∂f

∂σ(m+1) ⊗ ∂f
∂σ(m+1) : Ce

∂f
∂σ(m+1) :

(
Ce : ∂f

∂σ(m+1)

)
−
√

2
3

(
∂f

∂σ(m+1) : ∂f
∂σ(m+1)

) 1
2
[

∂f
∂εp

(m+1) − dh
dεp

(m+1)

]
E. All desired values are defined at t+ ∆t, return results

Figure 8.4: Algorithm for the numerical integration of the yield criterion described in
equation 8.1 with strain-hardening concept presented in this chapter between time t and
t+ ∆t
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numerically by use of an iterative Newton-Raphson method. This method is chosen
because of its desired properties when iteration is started relatively close to the solution.
Indeed, its order of convergence is two.
The Newton-Raphson method consists in solving the following new system of equations
for t∆σ and t∆εp,

∂Γ(m)

∂σ(m)

∂Γ(m)

∂εp(m)

∂Φ(m)

∂σ(m)

∂Φ(m)

∂εp(m)


 t∆σ(m)

t∆εp
(m)

 =

 −Γ(m)

−Φ(m)

 . (8.46)

The superscript (m) indicates themth iteration of the Newton-Raphson scheme. The initial
values for the Newton-Raphson scheme (m = 0) are,

Γ(0) = Γtr = 0 and Φ(0) = Φtr 6= 0

with

σ(0) = σtr and εp
(0) = εp

tr.

Since the terms resulting from the derivations in equation 8.46 are especially long they
are not presented here but developed in detail in Appendix B.
This new system of equations is solved with the help of the Gauss-Jordan method for t∆σ
and t∆εp and the variables are updated to,{

σ(m+1) = σ(m) + t∆σ
εp

(m+1) = εp
(m) + t∆εp

(8.47)

If the yield condition of equation 8.32 evaluated at time t + ∆t is satisfied within a
tolerance, the new variables values are accepted otherwise an additionnal iteration of the
Newton-Raphson scheme is started until the yield condition is satisfied. When the yield
condition is satisfied the elastic-plastic tangeant modulus at time t+ ∆t is updated after
equation 8.39 to,

Cep = Ce −
Ce : ∂f

∂σ(m+1) ⊗ ∂f
∂σ(m+1) : Ce

∂f
∂σ(m+1) :

(
Ce : ∂f

∂σ(m+1)

)
−
√

2
3

(
∂f

∂σ(m+1) : ∂f
∂σ(m+1)

) 1
2
[

∂f
∂εp

(m+1) − dh
dεp

(m+1)

] .
(8.48)

8.4 Plastic Strain Anisotropy and Lankford Parame-

ters

For a sheet the anisotropy of plastic deformation with loading direction is generally quan-
tified with Lankford parameters or, also called, anisotropy coefficients. The Lankford
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parameter, R, is determined by uniaxial tension tests in the (L,T)-plane of the sheet for
various values of θ, the angle between the specimen tensile direction and the longitudinal
direction of the sheet. The Lankford parameter is defined as

R =
εw
εt

where εw = ln
(w1

w0

)
and εt = ln

(t1
t0

)
, (8.49)

after ASTM Standards [9]. The character w and t denote the width and thickness, respec-
tively, of the tested sample. And the subscripts 0 and 1 denote their initial and current
dimensions, respectively.
An isotropic material corresponds to a Lankford parameter equal to 1. Usually, the sheets
destined to forming processes are desired to show high Lankford coefficients. Indeed high
R values denote higher plastic deformation in the sheet’s width than in its thickness,
which avoids failure of the sheet during the forming process.

8.5 Identification of Model Parameters for the Yield

Criterion

In this section we would like to identify model parameters for the yield surface of equa-
tion 8.1. The simulation results of biaxial tests presented in Figure 7.11 constitute the
reference yield surfaces for the identification of the desired model parameters. In order
to obtain the best correspondance between deformation and stress tensors

(
Ep,σ

)
, the

identified model parameters should reproduce simultaneously the shapes of the reference
yield surfaces in the (L, T )-plane for different values of the equivalent plastic strain, and
the anisotropy of plastic deformation in the (L, T )-plane. The identification problem is
defined as the minimization of a target function Υ. This target function which has to be
minimized, has hence to include not only stress levels σ̄ but also plastic strain ratios r̄,
and is expressed as,

Υ =
∑

j

∑
k

[
jkµ

σ̄(jkσ̄set − jkσ̄
ref)2

+ jkµ
r̄(jkr̄set − jkr̄

ref)2]
, (8.50)

where jkµ
σ̄

and jkµ
r̄

are weight factors. The superscripts ref and set denote the couple of
stresses belonging to the reference yield surfaces, generated via biaxial tests, and those
belonging to a given set of model parameters generated by the optimisation procedure,
respectively. The superscripts j and k denote the different values of plastic strain con-
sidered for the isocontours and the different loading paths considered in biaxial testing,
respectively. For each combination of j and k a strain ratio jkr̄ as well as a stress value jkσ̄
are considered in order to define the target function to be minimized. The stress values
jkσ̄

ref
and jkσ̄

set
in 8.50 are defined as,

jkσ̄
ref

=

√
jkσL

ref 2
+ jkσT

ref 2
and jkσ̄

set
=

√
jkσL

set2 + jkσT
set2, (8.51)

where
{

jkσL,
jkσT

}
is the couple of stresses in L- and T -directions corresponding to the

jth isocontour and the kth loading path. The strain ratios jkr̄
ref

and jkr̄
set

denote the
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anisotropy of plastic deformation in the (L, T )-plane, corresponding to the jth isocontour
and the kth loading path, and are defined as,

jkr̄
ref

=
Ep

LL
ref

Ep
TT

ref
and jkr̄

set
=
Ep

LL
set

Ep
TT

set . (8.52)

The quantities Ep
LL and Ep

TT are the plastic parts of the deformation in L- and T -
direction, respectively, see equation 8.26. jkr̄

set
is thus defined as,

jkr̄
set

=

∫ t

0

∂Φ

∂jkσL

/
∂Φ

∂jkσT

dt (8.53)

after equation 8.31. The ratio of plastic strain jkr̄ retained in the optimization procedure
is different from the Lankford parameter R. Nevertheless, it is expected that the Lankford
parameters predicted by the phenomenological model will be similar to those obtained
with the crystal plasticity model due to volume constance of the plastic deformation.
A set of model parameters in the plane stress case is {a1, a2, a3, b1, b2, b3, b4} and is denoted
c̄ in the following. Each component c̄i of this model parameter set is assumed to be a
saturating exponential function of the plastic strain εp through equation,

c̄i(εp) = Ai +Bi

(
1− e−Ciεp

)
. (8.54)

