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Abstract

The present work deals with the modeling and simulation of deformation and fracture behavior
of fully lamellar γTiAl alloy; focusing on understanding the variability of local material properties
and their influences on translamellar fracture. A fracture model has been presented that takes the
inhomogeneity of the local deformation behavior of the lamellar colonies as well as the variability in
fracture strength and toughness into consideration. To obtain the necessary model parameters, a
hybrid methodology of experiments and simulations has been adopted. The experiments were
performed at room temperature that demonstrates quasi-brittle response of the TiAl polycrystal.
A remarkable variation in stress-strain curves has been found in the tensile tests. Additional fracture
tests showed significant variations in crack initiation and propagation during translamellar fracture.
Analyzing the fracture surfaces, the micromechanical causes of these macroscopic scatter have
been explained. The investigation shows that the global scatter in deformation and fracture
response is highly influenced by the colony orientation and tilting angle with respect to the loading
axis. The deformation and fracture behavior have been simulated by a finite element model
including the material decohesion process described by a cohesive model. In order to capture the
scatter of the macroscopic behavior, a stochastic approach is chosen. The local variability of stress-
strain in the polycrystal and the variability of fracture parameters of the colonies are implemented
in the stochastic approach of the cohesive model. It has been shown that the proposed approach is
able to predict the stochastic nature of crack initiation and propagation as observed from the
experiments. The global specimen failure with stable or unstable crack propagation can be
explained in terms of the local variation of material properties.

Modellierung und Simulation des Verformungs- und Bruchverhaltens von Bauteilen
aus lamellaren γTiAl-Legierungen

Zusammenfassung

Ziel der vorliegenden Arbeit ist die numerische Analyse durch Modellierung und Simulation des
Verformungs- und Bruchverhaltens von lamellaren Titan-Aluminid-Legierungen (γTiAl) im
kontinuumsmechanischen Rahmen der Finiten-Element-Methode. Im Zentrum der Arbeit steht



dabei die Berücksichtigung der stochastischen Variabilität von lokalen Materialeigenschaften
und deren Auswirkung auf die global messbaren Größen wie Kraft und Verschiebung ein-
schließlich der dabei auftretenden lamellaren Rissentwicklung. Hierfür wurde ein neuartiger
stochastischer Ansatz verwendet, bei dem lokale Werkstoffinhomogenitäten im Modell durch
unregelmäßige Verteilung von Zugfestigkeiten und Bruchzähigkeiten berücksichtigt werden.
Unter der Bezeichnung lokal wird hierbei die Mesoebene über der Mikrostruktur verstanden, bei
der die Eigenschaften von einer Lamellenkolonie als homogen betrachtet werden. Die unregel-
mäßige Verteilung ergibt sich durch die Vielzahl von Kolonien in einem Probenkörper mit
jeweils unterschiedlichen Materialeigenschaften. Mit dem stochastischen Ansatz lassen sich so
unterschiedliche Verteilungen systematisch analysieren. Für die Simulation des Polykristalls aus
γTiAl wurden die Kolonien durch regelmäßige Blöcke idealisiert und mit stochastischen Material-
parametern versehen. Für die Beschreibung der Bruchentwicklung wurde das Kohäsivmodell
verwendet. Um die lokalen Modellparameter realitätsnah zu bestimmen, wurde eine hybride
Vorgehensweise gewählt, bei der zum einen experimentell zugängliche lokale Parameter direkt
verwendet werden und zum anderen die weiteren Parameter durch numerische Simulationen an
Hand von global bestimmten experimentellen Kurven ergänzt werden. Das Werkstoffverhalten
wurde bei Raumtemperatur bestimmt, da hierbei das quasi-spröde Verhalten der polykristallinen
γTiAl-Legierung als Turbinenwerkstoff der kritische Zustand ist. Versuche an Flachzugproben
ergaben (makroskopisch) eine deutliche Variation in den Spannungs-Dehnungskurven. Ebenso
zeigten die Versuche an Bruchmechanikproben eine signifikante Variation hinsichtlich der Riss-
intiierung und translamellaren Rissausbreitung sowie Eintritt des instabilen Versagens. Die
Analyse der Bruchflächen bei den Chevron-Biegeproben lieferte ein Verständnis über die Streuung
der Kraft-Verschiebungskurven. Darüber hinaus zeigen die Simulationen, dass nicht notwendiger-
weise das schwächste Korn (Kolonie) das Versagen einleitet, sondern daran auch die
Orientierungen der Nachbarkolonien in Form von unterschiedlichen Festigkeiten beteiligt sind.
Es konnte gezeigt werden, dass mit dem gewählten stochastischen Ansatz das Verhalten von Zug-
und Biegeproben mit unregelmäßiger Rissentwicklung sowie das instabile Versagen realitätsnah
beschreibbar sind.

Manuscript received / Manuskripteingang in TKP:  22. Dezember 2008
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Notations

Cohesive parameters

T0 Maximum cohesive traction
Γ0 Critical separation energy
δ0 Maximum cohesive separation
δ1, δ2 Cohesive shape parameter

Crystal plasticity parameters

g0 Critical resolved shear stress
h0 Hardening parameter
γ̇(η) Shear rate of the slip system η
τ(η) Schmidt-stress in η

Deformation and Fracture parameters

σ Uniaxial stress (from tension test)
ε Total strain (from tension test)
σe Equivalent stress
εe Equivalent strain
σ22 Component stress in direction 2
ε22 Component strain in direction 2
K Stress intensity factor
KIc Critical stress intensity factor for mode I fracture
G Energy release rate
GIc Critical energy release rate for mode I fracture
J J-Integral
a0/W Notch ratio
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Abbreviations

EPFM Elastic plastic fracture mechanics
S E(B) Single notch bending specimen
CV Chevron
CMOD Crack mouth opening displacement
CTOD Crack tip opening displacement
CZM Cohesive zone model
Rect − TS L Cohesive model with rectangular shape
Tria − TS L Cohesive model with triangular shape
CRSS Critical resolve shear stress
PST Polly synthetically twinned
PUC Periodic unit cell
RVE Representative volume element
RCorRD R for random, C or D for random type
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Chapter 1

Introduction

1.1 Motivation

From the perspective of advanced light weight materials, the gamma based titaniumaluminide alloys
(commonly known as γTiAl) are considered very attractive for high temperature applications [1, 2].
These alloys have excellent properties, which include low density (specific weight of 3.85 g/cm3),
high specific stiffness (elastic modulus about 175 MPa), and good oxidation resistance. Due to these
properties the material is lightweight, and shows enhanced thermo-mechanical behavior compared to
the conventional Ti and Ni alloys. Therefore, the alloy has been foreseen as a propitious material for
different rotary components of aero engines [3]. Among the γTiAl alloy families, the fully lamellar
microstructure with small colony size (about 50-150 μm) shows high stiffness and good fracture
toughness [4–7]. The main drawbacks of this alloy are the poor ductility (1-2 % total strain), inherent
brittleness and unpredictable nature of failure. As known from the laboratory testing, the alloy can not
sustain increasing load after crack initiation, especially at room temperature where the material fails
almost quasi-brittle manner. Sometimes, small propagation of cracks may occur depending on the
geometry and loading type, however, the material ultimately fails catastrophically without undergoing
noticeable plastic deformation.

In a fully lamellar polycrystal, lamellar colonies are randomly oriented in transverse direction. The
failure in this type of microstructure is attributed to interlamellar or translamellar fracture which is
controlled by the orientations of the lamellar colonies. During the transverse crack propagation a
crack-front advances through favorably oriented lamellae, mostly by translamellar breaking, but also
by interlamellar breaking when suitable lamellae orientations are present. The translamellar break
of the lamellae plates results in a higher fracture toughness (higher resistance to fracture), while
the interlamellar break between two lamellae interfaces produces a lower fracture toughness (lower
resistance to fracture). The resistance to crack propagation varies throughout the fracture path as
the main crack path is associated with small crack branching, crack bridging, and sometimes crack
deflection at the lamellar boundaries [8–11]. The microstructural features, like lamellae thickness,
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lamellae orientation, colony size and the tilting angle of the colonies to the loading direction results
in the stochastic nature of crack initiation and propagation. This eventually leads to unpredictable
brittle-like failure, showing scatter in the global force-displacement curves [12–15]. In components
or structures, the variations in microstructure and material properties can not be avoided. Therefore,
a characterization of the material with respect to the deformation and fracture behavior is necessary.

The material characterization can be done by adopting experiments, microstructure investigations and
numerical analyses. Recently, numerical modeling has become a powerful research tool for exploring
the micromechanisms of deformation and fracture at local and global windows. To capture the im-
portant phenomena that a material undergoes during external loading, a multi length-scale description
combining microscopic to macroscopic details is required. Fig. 1.1 shows different length scales for
the modeling of γTiAl alloys. At sub-micro level, dislocation movement within the crystal lattice can
be taken into consideration. At micro-level, the micromechanisms of deformation (e.g., local plastic-
ity effects from slip and twinning) can be well described by the crystal plasticity model. On the other
hand, the global deformation and fracture of the material can be treated by meso and macro-level
modeling considering the effects from well understood microscopical events (e.g., heterogeneity of
material properties).

PST Crystal

Micro

Polycrystal

Meso

Component

Macro

α2, γ Phases

Sub-Micro

γ1
γ1

γ2

γ3

γ1

γ1

γ3

γ3

γ1
γ3 γ2

α2

α2

> 10-2 mm> 10-4 mm> 10-8 mm > 10-6 mm

Figure 1.1: Different length scales for micromechanical modeling of γTiAl.

The numerical models that have been developed so far do not incorporate all the length scale phe-
nomena. Certain developments have been achieved for quantitative and qualitative descriptions of the
micro and macro mechanisms in single and multi-scale approaches. In general, the multi-scale model-
ing approaches are robust, and require large computer facilities; therefore, not suitable for component
simulations. A common way of numerical modeling is to describe the required physical aspects in a
single scale model (either macro, meso or micro scale), and to some extent, in a multi-scale model.