In general, optimization problems can be solved by either deterministic or stochastic
procedures, in which the target function is identical, see [15]. The problem of minimizing
the target function Υ is not trivial as it exhibits multiple local minima. Thus the result
of deterministic optimization procedures like Newton’s method or gradient methods
will depend on the starting model parameter set {a1, a2, a3, b1, b2, b3, b4} considered. A
stochastic procedure is therefore necessary in the present case to minimize Υ. Such
methods unfortunately result in high numerical costs because the target function is
evaluated frequently.
In this work a stochastic optimization procedure specifically adapted to the present
problem and based on a Monte-Carlo search has been developed. The optimization
scheme is presented in Figure 8.5 and described in detail in the following:

Step A
At first some variables controling the optimization scheme are defined. Variables
GenMaxB and GenMaxD defines the number of randomly generated parameter sets
in step B and step D, respectively. Since the components c̄i(εp) of a model parameter
set are assumed to be saturating exponential functions of the equivalent plastic strain,
each defined by three constants Ai, Bi and Ci, the parameter set c̄(εp) is fitted for only
three values of the plastic strain εp(1), εp(2), εp(3). The values εp(1) and εp(3) should
represent the greatest possible range, therefore the smallest and largest values available
in Figure 7.11 should be chosen. εp(2) is an intermediate value which has to be defined.
Variable NB is an integer and identifies which of the plastic strains εp(1), εp(2), εp(3)
is currently considered by the optimization procedure. Its initial value is put equal to
zero. Variable SavMax is an integer defining the maximum number of parameter sets
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to be saved in next steps, as the given sets fulfil the restrictions of convexity developed
previously.

Step B
The number of generated parameter sets GenB is initialized to 1, variable NB is
incremented by 1 and vectors {Λ(εp)} and {c̄(εp)} of length SavMax are created.
The quantity {Λ(εp)} is another target function to minimize, similar to Υ, but for a
constant value εp and is defined as,

Λ(εp) =
∑

k

[
kµ

σ̄(kσ̄set − kσ̄
ref)2

+ kµ
r̄(kr̄set − kr̄

ref)2]
. (8.55)

A random model parameter set GenB c̄(εp) is than generated and the convexity of the
corresponding yield surface is checked. Indeed, for a finite number of couples

(
σL, σT

)
,

belonging to the yield surface, it this checked that the three conditions described in
equations 8.11, 8.12 and 8.18 are fullfilled. Additionnaly it is checked that the eigenvalues
of the yield condition’s Hessian matrix are positive which ensures the yield surface to
be convex in the (L, T )-plane, see previously in this chapter. If this yield surface is
convex, the function GenBΛ(εp) is evaluated and compared to the largest saved value up
to now, maxΛ(εp) = max[{Λ(εp)}]. If the new value GenBΛ(εp) is smaller than maxΛ(εp),
then the model parameter set and the corresponding function value are updated to
maxΛ(εp) = GenBΛ(εp) and maxc̄(εp) =GenB c̄(εp). As long as GenMaxB is not reached,
variable GenB is incremented and step B is repeated except that the variables are
not initialized anymore. This step is also repeated for all three values εp(1), εp(2)
and εp(3), such that for each of the three values of plastic strain a number SavMax
of model parameter sets c̄ and the corresponding values of the target function Λ are saved.

Step C
The coefficients {Ai, Bi, Ci} are calculated for each of the possible combination of
the sets components {c̄i(εp(1))}, {c̄i(εp(2))} and {c̄i(εp(3))}, saved in step B. This is
CombMax = SavMax3 combinations. For each of the combinations the convexity of
the yield surfaces corresponding to the coefficients Comb{Ai, Bi, Ci} of the combination
Combc̄i checked for a number of values of εp ∈ [0, εp(3)]. If the yield surfaces are convex
for all values of εp ∈ [0, εp(3)] tested, the coefficients are accepted Accp{Ai, Bi, Ci}, the
corresponding target function CombΥ is evaluated and accepted AccpΥ, and the number of
accepted combinations is incremented Accp = Accp+ 1.

Step D
For each of the accepted combinations Accp{Ai, Bi, Ci} a certain number GenD of
parameters sets are generated randomly, with coefficients values GenD{Ai, Bi, Ci} in the
neighborhood of Accp{Ai, Bi, Ci}. This is realized in order to eventually get smaller
values of the corresponding target function Υ, and to obtain thus an improved parameter
set. As in step C the convexity of the yield surfaces corresponding to the coefficients
GenD{Ai, Bi, Ci} is checked for a number values of εp ∈ [0, εp(3)]. If the yield surfaces are
convex for all values of εp ∈ [0, εp(3)] tested, the corresponding target function GenDΥ
is evaluated and compared to AccpΥ. If GenDΥ is smaller than AccpΥ, then AccpΥ and
Accp{Ai, Bi, Ci} are both updated to GenDΥ and GenD{Ai, Bi, Ci}, respectively.
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Step E
Finally, the optimal parameter set is chosen to be the one corresponding to the smallest
value of the accepted target functions minΥ = min[{AccpΥ}].

A. Define values for the whole optimization scheme
GenMaxB, GenMaxD, NB = 0, εp(1), εp(2), εp(3), SavMax

B. Initialize values for step B
GenB = 1, NB = NB + 1, εp = εp(NB),
{Λ(εp)} = {1Λ(εp), · · · , SavMaxΛ(εp)}, {c̄(εp)} = {1c̄(εp), · · · , SavMaxc̄(εp)}
B.1 Generation of a random set of model parameters GenB c̄(εp)
B.2 Check convexity for GenB c̄(εp)
B.3 If yield surface convex, than accept GenB c̄(εp)

Evaluate GenBΛ(εp)
maxΛ(εp) = max[{Λ(εp)}]
B.3.1 If GenBΛ(εp) <

maxΛ(εp), than update maxΛ(εp) and maxc̄(εp)
maxΛ(εp) = GenBΛ(εp)
maxc̄(εp) =GenB c̄(εp)

B.4 If GenB < GenMaxB, than GenB = GenB + 1 and go to B.1
B.5 If (GenB = GenMaxB and NB ≤ 2), than go to B

C. Initialize values for step C
CombMax = SavMax3, Comb = 1, Accp = 0
C.1 Calculate all components Comb{Ai, Bi, Ci} of Combc̄i
C.2 Check convexity for Comb{Ai, Bi, Ci} at several εp ∈ [0, εp(3)]
C.3 If yield surfaces convex for all εp checked, than accept combination

Evaluate CombΥ
Accp = Accp+ 1
AccpΥ = CombΥ
Accp{Ai, Bi, Ci} = Comb{Ai, Bi, Ci}

C.4 If Comb < CombMax, than Comb = Comb+ 1 and go to C.1
D. Initialize values for step D
Accp = 1, GenD = 1
D.1 Generate GenD{Ai, Bi, Ci} near to Accp{Ai, Bi, Ci}
D.2 Check convexity for GenD{Ai, Bi, Ci} at several εp ∈ [0, εp(3)]
D.3 If yield surfaces convex for all εp checked, than variation accepted

Evaluate GenDΥ
D.3.1 If GenDΥ < AccpΥ, than update Υ and {Ai, Bi, Ci}

AccpΥ = GenDΥ
Accp{Ai, Bi, Ci} = GenD{Ai, Bi, Ci}

D.4 If GenD < GenMaxD, than GenD = GenD + 1 and go to D.1
E. The optimal model parameter set is minΥ = min[{AccpΥ}]

Figure 8.5: Optimisation scheme for identification of model parameters for the yield cri-
terion of equation 8.1
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8.6 Optimisation of Model Parameters and Yield

Surfaces

The optimisation procedure, described in the previous chapter, was not able to deliver
satisfying results in terms of model parameter sets, which were able to predict both

similar yield surfaces, jkσ̄
ref

values, and strain ratios, ij r̄
ref

values. This is discussed in
the present chapter. The discussion is based on two model parameter sets, Set1, and

Set2 resulting from optimization procedures fitting only jkr̄
ref

and jkσ̄
ref

, respectively.
The weight coefficients, jkµ

σ̄
and jkµ

r̄
used in the optimisation procedure for Set1 and

Set2 are given in Appendix C. The weight coefficients for Set1 were chosen such that
the Lankford parameters of a sheet may be reproduced. Since Lankford parameters are
resulting from uniaxial tensile tests, weight coefficients were chosen different from zero
only for the loading paths in the first quadrant of the (L, T )-plane, see Appendix C. The
weight coefficients for Set2 were chosen such that the beginning and the end of yielding
may be well reproduced. In order to reproduce the complicated yield surfaces shapes of
Figure 7.11 the weight coefficients were chosen higher, but different from each others, on
the axes of the (L, T )-plane as well as on the four bisectrices, see Appendix C.
The values of the coefficients A, B, and C for both model parameter sets are listed
in Tables 8.1 and 8.2, respectively, and the resulting yield surfaces are illustrated in
Figure 8.6. The reference yield surfaces, already presented in Figure 7.11, are denoted
CP in this chapter for Crystal Plasticity results. Table 8.3 reports the tabular data of
the sheet’s yielding behaviour in L-direction as a function of the equivalent plastic strain.

a1 a2 a3 b1 b2 b3 b4
A 1.1317 1.7154 7.2440 10.2247 2.7922 3.5075 0.2587
B 0. 0. -5.7079 -12.1859 0. 0. 0.
C 0. 0. 164.7487 127.2557 0. 0. 0.

Table 8.1: Coefficients A, B, and C of Set1 describing model parameters as an exponen-
tial saturating function of the equivalent plastic strain, after equation 8.54

a1 a2 a3 b1 b2 b3 b4
A 1.5499 1.9647 2.4252 3.6640 4.6835 4.8854 -5.0087
B -1.5309 0. 0. 0. -8.4050 -7.8393 6.0329
C 60.5688 0. 0. 0. 29.3242 20.0047 44.7950

Table 8.2: Coefficients A, B, and C of Set2 describing model parameters as an exponen-
tial saturating function of the equivalent plastic strain, after equation 8.54

The yield surfaces of the material described by Set1, see on the lefthandside of Figure 8.6,
are far away from the reference values, especially concerning the biaxial stress states.
Almost only the stress levels for uniaxial tension in L- and T-direction are well reproduced.
The yield surfaces of the material described by Set2 on the righthandside instead, show
a quite good agreement with the reference values. Almost only the stress levels at low
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strains, in uniaxial tension along T-direction, are far from the reference data. Both the
yield surfaces from Set1 and Set2 do not describe accurately the stress levels at small
strains in the third quadrant, which is due to the choice of the weight coefficients jkµ

σ̄

and kµ
σ̄

of equations 8.50 and 8.55, see Appendix C.
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Figure 8.6: Yield Surface of the textured Mg rolled plate of Figure 7.11 (CP) and the
yield surfaces of the corresponding optimised model parameter sets, Set1 (left) and Set2
(right)

A slight non-convexity at high strains for compression along T-direction is also to be
noticed, the optimisation procedure obviously did not reject this set. Nevertheless, this
slight non-convexity is assumed not to be of high importance for the investigations made
in this and the following chapter.
All attemps which have been performed with the optimization procedure in order to

reproduce both the stress levels jkσ̄
ref

and the strain ratios jkr̄
ref

did not deliver satisfying
results. The yield criterion and the hardening concept seems thus not to be adequate to

describe accurately both the stress levels jkσ̄
ref

and the strain ratios jkr̄
ref

. The detailled
investigations in next section help to understand why it is so.

εp 0.0 0.01 0.02 0.03 0.04 0.05 0.06
σL [MPa] 40.0 79.773 117.982 138.144 147.671 153.358 158.128

εp 0.07 0.08 0.09 0.10 0.11 0.12 0.13
σL [MPa] 161.471 164.635 167.314 169.381 171.546 173.663 175.607

εp 0.14 0.15 1.
σL [MPa] 177.306 179.070 300.

Table 8.3: Yielding behavior in L-direction as a function of the equivalent plastic strain
for the reference yield surfaces, see Figure 7.11
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8.7 Plastic Anisotropy: Uniaxial Tensile Tests

The anisotropy of Mg sheets is investigated here by performing uniaxial tensile tests in the
sheet’s plane and by analysing the resulting stress levels and Lankford parameters. The
calculations performed with the crystal plasticity model in considering the rolled plate
texture in Figure 5.2b and the material parameters of Tables 5.2 and 5.3 are taken here
as reference, CP. These calculations were performed in longitudinal and tranverse direc-
tion, as well as at loading orientations, θ, every 15 ◦ from longitudinal direction towards
tranverse direction. θ is the angle to longitudinal of the tensile direction.
The mechanical response of a magnesium plate described by model parameter set Set1
in term of the Lankford parameters and stress levels is displayed in Figure 8.7 and com-
pared with the reference results CP obtained with the crystal plasticity model. This
comparison is made at three different values of true strains, 0.05, 0.10, and 0.15 on the
range θ ∈ [0 ◦, 90 ◦]. The same comparison is made for model parameter set Set2 and is
shown in Figure 8.8. In order to allow for the calculation of the Lankford parameters 3D
simulations are necessary. Thus, When no other specification is indicated in Figures 8.7
and 8.8, the default value of the model parameters a4 to a6 is 1, and the default value of
model parameters b5 to b11 is 0. As discussed in first section of chapter 8 these values are
those corresponding to a von Mises material. The influence of these model parameters on
the simulation results will be discussed at the end of this chapter.
The reference simulations CP in Figure 8.7 show values of the Lankford parameters R
which are almost constant with increasing strain and which vary between 2.5 and 3.2
depending on the angle θ. The stresses instead increase with increasing strain as the
material hardens. This increase in the stress levels is almost linear with θ between longi-
tudinal and transverse direction.
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Figure 8.7: Mechanical response of a Mg plate described by Set1 and subjected to uniaxial
tensile tests in the plate’s plane, in terms of Lankford parameters R and stresses σ