With respect to the modeling of γTiAl alloys, several works have advanced the general understanding
of how microstructural effects influence the global deformation behavior of lamellar γTiAl alloy. The
microstructural features, such as grain size, lamellar spacing, grain orientation are investigated to
predict the stress-strain fields at room and high temperature [16–25]. Also, the mechanical fracture
behavior of γTiAl alloys with different microstructural arrangements and variable material properties
have already been discussed and described in great detail in literature, however, mostly using macro
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scale descriptions [12, 18, 26–28].

To investigate the influence of varying material properties on mechanical and fracture behavior, a
stochastic approach needs to be implemented. This approach incorporates probability theories to de-
scribe the likelihood of failure and the statistical distribution of the failure parameters. A well known
implementation of such a method to describe brittle fracture and variation of material properties is
the “Local approach of Weibull statistics” [29, 30]. In this approach the very local microcracks (e.g.,
defects in crystal lattice, microcrack in grain boundaries) are considered as fracture initiating sites.
In the statistical fracture modeling, the Weibull distribution function provides the spread of local
fracture strength to the whole material volume, while the “weakest link assumption” describes the
brittle like fracture. Based on the Weibull weakest link principle, both analytical models [31, 32] and
FE simulations are established to handle this kind of problems in concrete [33], ceramics [34], fiber
composite materials [35] and TiAl alloys [26]. However, the variation band of local fracture strength
is always unknown, and has to be assumed and validated with the global scatter of failure strength.
Many experiments have to be conducted in order to determine the Weibull distribution parameters.

While the Weibull local approach describes the cleavage fracture probability due to microcracks only
(a correlation between the microstructural features and the crack initiation is generally absent), an-
other approach can be proposed for brittle (or quasi-brittle) fracture that takes into account the crack
initiation and propagation criteria based on the meso-scale microstructural descriptions, e.g., ran-
domly oriented lamellar colonies, as found in fully lamellar TiAl alloys. In this work an approach
will be presented, which is based on the so called cohesive damage model (shortly, cohesive model).
This model describe damage by a mechanism of decohesion of the material at a local region. The ma-
terial decohesion occurs when certain critical fracture criteria, described by the cohesive model, are
fulfilled. In order to capture the experimental scatter, the local fracture criteria can be considered as
random fields related to the fracture of colonies. As known so far, the local heterogeneity of lamellar
microstructure and their effects on the global fracture behavior (i.e., crack initiation, propagation, and
unstable failure) have not been studied extensively.

1.2 Aim

The aim of this work is to investigate the quasi-brittle fracture of fully lamellar γTiAl alloy using a
cohesive model and a stochastic approach. The local variability of fracture properties, i.e., cohesive
strength and cohesive toughness of the material, and also the local inhomogeneous deformation be-
havior of the polycolonies are incorporated in the numerical model to predict the crack initiations and
occurrence of failure with an acceptable reliability. The proposed approach will be verified through
experiments at room temperature. The approach is briefly summarized in Fig. 1.2. Below is a more
detailed descriptions of the step taken.
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• Material characterization through experiments and fractography analysis (Fig. 1.2(a)): Focuses
on the analysis of mechanical and fracture behavior. The test specimens will provide the stress-
strain and fracture toughness data. From the fractographic analysis the heterogeneity of the
microstructure and the experimental results will be correlated.

• Simulation scheme for validation (Fig. 1.2(b)): Local variation of stress-strain curves of a poly-
crystal of fully lamellar γTiAl alloy as well as the deformation constraint of the colonies will be
predicted using a two-scale (micro to meso) model. The gathered data of the local variation of
stress-strain curves will be implemented to a meso-scale model for simulating material defor-
mation. Global fracture behavior of the experimental tests will be simulated using a stochastic
approach of the cohesive model, which will provide relevant material parameters.

• Assessment of material parameter transferability (Fig. 1.2(c)): Considering the component as
an idealized laboratory specimen, the material parameters for quasi-brittle fracture will be trans-
ferred to different types of laboratory specimens to predict the component failure behavior.

Displacement

Prediction of
the component
behavior

Fo
rc
e

Tests for
Material
behavior
observation

unit cell with lamellar
microstructure

Micro

Quasi-brittle fracture
Variability in properties

Experiment

Material characterization and validation Transferring material
parameters

Deformation behavior
Fracture behavior
Stochastic approach

Pediction of
component
behavior

Numerical Analysis

Crack

Polycrystal model with
regular bricks

Specimen

Meso
Macro Damage

model

Micromechanical deformation
behavior of lamellar structure

(a)
(b)

(c)

Figure 1.2: Investigation of deformation and fracture behavior of γTiAl: (a) material characteriza-
tion with experiments, (b) numerical analysis for failure prediction and determination of material
parameters, (c) prediction of failure of a test component by transferring the material parameters.
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Chapter 2

Gamma based titanium aluminide alloy

The mechanical properties of gamma based TiAl alloys are highly sensitive to the minor microstruc-
tural changes. In general, the microstructures with acceptable ductility show poor fracture toughness
and reduced creep resistance. Conversely, microstructures with improved toughness and creep resis-
tance yield unsatisfactory ductility. Due to the inverse correlation between the tensile properties and
the fracture resistance, a microstructural optimization for achieving well-balanced engineering prop-
erties is quite difficult. Today, a broad variety of γTiAl alloys with different microstructures can be
custom tailored using novel processing techniques. Each microstructure is needed to be investigated
to ensure their acceptability for industrial application. In the following section a brief introduction to
the microstructure of a fully lamellar γTiAl alloy is given and the deformation behavior is discussed.
The information will provide useful knowledge for the modeling inputs.

2.1 Preparation of fully lamellar γTiAl alloy

The material used in this investigation has the composition Ti-47Al-3.7(Nb,Cr,Mn,Si)-0.5B (in at%),
and is denoted by γTAB at GKSS. An ingot obtained from triple vacuum arc melting (VAR) was
used for subsequent extrusion. The extrusion was conducted at a billet temperature of about 1250 0C
with an 7:1 extrusion ratio, resulting in a uniform, defect free extruded rod of 22 mm constant core
diameter. A schematic view of the γTiAl extrusion is shown in Fig. 2.1.

The initial microstructure of the cast alloy and the extruded rod consists of duplex-type γ-grains. The
fully lamellar microstructure was obtained through heat treatment at 1360 ◦C, holding for 30 min,
followed by oil quenching. Finally, a mean colony size of approximately 100 μm was obtained.

During the extrusion process, colonies are aligned nearly parallel to the extrusion direction, while in
the radial section of the extruded rod lamellar colonies are randomly oriented (see Fig. 2.2). Minor
deviations (±20◦) of parallel lamellae along the extrusion direction were confirmed by the texture
analysis.
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[111]

Extrusion process

γ crystal

Crystal flow during extrusion

Extruded rod, 22 mm

Figure 2.1: Schematic view of the extrusion process with crystal flow.

Extrusion direction

(b)(a)

Figure 2.2: Colony orientation after heat treatment: (a) radial section, (b) longitudinal section.

2.2 Crystallographic structure

The lamellar structure in a single colony consists of two intermetallic phases, γ(TiAl) with face-
centered tetragonal and α2(Ti3Al) with hexagonal crystallographic structure, as shown in Fig. 2.3(a,b).
The lamellae are parallel to each other and each lamellar colony consists of a regular patterns of α2

and γ lamellae. Usually, there are many γ-lamellae situated between two α2 lamellae (Fig. 2.3(c)).

In the lamellae, crystallographic planes (111)γ and (0001)α2 as well as the directions <11̄0>γ and
<112̄0>α2 are parallel. The arising lamellae interfaces are atomically flat over a large distance and are
parallel to the {111} planes of the γ crystals. In the lamellar microstructure, according to Yamaguchi
et al. [36], six domain structures with six different variants of γ lamellae occur, which are due to 600

rotation around an [111] direction. Three domains are formed due to the orientations of 00, 1200 and
2400, and are called matrix lamellae. The other three domains are due to the orientations of 1800,
3000 and 600, and are called twin lamellae. Matrix and twin lamellae have 1800 orientation to each
other. The microstructure with α2 lamellae, γ lamellae with matrix and twin as well as their domain
orientations are shown in Fig. 2.4(a,b).
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Figure 2.3: Crystallographic structure: (a) tetragonal γ-phase, (b) hexagonal α2-phase, (c) fracture
surface showing the alternating lamellae.
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Twin orientations of domains: 180 300 60

γ-matrix
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(b)
m1

m2

m3

t2
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t3
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Twin-lamella Matrix-lamella

(111)

(a)

Figure 2.4: Domain structure in γ-lamellae: (a) lamellar structure with α2 and γ-lamella including a
simple representation of γ-domains, (b) matrix and twin domains and their orientation relationships.

2.3 Deformation of γTiAl

Room temperature plastic deformation of γTiAl occurs by crystallographic slip and mechanical twin-
ning. The crystallographic slips are mainly activated by the ordinary and super dislocations. The
ordinary dislocations are single dislocations with a Burgers vector, 	b, as shown for a simple case of
edge dislocation in Fig. 2.5(a). On the other hand, a superdislocation has a Burgers vector 	2b due to a
pair of partial dislocations moving together as shown in Fig. 2.5(b). The partial dislocation occurs in
an ordered crystal, creating an antiphase boundary in the slip plane when gliding over a certain area.
It takes a second dislocation of the same kind to eliminate the antiphase boundary. A superdislocation
is defined by adding these two partial dislocations.

Another deformation mode causing plasticity is twinning. Whereas the crystallographic orientation
remains unchanged during slip, a reorientation occurs in a small volume of the crystal lattice during
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twinning, see Fig. 2.6.