The Lankford parameters R, in Figure 8.7, are not well reproduced. The R values pre-
dicted by Set1 are first not constant with increasing strain and secondly, they are only
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almost half that of the reference one on the whole range θ ∈ [0 ◦, 90 ◦]. These observations

are a little surprising, since Set1 has been obtained in fitting the strain ratios jkr̄
ref

of the
biaxial tests which was thought to imply a better coincidence with Lankford parameters
R. Lankford parameters are indeed themself nothing else but strain ratios. Figure 8.7 also
shows that the stresses issued from Set1 fit the reference data CP very well for all three
values of strains, 0.05, 0.10, and 0.15 in the whole range θ ∈ [0 ◦, 90 ◦]. It was already
observed in Figure 8.6 that Set1 reproduces the stresses well in both uniaxial tensile tests
in longitudinal and transverse direction, but the really good agreement in the whole range
θ ∈ [0 ◦, 90 ◦] was unexpected. This is actually due to the values chosen for a4, b5 and b10
which will be discussed in the context of the results presented in Figure 8.9 below.
The Lankford parameters and stress levels resulting from Set2, which are shown in Fig-
ure 8.8, are even much worse than those resulting from Set1. Optimizing the model

parameter sets in accounting for the ratios jkr̄
ref

in the reference biaxial tests, as it was
done for Set1, seems thus still to be effective and improves considerably the prediction
of R values.

0 2 0 4 0 6 0 8 0 1 0 0
- 0 , 5

0 , 0

0 , 5

1 , 0

1 , 5

2 , 0

2 , 5

3 , 0

3 , 5

4 , 0

A n g l e  t o  l o n g i t u d i n a l  d i r e c t i o n  o f  t e n s i l e  d i r e c t i o n  [ d e g r e e ]

R 
[.]

σ 
[M

Pa
]

A n g l e  t o  l o n g i t u d i n a l  d i r e c t i o n  o f  t e n s i l e  d i r e c t i o n  [ d e g r e e ]
0 2 0 4 0 6 0 8 0 1 0 0

1 0 0

1 5 0

2 0 0

2 5 0

 S e t 2 0 . 0 5
 S e t 2 0 . 1 0
 S e t 2 0 . 1 5
 C P 0 . 0 5
 C P 0 . 1 0
 C P 0 . 1 5

 S e t 2 0 . 0 5
 S e t 2 0 . 1 0
 S e t 2 0 . 1 5
 C P 0 . 0 5
 C P 0 . 1 0
 C P 0 . 1 5

 

Figure 8.8: Mechanical response of a Mg plate described by Set2 and subjected to uniaxial
tensile tests in the plate’s plane, in term of Lankford parameters R and stresses σ

The R values predicted by Set2 are near to zero compared to the crystal plasticity results
CP from about 2.5 to 3.2. They take even negative values which indicates that one of the
directions of the tested specimen, width or thickness, becomes thicker. Such a behavior is
unusual but is not necessary contrary to the assumption of volume constancy for plastic
deformation. As it was already noted in Figure 8.7 the R values in Figure 8.8, are again
not constant with increasing strain. It seems thus that neither optimizing the model pa-

rameters in accounting for both jkσ̄
ref

and jkr̄
ref

nor optimizing the model parameters
in accounting for only one of these quantities leads to R values constant with increas-
ing strain. The concept of hardening by model parameters depending on the equivalent
plastic strain, εp, appears to be inappropriate for predicting correct Lankford parameters.
Assuming an exponential function of εp for the model parameters, saturation would have
to occur at low strains below 5%, if the Lankford coefficients are considered, and at about
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15%, if the yield surfaces are examined, at the same time, which is obviously contradic-
tory.
The stress levels resulting from Set2 in Figure 8.8, are also far from the reference one
CP compared to the one resulting from Set1 in Figure 8.7. This may be considerably
improved in changing the values of the model parameters a4, b5 and b10, see Figure 8.9.
These model parameters are related to the shear component σLT , see equation 8.2 and
equation 8.3, and thus act on the material’s yield behavior, see equation 8.1. The stress
state for uniaxial tension in some angle θ is,

σLL = σθ cos2 θ, σTT = σθ sin2 θ, and σLT = σθ sin θ cos θ, (8.56)

where σθ is the uniaxial stress under this angle. The stress component σLT is thus not
zero in the range θ ∈]0 ◦, 90 ◦[. For the calculations displayed in Figure 8.9 the values of
model parameters b5 and b10 were chosen to remain equal to zero for simplicity, and only
a4 is varied from 1, 2 and 3.
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Figure 8.9: Influence of model parameter a4 onto the mechanical response of a Mg plate
described by Set1 and subjected to uniaxial tensile tests in the plate’s plane, in terms of
Lankford parameters R and stresses σ

The influence of model parameter a4, varying from 1 to 3, on the mechanical response of
a Mg plate described by Set1 at 0.10 strain is high since the R value for θ ' 50 ◦ has
been almost doubled and the stress level for θ ' 45 ◦ has been reduced by more than
50 MPa. These results, shown in Figure 8.9, emphasize the fact that model parameters
acting together with shear stress components may be well fitted while accounting for the
Lankford parameters of uniaxial tension tests in the sheet’s plane at different angles θ to
the longitudinal direction. The variations of R values and stresses σ in Figure 8.9 with a4

are opposite and dicted by the flow rule, here an associated flow rule see equation 4.6. In
both cases, considering Set1 and Set2 in Figure 8.7 and 8.8, respectively, this opposite
variation of the R values and stresses σ, as model parameter a4 changes, would not lead
to an improvement of the predicted strains and stresses. Indeed, for both Set1 and Set2
higher a4 values would be needed to obtain higher R values but the consequence would be
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a bad prediction of the yield stresses σ for Set1, which was actually satisfactory, and an
even worse prediction of the yield stresses σ for Set2, which was already not satisfying.
This observation thus seems to indicate that an associated flow rule may definitely not be
adapted to describe such an anisotropic mechanical behavior and hardening behavior like
that of magnesium sheets. This is especially true as it seems impossible to obtain good
R values and stress levels simultaneously.
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Chapter 9

Phenomenological Modeling: Deep
Drawing of a Cup

One example of the deformation of structures is the drawing, or deep drawing, process
which is widely used and consists in forming metal sheets into cylindrical or box shaped
parts by pressing the metal sheet into a cavity using a punch. Beverage cans, pans or
containers of different shape and sizes are typical components which are produced by
drawing processes, but also car body panels.

9.1 Drawing Process

Many phenomena which are observed in the drawing process of complicated shapes, like
springback, wrinkling, necking, or earing can also be seen in drawing more simple shapes
like cups. The simulation results presented in this chapter are therefore restricted to
drawing of a circular blank. A schematic representation of the cup drawing process is
shown in Figure 9.1. In this figure the so called blank is a circular metal sheet, with
diameter Db and thickness T , and is placed over a hollow die with inner diameter Dd and
corner radius Rd. The blank is hold in place by the holder with corner radius Rh. During
the process the punch, with diameter Dp and corner radius Rp, moves down under the
action of force F . The action of the punch thus forms the desired cup.
In general, drawing of metals is an operation which consists in exerting tensile and
associated compressive stresses over a large area of the blank. Plastic deformation
develops therefore in large areas of the working piece being deformed. Moreover the
stress state at a material point in the blank is multiaxial and depends on the area
considered over the blank. This difference in stress state is displayed in Figure 9.2.
A material point situated in the flange region, which is the part of the blank that has
not yet entered the die, is subjected to tensile stresses in radial direction, resulting from
the punch pulling action, and to compression stresses in tangential direction, resulting
themselves from the reduction of the flange diameter when moving in the direction of the
die. A material point in the cup wall, portion of the cup being drawn in the die, is still
subjected to tensile stresses in radial direction due to the punch pulling action. Moreover,
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Figure 9.1: Schematic representation of the cup drawing process

tensile stresses in radial direction tend to induce contraction in tangential direction which
is prevented by the punch geometry and thus tensile stresses in tangential direction
result. A material point situated in the region where the blank is in contact with the
punch bottom is often not subjected to high stresses. Because of the complicated stress
states which may appear in this forming process it constitutes an adequate case for the
study of sheets’ structural responses depending on their mechanical properties.

σr

σr

σt

σt

σr

σr

σt

σt

flange

wall

Figure 9.2: Stress state developing during cup the drawing process

The mechanical properties of the sheets studied in this chapter are introduced in the
finite element model described in next section via the yield criterion of Cazacu and
Barlat [19], introduced and described in chapter 8. The relation between textures and
mechanical properties is realized with a crystal plasticity model, see chapter 7, and the
model parameters for the yield criterion of [19] are calibrated with the optimisation
procedure described in chapter 8. The resulting model parameters reproduce than, more
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or less well, the mechanical properties of the sheet with the considered texture. The
influence of the magnesium rolled plates’ texture onto their formability can finally be
evaluated and studied in detail.

The finite element model used in the following calculations is presented in Fig-
ure 9.3. The blank consists of a disc of 8-nodes 3D brick finite elements with two layers
of elements in the blank thickness. The three tools, die, holder and punch, are modeled
by rigid surfaces.

a) b)

punch

holder

blank

die

Contact
pressure

Clearance

exponential pressure-
overclosure relationship

c

p

0

0

Overclosure

Figure 9.3: Finite element model of a cup drawing process a) and exponential pressure-
overclosure relationship for normal stress contact definition between two surfaces b)

In this model the unitless dimensions of blank and tools are given in table 9.1. In the
following simulation the punch displacement is strain driven and not force driven, as
illustrated in Figure 9.1, and the contact between blank and all three tools, die, holder
and punch is assumed not to be frictionless. The friction is assumed to be of Coulomb
nature and is defined by the relation,

τ = µσn (9.1)

where the shear stress τ acting on the surface in contact is proportional to the normal stress
σn acting between these surfaces through coefficient µ. The coefficients µ = 0.01, 0.01, and
0.15 are chosen to describe frictional behavior between blank and die, blank and holder,
as well as blank and punch, respectively. The contact definition between two surfaces,
in term of the normal stress σn is defined through an exponential pressure-overclosure
relationship with the parameters p0 = 2.0 and c0 = 0.0005 as shown in Figure 9.3. This
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relationship helps to avoid convergence problems in defining a continuous function for the
contact normal stress σn from clearance to overclosure states.

Db T Dd Rd Dh Rh Dp Rp

20. 0.12 12.72 2. 12.5 0.25 12. 1.

Table 9.1: Geometry, in dimensionless values, of the finite element model of the cup drawn
process illustrated in Figure 9.1

9.2 Cup Drawing Results using Different Sets of

Model Parameters

As discussed in chapter 8 the phenomenological yield surface proposed by Cazacu and Bar-
lat [19] is an appropriate candidate to describe the deformation behavior of magnesium
alloys at phenomenological level since the plastic potential includes the third invariant
of the stress tensor and hence accounts for anisotropy and unlike yielding in tension and
compression. Its implementation, assuming first the equivalent plastic strain after von
Mises as an internal variable to describe the state of plastic deformation, and secondly an
associated flow rule to link stress and strain components, is however not fully satisfying,
as discussed in chapter 8. In this section the influence of different hardening behaviors
onto the resulting shapes of circular blanks subjected to the drawing process described
previously is investigated.
The numerous model parameters have been identified using the optimisation procedure
described in chapter 8 and based on the yield surfaces for rolled plates generated through
virtual biaxial testing with the crystal plasticity model, see chapter 7. Since the yield
surface shape changes with increasing plastic strain, the model parameters are defined as
a function of the plastic strain and are thus, in general, not constant.
Figure 9.4 displays the distribution of the equivalent plastic strain in the deformed state
of cups issued from the deep drawing process described in previous section, for four dif-
ferent model parameter sets: Set1, Set2, Mises and Set1 (a4 = 3). The coefficients Ai,
Bi, and Ci for Set1 and Set2, describing the model parameters as a saturating exponen-
tial function of the equivalent plastic strain after equation 8.54, are given in Tables 8.1
and 8.2. In the case of Set1 (a4 = 3) the coefficients Ai, Bi, and Ci are the same than
those of Set1 except that model parameter a4 is defined as a constant equal to 3 instead
of 1. The model parameters of the set Mises representing an isotropic von Mises material,
are defined as constants with a1 to a6 being equal to 1 and b4 to b11 being equal to 0, as
discussed in the first section of chapter 8.
Figure 9.4 evidences that the cups’ deformed configurations for the 4 sets are much dif-
ferent, and thus very sensitive to the model parameter sets used. The plate described by
Mises a) shows for example a homogeneous distribution of the equivalent plastic strain
εp over the cup circomference while the plate described by Set1 (a4 = 3) d) shows a
localisation of plastic deformation which leads to the constitution of four ears. Such an
earing profile is typical for materials with anisotropic yielding behavior, it is even sort of
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a measure for anisotropy.

a) b)

c) d)

high

low

εp

Figure 9.4: Distribution of the equivalent plastic strain εp in the deformed state of cups
issued from the deep drawing process described in previous section for four model parameter
sets, Mises a), Set2 b), Set1 c), Set1 (a4 = 3) d)