The deformation mechanisms for γTiAl alloys were investigated in numerous works during the last
few decades [37–45]. As reported in literature, in α2-crystals slip occurs in prismatic, basal and
pyramidal planes whereas in γ-crystals slip occurs in {111}γ-plane, as shown in Fig. 2.7.

1st dislocation
2nd dislocation

(a)

(b)

antiphase
boundary

Figure 2.5: Dislocation movement: (a) single or ordinary dislocation through a cubic lattice, (b) super
dislocation, i.e., two partial dislocation separated by antiphase boundary

2 nm

γ γT

(b)
Crystal lattice Twinned crystal

lattice

(a)

τ τ

τ τ

Figure 2.6: Mechanical twinning with crystal lattice reorientation: (a) schematic view, (b) deforma-
tion twin in a two-phase TiAl alloy. The twins were generated at the γ/γT interface.

According to [23] the slip systems in lamellar structures are divided into three slip modes, which
are: longitudinal, mixed, and transverse, see Fig. 2.8. In longitudinal mode, glide planes and glide
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directions are parallel to the lamellae planes, whereas in the mixed mode, only the glide directions
are parallel. Finally, in transverse mode, neither the glide planes nor the glide directions are parallel
to the lamellae planes.

1/2 <110]

<011]
1/6 <112]

(0001)

{1121}

<1120>

<1126>

{1100}

(b)(a)

Basal

Prismatic

Pyramidal

Figure 2.7: Slip systems in (a) α2, and (b) γ

mixed transverselongitudinal

Figure 2.8: Three slip modes in lamellar microstructure

All possible slip systems that are found in two phase γTiAl are presented in Table 2.1 and Table 2.2.

The microstructural information (Section 2.2) and the deformation mechanisms presented here will
be implemented to a micromechanical based numerical model, proposed by Werwer [46], and will
be discussed in Chapter 6. The model will be used to simulate the local stress-strain responses of a
γTiAl polycrystal.
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Classification longitudinal mixed transverse
Ordinary (111) 1/2[11̄0] (111̄) 1/2[11̄0] (11̄1) 1/2[110]

— — (11̄1̄) 1/2[110]
Super (111) [011̄] (11̄1̄) [011̄] (111̄) [01̄1̄]

(111) [101̄] (11̄1) [101̄] (111̄) [1̄01̄]
— — (11̄1) [01̄1̄]
— — (11̄1̄) [1̄01̄]

twin (1̄1̄1̄) 1/6[112̄] — (111̄) 1/6[1̄1̄2̄]
— — (1̄11̄) 1/6[1̄12̄]
— — (11̄1̄) 1/6[1̄12̄]

Table 2.1: Slip systems in γ-TiAl according to [23]

Classification longitudinal mixed transverse
prismatic — 〈112̄0〉{11̄00} —

basal 〈112̄0〉{0001} — —
pyramidal — — 〈1̄1̄26〉{112̄1}

Table 2.2: Slip systems in α2-Ti3Al according to [23]
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Chapter 3

Experimental investigations and
fractography

3.1 Specimen preparation

Tensile and bending tests were performed to obtain the deformation and fracture behavior of the alloy.
The specimen lengths were kept parallel to the extrusion direction (see Fig. 3.1). In order to ensure
translamellar fracture, the notches of the fracture specimens were cut perpendicular to the extrusion
direction.

254

Single edge notched
bending specimens

Flat bar tensile
specimens

Chevron notched
bending specimens

Extrusion

Figure 3.1: Extruded rod of γTAB alloy with specimen sections.

Tensile specimens

The geometrical details of the small-sized flat tensile specimens are shown in Fig. 3.2(a). The spec-
imens were prepared using spark erosion, then mechanically polished to obtain defect free surfaces.
The elongation during tensile loading was measured directly on one side of the flat specimen over a
gauge length (L0) of 7.5 mm. With this testing arrangements, the true stress-strain curves and the elas-
tic slopes can be determined [47]. This data was used to describe the material elastic-plastic behavior
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in the FE simulations.

Bend specimens

Single edge notched bend specimens (SE(B)) were prepared for two different types of notches: regular
(rectangular) and chevron (triangular). The special feature of the chevron notch is that the tip of the
triangular notch forces the initiation of a crack at a defined point, and provides an increasing crack-
front width during crack propagation. Due to this effect, a crack-front can extend in a controlled
manner, even sometimes for brittle or quasi-brittle materials [48, 49].

The geometrical details of the bend specimens are depicted in Fig. 3.2(b,c). For the SE(B) with
regular notch, two notch depths were chosen, a shallow one with a0/W = 0.35 and a deep one with
a0/W = 0.6. Each notch had a narrow width of 0.07 mm, and was machined using a 50 μm spark-wire.
Very sharp notches were obtained with this method. Fracture toughness was measured considering
the sharp notch as a crack.
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F, vLL

B = 4.50 mm,
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S
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a0 = 0.6W
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B
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Single edge notched bending
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40

L0 = 7.5 mm

L0

Flat Tensile Bar Chevron notched
bending specimen

(a) (b)
~~

~~

Figure 3.2: Geometries of the specimens: (a) flat tensile specimen, (b) single edge notched bend
specimen (SE(B)), (c) chevron notched bend specimen.

3.2 Experiments and results: Tension tests

True stress-strain curves were determined from six tensile tests. The results are shown in Fig. 3.3.
The calculated elastic modulus from the six tests is 175 GPa, which agrees with the data reported in
literature [7].
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The figure shows significant differences between the stress-strain (σ-ε ) curves with respect to yield
strengths, fracture stresses and strains. For specimens 4,5 and 6, the σ-ε -curves lie close to each other
showing varying fracture strains. Specimens 1,2 and 3 show remarkable differences in σ-ε -curves
and fracture strengths. All specimens fail within 0.9-1.5% strain, therefore, the alloy is reffered to
as a ‘quasi-brittle’ material. From the curves the average failure strength was determined to be 750
MPa.
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Figure 3.3: Stress-strain curves from the flat bar tensile specimens.

The variation of fracture stress and strain, and the shifting of the σ-ε curves are predominantly influ-
enced by the colony structure and orientation. Due to the orientation angle with respect to the loading
axis, a colony can deform easily (soft colony) or can show high stiffness (hard colony), eventually
produces variation in stress-strain curves. As the orientation and the size of the colonies are not con-
stant throughout the microstructure, each tested specimen has its own microstructural arrangement
that differs from one another, resulting in different tensile results. The variation of the stress-strain
behavior may also be influenced by some unwanted presence of different microstructural arrange-
ments or phases. For example, the micrograph in Fig. 3.4 shows a significant presence of duplex like
grain-clusters among the lamellar colonies. However, the presence of different microstructures and
their influences on the experimental tensile behavior has not been investigated.

In the numerical analysis the above mentioned variations are implemented. Fracture strength has a
lower limit of 683.6 MPa and an upper limit of 820.4 MPa. The number of tests is not enough to
obtain a statistically reliable scatter band. However, the obtained variation band is quite similar to the
variation band reported in the literature [14].
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50 m

Figure 3.4: Microstructural inhomogeneity in fully lamellar γTAB observed from the extruded rod.
Some duplex grains are found along with the lamellar colonies.

3.3 Experiments and results: Bend tests

3.3.1 SE(B) specimens with straight notches

The bend tests were carried out with a screw driven test machine at room temperature, from which the
force, F, and the crack mouth opening displacement, CMOD, were measured. The resulting F-CMOD
curves for two different notch depths are depicted in Fig. 3.5(a).

For the case of the notch depth ratio, a0/W = 0.35, all specimens failed catastrophically after the
initiation of cracks showing small nonlinear deformation. On the other hand, deformation controlled
crack propagation was observed for the deep notch, a0/W = 0.6. Significant scatter in the softening
part of the F-CMOD curves was found. In addition, the specimens also showed large pop-ins before
catastrophic failure.

The translamellar crack propagation for a0/W = 0.6 notch depth can be seen in Fig. 3.5(b). Evidence
of local crack deflection and crack bridging can be seen in the figure. Fig. 3.5(c) gives a closer view
of the translamellar fracture across a colony which broke along the {111}γ-plane. The global force-
deformation behavior due to different notch depth ratios can be recognized easily from Fig. 3.5(a).
A shallow notch promotes uncontrolled crack propagation (or unstable failure) earlier than a deeper
notch.

3.3.2 SE(B) specimens with chevron notch

Eight fracture experiments were performed on chevron notched bend specimens, and the force, F,
was plotted against the load-line-displacement, vLL, see Fig. 3.6. Some nonlinear deformation with
minor or larger crack extensions can be observed for all cases, however, all the specimens failed
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Figure 3.5: SE(B) specimens: (a) F-CMOD behavior for shallow and deep notches, (b) translamellar
crack propagation, (c) high resolution of the translamellar fracture surface.
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Figure 3.6: Chevron notched bend specimens: force vs. load-line-displacement behavior.

abruptly showing unstable crack propagation. Minor pop-ins are discernible from the F-vLL curves.
Tiny saw-teeth trends can be detected on the curves. These were generated from the step-wise crack
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propagation through the lamellar colonies. In some cases significant load-drops (or big pop-ins) are
observed after the initiation of cracks, followed by uncontrolled crack propagation. For example, the
specimens CV1, CV6, CV7, and CV8 failed just after the onset of significant pop-ins. The other
cases, for example, in specimens CV2, CV4, and CV5, deformation controlled crack propagation
has been observed, which proceeded in a continuous manner up to a certain limit showing smaller
pop-ins.

The experimental F-vLL curves differ from each other in terms of fracture initiation, pop-in phenom-
ena, crack propagation and subsequent failure.

3.4 Fractography analysis

Fracture surfaces of the Chevron notched bend specimens have been analyzed for a better understand-
ing of the experimental scatter in the F-vLL data. Three F-vLL curves from the specimens CV1, CV2,
and CV5 respectively are examined in correlation with the fracture surfaces. It was found that the
variation in the F-vLL curves were influenced by the microstructure at the notch tip.

In specimen CV1, the translamellar fracture continued up to a crack extension of 1.04 mm until
finally abrupt failure occurred due to unstable crack propagation, see Fig. 3.7. The cleavage facets in
Fig. 3.8 indicates that the initiation of cracks at the notch tip was followed by interlamellar fracture
along {111}γ planes. The crack front advanced through different oriented lamellae, since many of the
{111}γ planes were ideally positioned to promote microcracking. As a result a jagged fracture surface
was obtained.

In this type of polycrystalline alloys, tilting of the lamellar colonies with respect to the loading axis
is an important mechanism during the cracking process. A schematic drawing of the crack path, with
and without tilting of a colony is shown in Fig. 3.9.

An image of the specimen CV2 is shown in Fig. 3.7. Observations indicate a homogeneous translamel-
lar fracture through the randomly oriented colonies. Deformation controlled crack propagation is ob-
served up to a large global displacement. All the colonies broke in a purely translamellar manner.
No cleavage facets of interlamellar type fracture have been found (see CV2 in Fig. 3.8). Further
translamellar fracture occurred without significant pop-ins. The crack propagation was ensured by
the small tilting angles of the colonies with respect to the loading axis.

In Fig. 3.7 and Fig. 3.8, the notch tip of the specimen CV5 is shown. Here, the lamellar orientation
of the first colony at the chevron notch tip is almost perpendicular to the loading direction. The
initial crack propagation was due to the interlamellar fracture along the inclined lamellar planes, as
indicated in Fig. 3.8. As a result a large pop-in can be observed on the respective F-vLL curve. The
crack jumped forward, but was arrested by stiffer colonies on its fracture path, leading to a stable
deformation controlled crack propagation.

The crack initiation in the triangular chevron notch is strongly regulated by the notch tip microstruc-
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Figure 3.9: Schematic of the crack path through lamellae with different orientations to the loading
axis.

ture. Different oriented and tilted colonies at the notch tip are discernible from the pictures in Fig. 3.8.
The tilting angles of these colonies aid further propagation of the cracks along the {111}γ-planes.

As stated in [50], the fracture toughness for lamellar γTiAl varies within a certain range depending
on the lamellar orientation. The degree of variation depends on the amount of interlamellar and
translamellar fracture which are promoted by the orientations of the colonies [51]. As reported in
[52, 53], the fully lamellar microstructure delivers a fracture toughness, KIc, in the range of 20-37
MPa

√
m for translamellar fracture while the interlamellar fracture toughness of the lamellar {111}γ

planes is very low, about 1-3 MPa
√
m [18, 52].
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Chapter 4

Numerical approaches of fracture
mechanics

4.1 Background

Components and structures are not free of defects that may lead to catastrophic failure under operating
conditions. Among the defects, the presence of sharp cracks is the most critical one from which frac-
ture may start. Fracture mechanics establishes a guidance to avoid component failure assuming that
the engineering materials always contain cracks. Under the fracture mechanics theories, the extension
of cracks in a material is characterized by material related parameters. The material parameters and
the laboratory test results can be correlated, by which the response of a structure containing cracks
can be predicted.

The continuum mechanics approach to fracture assumes that the material is a homogeneous contin-
uum and that the defects are large compared to the characteristic dimensions of the microstructure.
To study the growth of existing cracks, voids or other defects, stress analyses are performed in com-
bination with some postulates that predict occurrence of fracture. Two important issues have to be
considered for characterizing the fracture, firstly, information that provides a correct and physically
meaningful picture of the processes occurring at the crack tip and secondly, description of the frac-
ture toughness (which is the critical value of crack driving force) of a material in a specific structural
geometry. The both issues are taken care of in the fracture models using phenomenological or mi-
cromechanical based descriptions.

The computational fracture mechanics approaches were developed based on the fundamental ideas of
the strength reduction of materials, provided by Griffith and Irwin. Griffith proposed the energy crite-
rion of fracture in 1920. According to him, when a solid is fractured, work is performed to create new
material surfaces in a thermodynamically irreversible manner. He considered that the brittle materi-
als contain microcracks, which introduce high stress concentrations near their tips. He developed a
relationship between crack length, fracture surface energy to generate traction-free cracked surfaces,
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and applied stress [54].

In Griffith’s theory, the work of fracture is spent in the rupture of cohesive bonds, which is valid for
pure elastic material. The fracture surface energy, which represents the energy required to form a
cracked surface, corresponds only to the normal separation of atomic planes. The dissipation energy
associated with nonhomogeneous slip within and between the grains as well as plastic, viscous defor-
mation, etc. are not considered. The energy required for the rupture of atomic bonds is only a small
portion of the total dissipated energy during fracture.

For the “somewhat brittle material”, Irwin provided an extension of Griffith’s theory. He stated that
a region of plastic deformations may exist closer to the crack but does not extend away by more
than a small fraction of the crack length [55]. This is known as the “small-scale yielding condition”.
He proposed the concept of the stress intensity factor, K as a criterion of crack initiation, that can be
related to the strain energy release rate. The critical value of the stress intensity factor, Kc, is geometry
independent, and represents the material property commonly known as fracture toughness.

The fracture in brittle or quasi-brittle material can be characterized using the Griffith and Irwin’s
theory of fracture, however, the approaches lose their validity when the material shows large scale
yielding. The development of fracture mechanics since 1960 focused on capturing large scale yield-
ing in fracture analysis, which is known nowadays as elasto-plastic fracture mechanics (EPFM). Two
well known approaches are the “J-integral” [56] and the crack-tip-opening-displacement, CTOD [57].
The “J-integral”approach expresses the energy release rate as a path independent line integral, while
the crack-tip-opening-displacement approach correlates the amount of crack tip plastic strain to the
separation of the crack faces. Standard test methods are available to determine these fracture mechan-
ics parameters.

In structural analysis, the maximum sustained load of a cracked component can be described in terms
of single parameters of fracture, such as, Kc, Jc or CTOD. The approach is known as the global ap-
proach of fracture mechanics. This approach has certain restrictions, for example, it does not provide
any prediction of size effects observed in brittle fracture nor can it be applied where non-isothermal
loading conditions are active. Moreover, an existing crack is necessary for the analysis. Recent de-
velopments of the “local approach to fracture”are not limited to these restrictions. Two conditions
have to be fulfilled for the local approach: (i) micromechanical based models must be established
that describe the softening effects by the constitutive equations of damage evolution; (ii) a good
understanding of the crack tip stress-strain field has to be developed. Numerical formulations of mi-
cromechanical models for computer implementations are necessary for this approach. The approach
introduces new parameters which have to be experimentally determined.

A suitable way of analyzing the structural fracture is to describe the physical damage processes phe-
nomenologically within a model. The cohesive model (also known as cohesive zone model, CZM) is
such a model that describes various kinds of decohesion processes by relating the surface tractions (or
cohesive stress, T) to the process of material separation, δ. The idea of a “strip yield model”proposed
by Dugdale [58] and Barenblatt [59] can be considered as the foundation of the cohesive model. Dug-
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dale and Barenblatt divided the crack in two parts: one part is the stress free crack surfaces, the other
part is the one loaded by cohesive stresses. Dugdale introduced the finite stress to be the yield stress,
which holds only for plane stress conditions. Barenblatt assumed that the stresses in the fracture pro-
cess zone follow a prescribed distribution of σ(x), where x is the ligament coordinate. The cohesive
models and the “strip yield model”differ from the idea of Barenblatt in that the traction acting on the
ligament is a function of the crack opening, i.e., T(δ), and not of the distance from the crack tip.

The cohesive model allows fracture analysis beyond the restrictions of single parameter based global
approaches to fracture. It also has certain advantages over the local continuum models of damage,
for example, it does not show pathological mesh dependency and does not require the introduction of
a length parameter via the FE mesh. Its implementation to the finite element method enables one to
analyze complicated structures numerically. The cohesive model will be used in the present work and
its fundamentals are described in the next section.

4.2 The cohesive model

In front of the crack tip a small zone exists where micro-cracking takes place and damage occurs
at increasing deformation. This process is described by an increase of stress (or traction, T) up to
a certain maximum level followed by a decrease of active stresses to zero until the material totally
separates. The relationship of the traction, T, and the separation, δ, is described by a function called
the traction-separation law (TSL). Propagating crack is simulated by the separation process that gen-
erates free surfaces along a predefined plane. The region where evolution of damage occurs is called
the fracture process zone (FPZ). The maximum value of traction, which is the cohesive strength, T0,
and the critical separation, δ0, are the material related parameters.

The basic idea of the cohesive model is depicted in Fig. 4.1(a,b). In the finite element simulation
the fracture process zone is idealized as a perfect plane and is referred to as the fracture plane. The
cohesive elements (which are basically zero thickness interface elements) are introduced between the
continuum elements at the fracture plane (Fig. 4.1(b)). Each cohesive element follows a predefined
TSL. When the cohesive separation, δ, along the interface exceeds a maximum separation, δ0, at
the cohesive element nodes, the stress transmission reduces to zero, and the crack extends up to the
respective element size.

The shape of the TSL can be generated by various functions. In literature, several TSL-functions can
be found: linear, constant, exponential, and bilinear functions, see Fig. 4.2. For pure normal sepa-
ration in ductile materials, Needleman [60] first introduced a polynomial function. Tvergaard [61]
extended the polynomial function for mixed mode fracture. For brittle like materials, for example,
concrete and rocks, Hillerborg [62] used a purely decreasing linear function.