Figure 9.5 allows for a more detailled analysis of the cup profile since the height of the de-
formed cup, normalized over the initial blank radius, is illustrated. As already recognized
on Figure 9.4 the von Mises material, set Mises, deforms homogeneously, its normalized
cup height is constant along the whole cup circumference. For this reason, the results
of this simulation are taken as reference and the normalized cup height of the von Mises
material is defined as the zero level. The normalized cup heights, over the blank initial
radius, for the materials described by the other model parameter sets show deformations
of about 3 to 4% above and below that of the von Mises material, set Mises. This level
of deformations is far not neglectable if realistic results, comparable to experiments, are
desired while modeling this process.
It appears also in Figure 9.5 that the earing profiles obtained with the different sets of
model parameters are extremely different from each other in their shapes. The number
of ears and their heights are obviously not the same. Due to these dissimilarities the
choice of the most adequate parameter set has to be done regarding experimental data.
With the implementation presented in this work the influence of yielding anisotropy, and
thus of material texture, onto the mechanical properties of Mg sheets, as well as on the
formability of these sheets, can be studied in detail in modeling this cup drawing process.
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Figure 9.5: Cup height, normalized over the initial blank radius, after deep drawing for
the different model parameter sets of Figure 9.4



Chapter 10

Summary and Conclusions

In the first part of the present thesis the mechanical behavior of pure magnesium at room
temperature has been studied using a model for crystal plasticity without considering
strain rate effects. The channel die experiments realized by Kelley and Hosford [43, 44] on
single crystals and polycrystalline magnesium aggregates have been succesfully simulated.
The experimental observations of a strong anisotropy, very different stress-strain curves,
depending on the initial sample orientations could be reproduced accurately. This
investigation revealed the active deformation modes in pure magnesium namely, basal
slip 〈a〉 {0001} 〈1120〉, prismatic slip 〈a〉 {1100} 〈1120〉, pyramidal slip 〈a + c〉 {1122}
〈1123〉 and tensile twinning {1012} 〈1011〉, and even more, it was extremely usefull in
identifying the numerous material parameters required by the crystal plasticity model.
This essential step permitted than to investigate the mechanical properties of extruded
rods and rolled plates in mapping their corresponding textures into a finite element
model. The experimentally observed macroscopic phenomena, like a strong anisotropy
and an unlike yielding in tension and compression, of such rods and plates could be well
reproduced. These phenomena could also be understood in detail in analyzing the level
of activity of the different deformation modes compared to each other. For example,
tensile twinning has been clearly identified to control the unlike yielding in tension and
compression. Basal and prismatic slip were for example shown to compete with each
other for the in-plane deformation of Mg rolled plates.
The yielding and the hardening behavior of Mg single crystals as well as polycrystalline
aggregates have been generated in performing virtual biaxial test simulations. Their high
sensitivity to crystallographic orientations and to the material parameters introduced
into the model has been emphasized. These investigations revealed for example that, the
yield surfaces of Mg single crystals are very much anisotropic and strongly non-convex
at higher strains. The non-convexity is due to transition from one dominant deformation
mode to another one and is particularly sharp because of the very disimilar hardening
behavior of the corresponding deformation modes. But also, in non-textured samples,
a yielding asymmetry in tension and compression is induced at strains of about 0.05
and 0.10, which explains the different mechanical behavior observed in tension and
compression of Mg billet materials.
The approach, which consist in identifying the active deformation mechanisms of a hcp
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material with the channel die test, and extending afterwards to biaxial test simulations,
appeared to be successful.

In order to perform simulations of forming processes, particularly the drawing of
plates made of Mg alloys, the anisotropic yield potential of Cazacu and Barlat [19] was
implemented and coupled with a hardening concept allowing for changes in the yield
surface’s shape during hardening. In this model the state of plasticity is represented by
the von Mises equivalent plastic strain and an associated flow rule is assumed. Model
parameters for this yield potential have been calibrated referring to computed biaxial test
simulations and using an optimization procedure developed especially for this purpose.
This phenomenological model revealed that plastic anisotropy for uniaxial tension in the
plate’s plane at different angles from the plate’s longitudinal direction can be reproduced
well in terms of yield stresses but badly in terms of strains (Lankford parameters).
This investigation suggests that either an internal variable different from the equivalent
plastic strain or more than one variable should be used to describe the state of plasticity.
Moreover, this investigation suggests in particular that a non associated flow rule
should be introduced. The structural behaviour of a circular blank subjected to deep
drawing has been simulated with this model, which has shown that even a small yielding
anisotropy and slightly different hardening behaviors have an important impact onto
the cup deformed shape. Depending on the model parameter sets considered, the
number and height of the resulting ears varied much. This underlines the importance of
being able to control the initial texture of sheets which are destined to such fabrication
processes. The phenomenological model developed here allows for interesting investi-
gations linking plate texture, mechanical anisotropy, and structural deformation behavior.

The methodology presented here, starting from channel die tests of single crystals
and polycrystalline aggregates and going to the simulation of drawing processes, leads
to a profound understanding of the deformation behavior of magnesium and magnesium
alloys, from microscopical to structural level. This methodology is well adapted to hcp
metals and is therefore easily extendable to hcp metals other than Mg. It thus constitutes
an attractive tool to be used for the improvement and optimisation of fabrication
processes as well as for the development of hcp alloys with specific desired mechanical
properties.

It would be of great interest for future work in this area to improve the modeling
of tensile twinning in accounting for the lattice rotation. This would allow for the
modeling of texture evolution and would permit thus an even more profound under-
standing of the underlying mechanisms controlling the deformation of hcp metals.
Excellent contributions to this purpose are for example [4, 73, 75] and [86]. Very recently
investigations of the mechanical response of magnesium sheets subjected to strain path
changes and cyclic loading have been started, see [40, 52]. Both works emphasize the
important role of mechanical twinning in defining the mechanical properties of Mg sheets.
Another crucial aspect to be considered while developing or improving phenomenological
models for magnesium is, that for a given final strain state different non-monotonic strain
paths histories lead to different final stress states. Consequently, in order to allow for the
development of a model able to reliably predict the mechanical behavior of magnesium
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and magnesium alloys sheets, future work should focus on the choice of an appropriate
internal variable representing the state of plastic deformation, on the developement of an
adequate non associated flow rule, and of a hardening concept accounting for strain path
dependency.
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Appendix A

Definition of a Crystallographic Orientation

Usually either the Roe [68] or Bunge [17] system are used to define crystallographic
orientations in space. Both systems use three so called Eulerian angles which define
three succesive rotations around one of the axes of a coordinate system rotating under
the action of the Eulerian angles. In the model for crystal plasticity used in this work
and presented in chapter 3, which is implemented as a user-material (UMAT) subroutine
for the finite element code ABAQUS, the possibility to use one of these systems is not
given. Nevertheless, the possibility to use a system with angles

(
ψ1, θ, ψ2

)
defining three

successive rotations around a global coordinate system
(
X, Y, Z

)
, which do not rotate

under the action of the latter angles, is given.
The system used in this work, for describing crystallographic orientations, is still another
one. The possibility, within the finite element code ABAQUS, to define local coordinate
systems is used here. Indeed, using a system where three angles are to be defined
implies that the material properties, in the ABAQUS input file, are to be defined for
each crystallographic orientation considered. This may be a huge number in case of
simulations of polycrystalline aggregates. Instead it was found more convinient by the
author to define many local coordinate systems, in the ABAQUS input file, rather than
material properties.
Figure 10.1 shows a hcp structure in the coordinate system of the crystal

(
1, 2, 3

)
and an

arbitrary representation of the hcp structure where the coordinate system of the crystal(
1, 2, 3

)
does not coincide with the global

(
X, Y, Z

)
one.
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Figure 10.1: hcp structure in the coordinate system of the crystal
(
1, 2, 3

)
(left) and an

example of crystallographic orientation where local
(
1, 2, 3

)
and global

(
X, Y, Z

)
coordinate

systems are different (right)

The problem of reproducing the real texture of a real material into a virtual model is
complex because of the reduced orientations mapped in the model but not only, see for
example [1, 48, 81, 76, 14]. Since almost no mesured experimental textures are available
in this work the different texture types generated in this work, in the manner described
just after, are destined to reproduce the billet material, extruded rod, and rolled texture
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texture in a qualitative way only. A qualitative reproduction of the texture is assumed
to capture well enough the mechanical behavior of the material.
The pole figures presented in this work all correspond to crystallographic orientation(
0001

)
, in the Miller-Bravais coordinate system, indicating the c-axis of the hexagonal

structure (axe 3 in Figure 10.1) and are represented via the stereographic projection
method shown in Figure 10.2. In this method point P is the projection of point I,
intersection point of the hexagon c-axis with the unit sphere, on the pole figure plane
while the projection pole is at the sphere bottom.

2

X Y

Z

P

I
Plane of the
 pole figure

Projection
     pole

Figure 10.2: Principle of the stereographic projection for the representation of pole figures

Non-textured Material

A non textured material is characterised by a homogeneous repartition of crystal-
lographic orientations over the surface of the unit sphere already shown in Figure 10.2.
Only the orientations in space of the hexagon c-axis are of interest in this work and
only those are therefore generated using the procedure described just after. As shown
in Figure 10.3 where the angles θ and φ define the c-axis orientation in space, the
infinitesimal surface element dS corresponding to this orientation may be written as,

dS = r2 sin θ dθ dφ (10.1)

where r is the unit sphere radius, 1. The surface S of the semi-sphere is then,

S =

∫ 2π

0

∫ π/2

0

sin θ dθ dφ =

∫ 2π

0

dφ

∫ π/2

0

sin θ dθ = 2π

∫ π/2

0

sin θ dθ = 2π. (10.2)

The cumulative distribution function P , corresponding to the integrated probability den-
sity function p of a crystallographic orientation, is identified to the equation of the semi-
sphere surface but has to be equal to 1, instead of 2π. The related probability density
function and cumulative distribution function of a crystallographic orientation, which
realise the desired homogeneous repartition of c-axis, is therefore,

p =
sin θ

2π
and P =

∫ 2π

0

∫ π/2

0

sin θ

2π
dθ dφ = 1. (10.3)
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Figure 10.3: Definition of crystallographic (0001) orientation for a non textured material

The variables φ and θ are independent and are thus treated independently in the
following.
One can recognize first that p is independent of φ, and P varies thus linearly with φ.
This indicates that the values of angle φ may simply be generated randomly in the range[
0, 1
]

and multiplied by its domain size 2π. In this way, the variable φ defining partly the
orientation of discrete c-axis orientations in space is generated easily for a non textured
material.
The usual way to generate values which follow a certain probability density function is
to generate random values in the range

[
0, 1
]

and to consider the transformation issued
from the inverse function of the cumulative distribution function. In the case of variable
θ the inverse function of the cumulative distribution function is θ = arccos

(
val
)

with
val ∈

[
0, 1
]
. Following this method the variable θ defining partly the orientation of

discrete c-axis orientations in space is also generated easily for a non textured material.
An additionnal random rotation around the c-axis, axis 3 of the hcp crystal coordinate
system, is defined in order to avoid prefered orientations (other than c-axis) and thus
any kind of texture in the virtual material.

Extruded Rod Texture

Extruded rod textures of magnesium are characterized by a strong prefered orien-
tation of the grains’ crystallographic orientation (c-axis) in the rod radial plane. A
schematic representation of the model of a rod texture used in this work is displayed in
Figure 10.4.
First, the direction of the c-axis in the radial plane is arbitrary and thus defined randomly
while generating the discrete orientations needed in the numerical calculations of this
work. The certain deviation of the c-axis direction from the radial plane, towards
extrusion direction, is reproduced via a normal distribution centered on the radial plane
along the pole figure circomference and with standard deviation σsd, see Figure 10.4.
The characterization of this model, for generating a magnesium extruded rod texture, is
thus realised in defining one single parameter σsd.
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Radial direction

Radial direction

σsd

Extrusion direction 

Figure 10.4: Simple model of a (0001) pole figure corresponding to a Mg extruded rod
texture

Rolled Plate Texture

Rolled plate textures of magnesium are caracterised by a strong prefered orienta-
tion of the grains’ crystallographic orientation (c-axis) in the plate thickness direction.
Usually a certain deviation from the thickness direction, towards rolling and tranverse
direction, is observed. This deviation is generally slightly higher in rolling than in
transverse direction. Crystallographic orientations, other than c-axis orientation, usually
do not show strong prefered orientations. In order to model a rolled plate texture, it
is assumed to be composed of two main texture components representing the c-axis
orientations, see Figure 10.5. These two components consist each in a two dimensional
multinormal law defining the probability density function of the crystallographic orien-
tations (c-axis) in the pole figure of Figure 10.5.