The TSL controlling the separation process is purely phenomenological. No successful test method
exists to measure the TSL function directly [66]. Therefore, the shape sensitivity of the TSL with
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Figure 4.1: Crack evolution in a bulk material: (a) realistic presentation of damage by void growth,
(b) idealization by the cohesive model.
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Figure 4.2: Cohesive traction-separation laws (TSL) for normal fracture: (a) linear [62], (b) constant
[63], (c) polynomial [64], (d) bilinear [65].

respect to the particular fracture phenomenon, like quasi-brittle or ductile has to be investigated.

In this investigation, concerning the quasi-brittle fracture of γTiAl alloys, the following TSL is used
as proposed in [67, 68]:

T = T0
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(4.1)

The shape of the TSL function can be arbitrarily varied from a rectangular to a nearly triangular one
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by using two extra parameters, δ1 and δ2, as shown in Fig. 4.3. The parameters are correlated to the
maximum cohesive separation, δ0, such that δ1 = 0.001δ0 and δ2 = 0.75δ0 in the case of the nearly
rectangular function, while for the triangular one δ1 = δ2 = 0.001δ0. The two TSL functions will be
denoted as Rect-TSL and Tria-TSL.
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Figure 4.3: Cohesive traction-separation law used in this investigation: (a) Rect-TSL, (b) Tria-TSL.

The area under the TSL curve is the separation energy, Γ0:

Γ0 =

δ0∫
0

T (δ) dδ (4.2)

The critical separation, δ0, is related to the separation energy, Γ0, as follows:

δ0 =
2Γ0

T0

(
1 − 2

3
δ1
δ0

+
δ2
δ0

) (4.3)

The parameters T0 and Γ0 can be determined by experimental means in certain cases or by supplemen-
tary use of experiments and simulations. For brittle or quasi-brittle materials, the cohesive strength,
T0, can be experimentally determined as the maximum true stress at fracture from the tensile tests,
provided that no ductile necking develops before reaching the maximum stress. Otherwise, for ductile
materials with significant necking before fracture, cohesive strength can be determined from elastic-
plastic FE calculations. The separation energy, Γ0, is equal to the critical value of the J-integral at
physical crack initiation. Therefore, by means of standard fracture mechanics tests with pre-cracked
bending specimens, Γ0 can be determined. In order to find the cohesive parameters numerically, the
stresses, the strains, and the crack initiation during increasing deformation need to be correlated with
the experimental observations.

Determining a reliable value of the critical cohesive separation, δ0, needs a large amount of experi-
mental work, however, it can be derived from the cohesive energy, Γ0, as given by the relationship in
Eq. (4.3).

In the present work, the critical fracture stress or the fracture strength will be taken as the cohesive
strength, T0. The cohesive energy, Γ0 will be determined using a hybrid methodology of experiments
and simulations. The δ0 values are calculated from Eq. (4.3).
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For a homogeneous material, the separation along the crack path can be described by a single set of T0

and δ0. For a heterogeneous material, cohesive parameters along the crack path are not constant but
vary according to the microstructural heterogeneity. Such a crack path can be described by the random
values of T0 and δ0 which will result in a stochastic nature of crack initiation. Random values of T0

and δ0 will be distributed using a simple distribution function described in the next section. Further
aspects of fracture, like crack branching, crack deflection, and the interaction of different fracture
modes (normal and shear modes) are still the subject of discussion and will not be implemented in
the cohesive model.

4.3 Stochastic approach

The random material properties and the distribution in the microstrucutre are handled with a stochastic
approach. From the experimental data and fractography of a fully lamellar γTAB, the following
property variations were found:

1. Variation of the fracture strength and toughness properties:

Random orientation of lamellar colonies and their tilting angle with respect to the loading axis
provide certain local variations in fracture strength and toughness. These properties are related
to the cohesive strength, T0, and cohesive energy, Γ0. Stochastic variation can be adopted in the
FE model by stochastic distributions across the cohesive elements lying on the fracture plane.

2. Variation of the local deformation behavior of the polycolonies:

In polycrystals with differently oriented lamellar colonies, inhomogeneous stresses and defor-
mations occur locally. The deformation behavior of the colonies can be expressed by local
σ−ε curves. The variation of such microscale σ−ε curves can be determined from a crystal
plasticity model which incorporates the descriptions of microstructure and micromechanisms
of deformation within a lamellar colony.

For the finite element implementation the variable σ-ε-curves are used for the continuum element
deformation behavior and the T0, Γ0 are used for the separation of cohesive elements, see Fig. 4.4
for a schematic representation. Both types of variations should be taken into account in the global
fracture simulation of γTAB.

In the simulation of fracture, crack initiation takes place when the nodal separation of a cohesive
element increases beyond the critical separation, δ0. A low T0 combined with a high Γ0 provides a
large δ0, while a high T0 combined with a low Γ0 results in a low δ0 (shown schematically in Fig. 4.4,
bottom). Random variation of the two cohesive parameters, T0 and Γ0 produce discrete values of the
maximum cohesive separation, δ0, resulting in random nature of crack initiation. As the Γ0 and δ0 are
analytically related (see Eq. (4.3)), either the variation of Γ0 or the variation of δ0 can be stochastically
chosen. In this work Γ0 is used as a random parameter as it can be verified from the fracture tests with
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Figure 4.4: Stochastic approach considering property variations in the continuum (3D solid elements)
and fracture plane (cohesive elements).

less effort. For numerical analysis, the random values of δ0 corresponding to the random values of Γ0

are given as an input in the FE model.

The following two undefined phenomena have to be taken care of for the numerical implementation
of the stochastic parameters:

• The variation band of the microstructural related parameters (σ-ε, T0 and Γ0).

• The frequency distribution function of the parameters.

The variation band for the σ−ε curves can be determined using a polycrystal model. However, the
microstructural fracture parameters in a polycrystal can not be easily obtained by the available ex-
perimental techniques. Therefore, the variation band of the fracture strength, T0, is taken from the
fracture point of the global stress-strain curves, which may be smaller than the real scatter. Generally,
microstructural scatter is assumed quite big in heterogeneous materials, however, no exact variation
band of the scatter can be determined.

In the present analysis, a uniform distribution [69] of all parameters is considered as a first approxi-
mation. Fig. 4.5 shows an arbitrary Weibull density distribution as well as the rectangular distribution
function for the assumed microstructural properties. Using the rectangular distribution function the
cohesive parameters are equally distributed across the fracture plane. Therefore, all parameters have
equal importance or weight to initiate cracks.

To investigate the influence of parameter distribution further frequency distribution is assumed, see
Fig. 4.6. In the first assumption (Fig. 4.6b), the chosen microstructure is such that the lower value
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of the properties occur more often than the higher ones. In the second assumption (Fig. 4.6c), the
opposite is assumed. In the third microstructural assumption (Fig. 4.6d) the average values of the
material properties are more prevalent. Properties like stress-strain, fracture strength and fracture
toughness may follow one of the above histograms.
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Figure 4.6: Frequency distributions of material properties.

With the proposed variation bands and assumed frequency distributions, a successful validation of the
cohesive model is expected. A detailed description of the investigation will be provided in Chapter 6.
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4.4 The FE model

The FE models were generated with 3D geometry using 8-node brick elements. An appropriate mesh
coarsening technique was implemented to restrict the size of the model with respect to the num-
ber of elements and nodal degrees of freedom. In order to generate a fracture surface, fine regular
meshes were produced across the fracture plane, where cohesive elements were attached. For a ho-
mogeneous material, the fracture was simulated by attributing a single set of cohesive parameters
along the fracture plane. Maximum cohesive separation, δ0, was the same for each cohesive element.
The elastic-plastic behavior of the continuum element is described by the average stress-strain curve
obtained from the tensile experiments. On the other hand, fracture in a heterogeneous material is
simulated by allocating stochastic values of T0 and δ0 (derived from the cohesive energy, Γ0) along
the fracture plane. To capture the heterogeneous deformation of the lamellar colonies, an additional
distribution of stress-strain curves is applied in a small region of continuum elements above the cohe-
sive layer. Due to inhomogeneous deformation of the continuum elements nearby the cohesive layer,
an inhomogeneous stress field along the fracture plane will develop, which may influence the crack
initiation.

In order to simulate global deformation and fracture behavior of lamellar γTAB, some assumptions
are made in the FE model. The colonies of the γTAB are simplified as cubic blocks of continuum
elements with a constant value which is equal to the average size of the real colonies (ca. 100 μm).
The mechanical behavior of a colony is simulated by assigning local σ−ε curves to the respective
continuum block. Each continuum block is attached to a cohesive block, at which cohesive parameters
are randomly assigned.

The effect of colony orientations on the fracture is described by the higher and lower fracture pa-
rameters. For example, a favorably or non favorably oriented colony that produces a lower or higher
fracture toughness during crack propagation is described by a set of cohesive parameters with lower
T0 and Γ0, or higher T0 and Γ0. A colony’s deformation behavior is described by a lower σ-ε-curve
for a weak colony and a higher σ-ε-curve for a strong colony.

The real microstructure and its cohesive model idealization including the stochastic aspects are shown
schematically in Fig. 4.7(a,b). Colonies are depicted as cubic blocks with randomly distributed σ-ε-
curves. Random cohesive parameters, T0 and Γ0 (resulting from different oriented colony fractures)
are applied to the cohesive blocks.

The cohesive element size should be related to the maximum separation, δ0, which can be correlated
to the different lamellar microstructure [70]. Cohesive elements which are an order larger than δ0 are
avoided as the larger elements create problems during numerical crack propagation, or provide mesh
dependent results.
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Chapter 5

Studies on the cohesive model for
quasi-brittle fracture simulation

From a macroscopic point of view the fracture may roughly be classified as ductile and brittle. Typi-
cally, a large amount of plastic deformation takes place during ductile fracture. The crack propagates
in a controlled manner with the increased deformation (i.e., stable crack propagation). On the other
hand, little or no plastic deformation occurs during brittle fracture and merely a controlled crack
propagation can be observed. The material fails abruptly just after the crack initiation or after a little
stable crack propagation. Ductile or brittle characteristics of the material can be distinguished from
the experimental observations by their force-displacement behavior, crack initiation, and crack prop-
agation. The phenomena should be taken into account during parameter identification of the cohesive
model.