2

dd

X = Rolling direction

Y = Transverse direction

σsd

σsd

Figure 10.5: Simple model of a (0001) pole figure corresponding to a Mg rolled plate
texture
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Each probability density function p is defined as,

p(X,Y ) =
1

4σsd
2

[
exp

(
−
(
X − d

)2
+ Y 2

2σsd
2

)
+ exp

(
−
(
X + d

)2
+ Y 2

2σsd
2

)]
, (10.4)

where X and Y are coordinates in the pole figure plane, d is the distance to the origin
of the texture components’ centers with respect to direction X, and σsd is the standard
deviation of the multinormal law. The standard deviation is taken identical in both direc-
tions X and Y which actually correspond to rolling and transverse direction, respectively.
After the principle of the stereographic projection shown in Figure 10.2 the two texture
components are represented by a disc in the pole figure as illustrated in Figure 10.5. Ad-
ditionnaly, in order to avoid prefered orientations for other crystallographic orientations
than c-axis, a random rotation around the c-axis, axis 3 of the hcp crystal coordinate
system, is defined. In this work, the characterisation of the model for generating a
magnesium rolled plate texture is thus realised in defining only two parameters, d and σsd.
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Appendix B

The partial derivatives of the quantities Φ(m) and Γ(m) with respect to the equiv-
alent plastic strain ε

(m)
p and the stress tensor σ(m), which appear in the system of

equations 8.46, are developed in detail in this appendix. These derivatives are required
for the numerical integration of the yield criterion of equation 8.1. The mathematical
expression of the quantities to be derivated are defined in the system of equations 8.44
which reads,

Φ(m) = f
(
σ(m), εp

(m)
)
− h
(
εp

(m)
)

= 0

Γ(m) = σ(m) −

 Ce :

 E−

∂f

∂σ(m)
εp

(m)√
2

3

[
∂f

∂σ(m)
:

∂f

∂σ(m)

] 1
2


 = 0

.

The superscripts (m) in the system of equations 8.44 and 8.46 are omitted here for the
sake of simplicity. The expression of the desired partial derivatives with respect to εp and
σ are decomposed as:

• ∂Φ

∂εp
=
∂f

∂εp
− dh

dεp
=
∑

i

∂f

∂Jo
2

∂Jo
2

∂ai

∂ai

∂εp
+
∑

j

∂f

∂Jo
3

∂Jo
3

∂bj

∂bj
∂εp

− dh

dεp

• ∂Φ

∂σ
=
∂f

∂σ
=

∂f

∂Jo
2

∂Jo
2

∂σ
+

∂f

∂Jo
3

∂Jo
3

∂σ

• ∂Γ

∂εp
=

[
Ce :

∂f

∂σ

]
√

2

3

[
∂f

∂σ
:
∂f

∂σ

] 1
2

• ∂Γ

∂σ
=
∂σ

∂σ
+

 Ce :
∂

∂σ


∂f

∂σ
εp√

2

3

[
∂f

∂σ
:
∂f

∂σ

] 1
2




=
∂σ

∂σ
+ εp

√
3

2

[
Ce :

(
∂

∂σ

([
∂f

∂σ
:
∂f

∂σ

]− 1
2
)

︸ ︷︷ ︸
Ξ

∂f

∂σ
+

[
∂f

∂σ
:
∂f

∂σ

]− 1
2 ∂

∂σ

(
∂f

∂σ

))]

=
∂σ

∂σ
+ εp

√
3

2

[
Ce :

(
Ξ
∂f

∂σ
+

[
∂f

∂σ
:
∂f

∂σ

]− 1
2 ∂2f

∂σ∂σ

)]
.

The term Ξ may be further developed as

Ξ = −1

2

[
∂f

∂σ
:
∂f

∂σ

]− 3
2 ∂

∂σ

 ∑
k=1,3
l=1,3

(
∂f

∂σkl

)2

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In the previous expression the summation is realised over all the components of the stress
tensor denoted by the subscript kl. The second derivatives of function f with respect to
the stress tensor σ may be rewritten as,

∂2f

∂σ∂σ
=

∂

∂σ

(
∂f

∂σ

)

=
∂

∂σ

(
∂f

∂Jo
2

∂Jo
2

∂σ
+

∂f

∂Jo
3

∂Jo
3

∂σ

)
=

∂

∂σ

(
∂f

∂Jo
2

)
⊗ ∂Jo

2

∂σ
+

∂f

∂Jo
2

∂

∂σ

(
∂Jo

2

∂σ

)
+
∂

∂σ

(
∂f

∂Jo
3

)
⊗ ∂Jo

3

∂σ
+

∂f

∂Jo
3

∂

∂σ

(
∂Jo

3

∂σ

)
=

(
∂2f

∂Jo
2

2

∂Jo
2

∂σ

)
⊗ ∂Jo

2

∂σ
+

∂f

∂Jo
2

∂2Jo
2

∂σ∂σ
+

∂f

∂Jo
3

∂2Jo
3

∂σ∂σ
.

In the above expression the term ∂
∂σ

(
∂f
∂Jo

2

)
is reformulated as ∂2f

∂Jo
2
2

∂Jo
2

∂σ
, and ∂

∂σ

(
∂f
∂Jo

3

)
= 0

after equation 8.1 is used.

The derivatives are now expressed as functions of the following quantities:

∂f

∂Jo
2

∂f

∂Jo
3

∂Jo
2

∂ai

∂Jo
3

∂bj

∂ai

∂εp

∂bj
∂εp

dh

dεp

∂Jo
2

∂σ

∂Jo
3

∂σ

∂2f

∂Jo
2

2

∂2Jo
2

∂σ∂σ

∂2Jo
3

∂σ∂σ
.

Since most of these derivatives are vectorial and tensorial quantities having many com-
ponents, a detailed development of each of these quantities would be very long and is
therefore not presented here. Moreover, these derivatives can be obtained from equa-
tions 8.34, 8.2, 8.3 and 8.9, the variables ai and bj appearing in equations 8.2 and 8.3 as
well as σL in equation 8.9 being functions of the equivalent plastic strain.
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Appendix C

In both Tables in this Appendix the 16 lines denotes the biaxial loading paths of
the yield surfaces in the (L, T )-planes (indice k in chapter 8), starting from uniaxial
tension in longitudinal direction. The 15 rows denotes the isocontours of plastic strain
(indice j in chapter 8), from ε = 0.01 to 0.15.

j = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
k = 1 20. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20.
2 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
3 20. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20.
4 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
5 20. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20.
6 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
7 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
8 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
9 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
10 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
11 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
12 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
13 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
14 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
15 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
16 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

Table 10.1: Weight coefficients jkµ
σ̄

used in the optimisation procedure for Set1 in chapter
8, the coefficients jkµ

r̄
all set to zero
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j = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
k = 1 25. 25. 25. 25. 25. 0. 0. 0. 0. 0. 25. 25. 25. 25. 25.
2 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1.
3 500. 500. 500. 500. 500. 0. 0. 0. 0. 0. 500. 500. 500. 500. 500.
4 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1.
5 25. 25. 25. 25. 25. 0. 0. 0. 0. 0. 25. 25. 25. 25. 25.
6 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1.
7 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1.
8 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1.
9 10. 10. 10. 10. 10. 0. 0. 0. 0. 0. 10. 10. 10. 10. 10.
10 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1.
11 5. 5. 5. 5. 5. 0. 0. 0. 0. 0. 5. 5. 5. 5. 5.
12 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1.
13 10. 10. 10. 10. 10. 0. 0. 0. 0. 0. 10. 10. 10. 10. 10.
14 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1.
15 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1.
16 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1.

Table 10.2: Weight coefficients jkµ
r̄
used in the optimisation procedure for Set2 in chapter

8, the coefficients jkµ
σ̄

all set to zero
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