In the present chapter the influence of the model parameters, T0 and Γ0, on the load-displacement
behavior, crack initiation, and propagation is investigated numerically. A 2D FE model for plane
strain will be used.

5.1 Study of the TSL shape for quasi-brittle material

The shape of the TSL was varied from rectangular to triangular by changing the shape parameters, δ1
and δ2. The Rect-TSL and Tria-TSL have been already shown in Fig. 4.3 in Chapter 4. The parameter,
δ1, was taken such that the first part of the TSL has a steep slope (δ1 = 0.001δ0). In the case of γTAB
it was set to 0.001δ0. The second shape parameter, δ2, was changed from 0.005δ0 to 0.75δ0 to obtain
a gradual shift from a nearly triangular to a nearly rectangular shape. Influences of the TSL were
studied by setting δ2 = 0.005δ0, 0.1δ0, 0.4δ0, 0.6δ0, and 0.75δ0. The average failure strength of the
tensile experiments was taken as the cohesive strength, T0 = 750 MPa. The cohesive energy, Γ0, was
set to 3 N/mm, which is an approximate value obtained from the fracture tests of bending specimens.
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The simulations were performed on a single edge notched three-point bend specimen (SE(B)). A 2D
FE model of the SE(B) was generated with a notch depth ratio of a0/W = 0.6, as shown in Fig. 5.1.

vLL

(x) Cohesive layer

Coarse mesh

2D FE model

(x)

1

2

CMOD
F, vLL

Figure 5.1: 2D FE model and the local mesh along the ligament of a SE(B) specimen.

The elastic-plastic properties for the FE model were derived from the average stress-strain response
of the γTAB alloy tensile tests. The elastic modulus, E, is 175000 MPa and the Poison’s ratio, ν, is
0.27. The simulation results are summarized below.

(a) Influence of the TSL-shape on the force-deformation (F-CMOD) behavior

Simulated F-CMOD curves are plotted for the TSL shapes, see Fig. 5.2(a,b). For the Tria-TSL (δ2
= 0.005δ0), a deformation controlled curve with quasi-static crack propagation was obtained, while
for the Rect-TSL (δ2 = 0.75δ0) the curve stopped at the maximum load just at the onset of a cohesive
element break. The softening parts of the curves coincide with each other irrespective of the TSL-
shapes, which implies that after crack initiation the damage progresses in a same manner for all the
cases.

The simulated F-CMOD curve for the Tria-TSL is smoothly rounded at the maximum force. With
a sequential change of the TSL shape form triangular to rectangular, the F-CMOD curves sharpen
gradually at the apex. For Rect-TSL the cracks initiated at the maximum where the F-CMOD curves
ended. At this point no further stress equilibrium was obtained by the numerical solver and the
calculation stopped. This phenomenon is interpreted as unstable condition of the specimen before
sudden failure, which is equivalent to the experimentally observed sudden load drop.

To understand the influence of TSL-shapes on crack initiation and notch-tip stresses, evolution of
cohesive strength along the crack path has been plotted, see Fig. 5.3(a). The notch-tip stresses are
shown Fig. 5.3(b). For Tria-TSL, stresses in the cohesive elements at the notch-tip decrease gradually
after T=T0. Also, tractions in the cohesive elements away from the notch-tip increases same manner
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load.

up to T=T0. The gradient is very continuous during traction evolution which result in a stable crack
propagation. The apex of the F-CMOD curve was rounded at the maximum due to the decreasing
part of the Tria-TSL. Cracks initiate at the decreasing part of the curve which were fairly beyond the
rounded peak.
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Tria-TSL, (b) normal stress distribution above the cohesive zone.

For Rect-TSL the maximum strength, T0, is reached in a number of cohesive elements at the same
time increment. Therefore, the maximum load can be higher compared to the Tria-TSL. In order
to break a cohesive element, the material separation, δ, has to be extended up to δ0. Due to the
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steep slope of the third part of the Rect-TSL, a sharp strength reduction (high stress gradient) in
several cohesive elements has been seen. The evolution of cohesive traction is similar to the stress
evolution seen in brittle type fracture. For brittle type fracture, catastrophic failure results in sharp
stress reduction, however, numerical modeling of quasi-static process can not capture such dynamic
load-drop. At such unstable condition the calculations stop showing global equilibrium problem in
the model.

The simulated force-deformation curves for the Rect-TSL that predict sudden failure are related to
the material parameters (keeping the geometric configuration and loading condition fixed). With a
higher Γ0-value the Rect-TSL results in a deformation controlled stable crack propagation similar
to the Tria-TSL. For example, taking Γ0 = 10 N/mm, which is no longer related to γTAB alloy, a
continuous F-CMOD curve was obtained, see Fig. 5.4. Deformation controlled crack propagation
continued until the material totally collapsed. Due to the TSL characteristics the Rect-TSL yields a
sharp peak near the maximum load while the Tria-TSL yields a rounded curve. The curves coincide
somewhat beyond the maximum load. The results show the feasibility of Rect-TSL for simulating
both stable crack propagation and sudden failure.
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Figure 5.4: Influence of a higher cohesive energy, Γ0 on the global response with the Rect-TSL.

(b) Influence of the TSL-shape on maximum load and crack initiation

In the numerical analysis a crack initiation is postulated when a single cohesive element at the notch
tip has been separated. The crack initiation points observed from the simulated F-CMOD curves vary
for different TSL shapes (see the magnified view in Fig. 5.2(b)). The transition of TSL shapes from
Tria to Rect shifts the crack initiation points upward. For Tria-TSL the lower curve shows that the
initiation of crack occurs significantly beyond the maximum load. The experimental observations of
γTiAl exhibits that the initiation occurs at the maximum force showing small crack tip plasticity. This
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crack initiation characteristic matches with the results of Rect-TSL.

(c) Remarks on choosing TSL for quasi-brittle fracture

It has been shown that the Tria-TSL always results in a stable crack propagation irrespective of the
variation of fracture parameters related to γTiAl alloy. Experimental evidences rather prove an un-
stable nature of crack propagation. The analyses show that the Rect-TSL can capture both stable
(deformation controlled) and unstable (not any more deformation controlled) nature of crack propa-
gation depending on the cohesive parameters.

The Tria-TSL produces rounded maxima at the F-CMOD curves that look somewhat similar to the
experimental observations. The rounded apex is, however, the result of the softening part of the Tria-
TSL where no crack initiation has been found. On the other hand, the rounded maximums of the
experimental curves are due to the initiation of microcracks in the colonies that soften the material at
the notch tip. The results from the Rect-TSL showed that the F-CMOD curve softens just after the
crack initiation which is more realistic than the Tria-TSL results. Therefore, a Rect-TSL is proposed
for quasi-brittle fracture analyses.

5.2 Parameter study with 2D simulations

For a clear understanding of the physical significance of the cohesive parameters with respect to
global fracture response the model parameters have been studied. The T0 and Γ0, have been varied
and fitted with the experimental F-CMOD curves to check the parameter sensitivity. At first, the
cohesive strength,T0, was taken as 500, 750 and 1000 MPa, while the cohesive energy was set to an
arbitrary higher value (Γ0 ≫ 1000 N/mm). For a higher Γ0, the maximum separation, δ0, is larger.
This allows no crack initiation within the global strain limit of γTAB alloy. The results are shown in
Fig. 5.5, where the simulated curves are plotted along with the experimental curves. With the increase
of T0, the simulated F-CMOD curves shift to the elastic-plastic curve within this strain limit (shown
by an arrow in Fig. 5.5). For T0 = 500 MPa, the simulated curve deviates from the elastic slope
earlier than the experimental one. For T0 = 750 MPa, the initial part of the simulated curve matches
the initial part of the experimental F-CMOD response quite good. For T0 = 1000 MPa, the simulated
curve became stiffer than the experimental curves. It can be seen that the experimental value T0 =

750 MPa simulates the initial part of the experimental curve quite better.

In the second step, the strength, T0 = 750 MPa, was kept fixed, and the cohesive energy, Γ0, was
changed as a free variable, i.e., Γ= 2.5, 3, 4, and 5 N/mm. The simulation results are shown in
Fig. 5.6. With a finite Γ0-value, a finite maximum separation, δ0, was obtained. Crack initiated after
reaching δ=δ0. Due to different crack initiation points for different δ0 values, the curve 5 in Fig. 5.6
was cut at some points.

Both stable and unstable crack propagations were obtained by varying the Γ0 value. For all Γ0 values
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sharp apexes at the maximum load were observed. The sharp apex in the simulated F-CMOD curve
is the intrinsic characteristic of the Rect-TSL.
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Figure 5.6: Influence of Γ0 on F-CMOD response of the γTAB alloy keeping T0 fixed.

With the reduction of Γ0 from 5 to 2.5 N/mm the maximum load reduces. For Γ0 = 5 N/mm, the
maximum load at the apex (about 250 N) overestimates the experimental maximum load (about 200
N) although the decreasing part matches quite well to the experimental counterpart. It seems that the
curve with Γ0 = 4 N/mm is somewhat better than Γ0 = 5 N/mm when comparing with the maximum
load and the softening part of the simulated F-CMOD curves. Therefore, Γ0 = 4 N/mm can be taken
as an appropriate average value for the cohesive energy, Γ0, related to γTAB alloy.
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5.3 Mesh dependency of the rectangular shape cohesive model

An appropriate FE mesh has to be generated in order to avoid the numerical problems during incre-
mental nodal separation and strength reduction in the cohesive elements. In Chapter 4, some straight-
forward recommendations were given for the cohesive element size. The element length should not
be much larger than 4δ0. However, no stringent requirements can be provided.

Already seen from Fig. 5.3, the Tria-TSL provides stress-softening over a long range of elements, and
the mesh size dose not influence the results considerably. The Rect-TSL follows a steep reduction
of the strengths which is more sensitive to the change of traction and separation. This action may
depend on the mesh size. As a general principle it has to be ensured that the numerical convergent
problem due to instability of the system is free from mesh dependency. Therefore, following three
kinds of meshes are examined:

1. Homogeneous fine mesh with 12 μm cohesive elements.

2. Heterogeneous mesh of medium (18 μm cohesive elements) and coarse (40 μm cohesive ele-
ments) sections.

3. Homogeneous coarse mesh with 40 μm cohesive elements.

For this investigation a Rect-TSL with δ1 = 0.001δ0, δ2 = 0.70δ0, T0=750 MPa, and Γ0=3.0 N/mm
were chosen. The results are shown in Fig. 5.7(a-d). For the first case, the FE model with homo-
geneous fine mesh (12 μm element length) provides a continuous F-CMOD curve with a small load
drop just after crack initiation. During damage process the incremental strength reduction for element
nodal separation was mesh compatible such that the system equilibrium was maintained by the FE
solver. For the second case, the crack propagated within the medium sized mesh but stopped at the
transition from smaller to bigger elements. In a bigger element the nodal separation is larger, and
the separation process requires a big strength reduction in the element. In such situation numerical
solver problem arises. For the third case, the F-CMOD curve stopped at the onset of cohesive element
separation. The continuous strength reduction requires appropriate incremental separation which was
not achieved by the larger elements. The results show that the separation process is highly sensitive
to the FE mesh. However, the stress development at the notch tip is not influenced by the mesh size,
as shown in Fig. 5.7(b-d).
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Chapter 6

Fracture simulation with a stochastic
approach and its validation

In this chapter the modeling approach for simulating the quasi-brittle fracture of γTAB will be dis-
cussed. Also, the cohesive model incorporating stochastic parameters will be validated. In chapter 5
the material separation due to fracture was described on a predefined line in the 2D FE simulations of
SE(B) specimens. Due to the absence of a 2D fracture plane the crack front can not be obtained here.
As a result, the influences of the variable material properties on crack propagation can not be ex-
plained properly. Therefore, investigations are performed using 3D models. The numerical approach
is discussed in three sections.

In section 6.1, a two-scale FE model is constructed to predict the polycrystal deformation behavior
defined by a crystal plasticity based model. The local σ−ε curves of the polycrystal colonies are
determined from the model.

In section 6.2, macro scale fracture behavior of the tensile bar is simulated with the proposed stochas-
tic approach. Effects of the local σ−ε curves on the global response of a specimen as well as the
contribution of the random cohesive parameters (T0 and Γ0) to the propagation of cracks are ana-
lyzed.

In section 6.3, variations of the cohesive parameters are implemented on a chevron notched bending
specimen to simulate the experimental scatter and crack propagation that are observed in the F-vLL
curves. The principle aspects of the quasi-brittle fracture of lamellar γTiAl are discussed.
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6.1 Micromechanical model of lamellar γTAB

6.1.1 Two-scale FE model of a lamellar polycrystal

In a two-scale model, the microstructural features of a polycrystal, such as the intermetallic phases,
lamellae structure, random orientation of the lamellar colonies etc. are described at a local scale.
In this local scale the micromechanisms of deformation are described by the continuum mechanics
based constitutive equations. For any given overall strain, a localization rule determines the local
scale solutions. Knowing the micromechanical stress state, the macroscopic stresses can be calculated
using a homogenization rule.

The multiscale modeling approach correlates the micro-macro relationship using some localization
and homogenization technique. Many multiscale modeling approaches can be found in the literature.
In the present work the “FE2 multiscale approach” [71] has been used. An FE2 model was formulated
in the previous work of multiscale modeling within the Collaborative Research SFB 3711, entitled
“Mechanics of Multiphase Materials”. The model can be adopted for describing different length scale
features of lamellar microstructures. The approach allows one to investigate the deformation behavior
of randomly oriented colonies. The evaluation of the “FE2 multiscale approach” for investigating the
influences of colony orientations on the local and global deformation behavior covering the local
stress-strain responses in a fully-lamellar polycrystal have not been accomplished so far.

In the lamellar microstructure of γTiAl alloy the lamellae phases (α2, γ-matrix, γ-twin) are aligned
parallel to each other. Between two α2-phases many γ-phases can be situated (recall Fig 2.3 in Chapter
2). Such a lamellar microstructure was constructed setting many periodic unit cells (PUC) parallel
to each other. Important microstructural features that influence the material properties, for example,
presence of phases and their orientations in a lamellar microstructure, were described in representative
volume elements (RVE). The RVE represents the minimum material volume of a microstructure. To
describe a (α2+γ)TiAl lamellar microstsructure, RVEs were defined for three lamellar phases, α2,
γ-matrix and γ-twin respectively. The RVEs were embedded into the PUCs to generate the lamellar
microstructure. Volume contents of these phases (α2 about 5%, γm = γt = 47.5%) were maintained in
the PUCs. For a prescribed lamellae orientation, this PUCs were arbitrarily rotated in 3D space.

A PUC model of lamellar microstructure consisting of different phases is shown in Fig. 6.1(a). In
Fig. 6.1(b) a simple PUC is constructed with one set of α2, γ-matrix, and γ-twin phases.

The PUC model was used to generate a polysynthetically twinned (PST) single crystal with a spe-
cific lamellae orientation. The PST crystal is a single grain with lamellar structure. The lamellar
microstructure including lamellae phases, lamellae thickness and orientation can be controlled during
PST crystal generation. A single PST crystal is equivalent to a single lamellar colony. Therefore,
a fully lamellar polycrystal with randomly oriented colonies can be modeled by combining many

1Collaborative Research “SFB 371” conducted at the Technical Universtiy Hamburg-Harburg together with GKSS Re-
search Centre Geesthacht, 1993 – 2003, financed by Deutsche Forschungsgemeinschaft.
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PST single crystals with random lamellar orientation. In Fig. 6.2(a,b) such a cubic polycrystal model
is constructed with 64 PST crystals. The orientations of the lamellar colonies were defined by the
respective orientation directions of the PUCs.

At a meso scale a single colony was discritized with 8 FE elements (Fig. 6.2(b)). Each element was
then linked with periodically arranged 8 PUCs at a micro scale (Fig. 6.2(c)). As a result, a single
lamellar colony consists of 64 PUCs. The micro level PUCs and the meso level colonies are linked
by the FE2 principle as described in [46, 72].

α2 γmγt

t: Twin
m: Matrix

(b)(a)

α2 γmγt γmγt

1 PUC with
3 RVE

Figure 6.1: Lamellar microstructure: (a) PUC with lamellae phases as seen in the microstructure, (b)
simplified PUC with single lamellae phases as used in the two-scale FE model.

(b)

FE model of
the polycrystal

Lamellar colonies
idealized by regular bricks

PolycrystalTensile
specimen

(a)

1 FE element
connected with

8 PUC

PUC

(c)

Figure 6.2: Modeling of lamellar γTAB polycrystal with the FE2 approach: (a) regular cube consisting
of 64 PST crystals, (b) FE elements (mesh) consisting of the regular PST crystals, (c) one FE element
described by 8 PUC.

The polycrystalline cube has an edge length of 400 μm and an average colony size of 100 μm (size
of the PST crystal). The orientations of lamellae colonies are analogous to the observed orientation
from the cross-section of the extruded bar, i.e., about ± 20◦ against the extrusion direction, but are
randomly rotated across the radial direction.
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6.1.2 Crystal plasticity

Deformation behavior of the α2 and the γ-phases are described in an ABAQUS user defined material
subroutine (UMAT) for crystal plasticity. The UMAT was originally developed by Huang [73] and
modified by Lin et al. [74]. The constitutive law used in the UMAT is based on a rate-dependent
visco-plastic formulation:

γ̇(η)

γ̇0
=

∣∣∣∣∣∣
τ(η)

g(η)

∣∣∣∣∣∣
m−1 (

τ(η)

g(η)

)
, (6.1)

where, γ̇(η) is the shear rate of the slip system η, γ̇0 is a reference shear rate, τ(η) is the Schmidt-stress
in η, g(η) is the current yield stress of η, and m is the strain rate exponent. The initial yield stress,
g(η), is identical to the critical resolved shear stress (CRSS), which is the required minimum stress to
initiate slip on a given slip plane and in a given direction.

The evolution of g(η) is described by a linear hardening law:

ġ(η) = h(η)
0

∑
β

qηβγ̇(β), (6.2)

where h(η)
0 is the hardening modulus, and qηβ is the hardening matrix. The values of qηβ are generally

found to be in the range of 1.0 to 1.4, however, for the particular case of α2 and γ, information about
the appropriate values are not found anywhere in the literature. Therefore, qηβ is assumed to be 1.0
for all slip systems of η and β.

6.1.3 Simulation of local stress-strain behavior of the polycrystal colonies

Identification of crystallographic parameters for γTAB

As the lamellar colonies in the polycrystal were analogous to the lamellar PST crystals of same
crystallographic slip systems, the parameter set for the fully lamellar γTAB polycrystal can be deter-
mined from the parameter set of the PST crystal. In literature the crystallographic parameters, such
as strength of the slip systems, g0, and hardening parameters, h0, of a lamellar PST crystal for the
binary composition of Ti-49.3Al were determined using the two-scale FE model in conjunction with
the experiments [23, 46]. The parameters are the following:

glong
0 = 55MPa, hlong

0 = 400MPa (6.3)

gmix
0 = 150MPa, hmix

0 = 320MPa (6.4)

gtrans
0 = 185MPa, htrans

0 = 135MPa (6.5)

The superscripts long, mix, and trans stand for longitudinal, mixed, and transverse slips respectively.
The flow curves for 0◦, 45◦ and 90◦ orientations were quantitatively satisfied by the parameters.

To determine the parameters for the lamellar polycrystal with randomly oriented colonies, tensile
simulations were performed using the FE2 model. The global stress-strain curves were calculated
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from the reaction force as a response of imposed longitudinal deformation. Taking the PST crystal
parameters (Eq. 6.3, 6.4, 6.5) as a basis, different parameters were studied and the simulated σ−ε
curves were adjusted with the tensile test records. The best fitted curve is shown in Fig. 6.3.
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Figure 6.3: Stress-strain curve from the multiscale simulation of tensile test, used for crystallographic
parameter identification.

The fittedσ−ε curve from the polycrystal simulation matched the overall behavior of the experimental
σ−ε curves quite well. The crystallographic parameters of the γTAB polycrystal are taken from this
fitted curve. The obtained parameters are:

glong
0 = 82.5MPa hlong

0 = 2400MPa (6.6)

gmix
0 = 175MPa hmix

0 = 2400MPa (6.7)

gtrans
0 = 277.5MPa htrans

0 = 2400MPa (6.8)

The above values are higher than the PST crystal parameters. As explained in [46] these higher
values are due to the inhomogeneous lamellar microstructure in the polycrystal and the deformation
constraints from the neighboring colonies.

Strain profile

In Fig. 6.4 the strain profile at the outer surfaces of the polycrystal cube at a global strain, ε22 = 2.5%
is shown. The strain component, ε22, is plotted in a scale of 1.665-3.682% for clarity. The figure
shows red areas with higher strains and blue areas with lower strains. Due to oriented colonies the
hard and easy mode of deformation are active in a polycrystal. Each embedded colony experiences
deformation constraints, consequently, inhomogeneous stress and strain fields are generated in the
polycrystal.
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Figure 6.4: Plastic strain concentrations across the regular cube with 64 colonies specified for γTAB.

Local variation of stress-strain

The colony stress and strain are obtained by homogenizing the stresses and strains over the 64 PUCs.
Following relationships are used:

σcolony =

64∑
i
σpuc, (6.9)

εcolony =

64∑
i
εpuc, (6.10)

Using the above relationships the component stress in loading direction (σ22) as well as the von Mises
effective stress (σe) for each colony is calculated. In Fig. 6.5 the simulated component stress-strain
curves (σ22-ε22 curves) as well as the von Mises equivalent stress-strain curves (σe-εe curves) for all
the 64 colonies are plotted. The figures show large variations for both the σ22-ε22 and σe-εe curves.
The variation band of σ22-ε22 curves is slightly larger than the variation band of σe-εe curves. As the
component stresses are highly influenced by the deformation constraint from the neighborhood, this
differences in the variation band is expected.

The true σ−ε curve from the global response of the polycrystal cube is also included in Fig. 6.5a. The
global stress-strain curve lies almost in the middle of the variation band. This means that globally the
polycrystal has produced an averaged response despite large σ22-ε22 variations across the colonies.

The elastic slopes also vary for all the colonies. This variation obviously comes from the orthotropic
elastic properties of the α2 and γ-phases. Due to random orientation of the colonies, the deformation
behavior of the phases is dominated by certain elastic component, which changes the average elastic
behavior of the colonies.
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Frequency distributions of the σ22-ε22 curves are determined at two distinct global strains, ε22 = 1.5%
and 2%, and are shown in Fig. 6.6. From the bar diagram a Gauss or a Weibull distribution function
can be derived. No experimental validation has been performed for the variation band.
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Figure 6.5: Local stress-strain curves of 64 lamellar colonies simulated with the two-scale FE model,
(a) variation in σ22-ε22 curves, (b) variation in σe-εe curves.
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Figure 6.6: Variations of the stress-strain curves from the multiscale simulation for the polycrystal
γTAB at 1.5% and 2% global strains.
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Influence of deformation constraints of the colonies

The local deformation constraints due to neighboring colonies are simulated. The transverse defor-
mation constraints in the polycrystal that result from the neighboring colonies of different orientations
will be denoted as “constraint effect”. To analyze the constraint effects, a centered PST crystal in the
polycrystalline cube (colony number 26) has been chosen. The same colony was modeled as a single
PST crystal (no neighboring colonies are present) with the same material and orientation definitions.

The two cases are shown in Fig. 6.7(a,b) and the simulated stress-strain data are plotted in Fig. 6.7(c).
It can be seen that the embedded colony underlies higher constraints, which increase the stresses
during imposed deformation. On the other hand, the constraint free colony (PST crystal) exhibits
much lower stresses under increasing strains.

The increment of longitudinal stresses, σ22, in the embedded colony depends on the surrounding
anisotropic PST crystals, which causes a significant variation of local σ22-ε22 curves in the polycrsy-
tal.
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Figure 6.7: Constraint effect in a lamellar polycrystal: (a) constrained PST crystal (number 26) em-
bedded in the regular cube, (b) constraint free PST crystal, (c) stress-strain curves showing the con-
straint effect.

6.1.4 Anisotropic effects of lamellae orientations in the polycrystal

Previously in chapter 3, Fig. 3.3, a scatter band was shown for the experimental σ−ε curves. For the
lamellar TiAl alloys two possible explanations for this scatter may be given:
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1. In TiAl alloy the lamellae orientations against the loading axis yield anisotropy in flow stresses
and plastic strains, as was reported in [16]. The rotations of the colonies about the loading axis
(perpendicular to the cross-section of the extruded bar) do not have much influences on the
stress-strain behavior [75].

For the polycrystal, this anisotropic effect may contribute to a stronger or a weaker global
response. As the colonies of the extruded rod are oriented in the range of ± 200 with respect to
the load axis, only a minor influence on the resulting σ−ε curves is expected.

2. Presence of unexpected grain structures (like duplex grains situated among the fully lamel-
lar microstructure) or the clusterization of the colonies within the microstructure can not be
avoided during processing.

The first explanation for the anisotropic effect is verified using two-scale FE2 simulations. Single and
polycrystal models with randomly oriented colonies are generated from which the effects of colony
orientations on the global deformation behavior of the γTAB alloy are studied. The following cases
are examined:

1. Single crystal behavior expressed for the three distinct lamellae orientations, ϕ = 0◦, 45◦ and
90◦. ϕ is the orientation angle of the lamella plane with respect to the loading axis. ϕ = 45◦ is
the soft mode of lamellae orientation, ϕ = 0◦ is the intermediate mode, and ϕ = 90◦ is the hard
mode.

2. Polycrystal behavior expressed for the following three cases. ξ is the rotation angle of the
lamellar colonies about the loading axis.

Case Rotation angle ξ of the lamellar Inclination (orientation) angle ϕ of the
colonies about the loading axis lamellar colonies against the loading axis

A Randomly aligned (isotropic) Randomly aligned within
0◦ � ξ � 360◦ −20◦ � ϕ � +20◦

B Random (isotropic) Uniformly aligned
0◦ � ξ � 360◦ ϕ= 0

C Random (isotropic) Uniformly aligned
0◦ � ξ � 360◦ ϕ= 45

Table 6.1: Case of study for γ-TAB with single and polycolony

The lamellae orientation of ϕ = 90◦ has been excluded from the analysis since this kind of lamellae
arrangement could not be found in the γTAB alloy.

The polycrystalline cube in Case A has the same orientation definition as the investigated γTAB
material. Transverse to the extrusion direction (which here is also the loading direction) the colonies
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are aligned in a quasi-isotropic manner without textured preferences (0◦ � ξ � 360◦). Along the
extrusion direction the colony alignment is confined in a narrow band, i.e., −20◦ � ϕ � +20◦.

For Case B, an idealization has been introduced, i.e., all colonies in extrusion direction have the same
parallel alignment, ϕ = 0◦, while keeping the ξ rotation the same as in Case A.

In Case C, all colony planes are inclined (ϕ = 45◦) against the loading axis. Transverse to the loading
axis the quasi-isotropic random rotation of the lamellar colonies (0◦ � ξ � 360◦) is maintained, like
in Case A.

In Fig. 6.8(a), the σ−ε curves for a single PST crystal for three lamellae orientations under tensile
loading are shown. Differently oriented lamellae activate different kinds of twinning and slip systems
[16], which result in highly anisotropic deformation.

Fig. 6.8(b) shows the deformation behavior (expressed by σ−ε curves) of the lamellar polycrystal.
Compared to the results of the single PST crystal, hardly any ϕ-orientation effects are seen. For ϕ
= 0◦ (Case B) and ϕ = ±20◦ (Case A), a minor difference in the σ−ε curves is found. For the soft
lamellae orientation, ϕ = 45◦, this σ−ε curve deviates early from the elastic curve, however, this curve
lies significantly above the σ−ε curve obtained from the single PST crystal for the same orientation.

For the polycrstal, the three curves lie in a narrow band. The models in these three cases (Case A, B
and C) have analogous random orientations (transverse to the loading axis, i.e., 0◦ � ξ � 360◦) and
all of them are subjected to almost the same degree of constraint effects.

With the presence of a few soft colonies, the global σ−ε curves of the polycrystal will remain close
to the results observed for cases A or B. The results indicate that the global variation of σ−ε curves
observed in the tensile tests may come from the supplementary influences of the microstructural
variations and not only due to the random orientation of the colonies.

A significant variation in the σ−ε curves can be obtained due to pronounced occurrences of soft mode
(ϕ = 45◦) or hard mode (ϕ = 90◦) orientations, however, such arrangements can not be found in the
extruded γTAB alloy.

6.1.5 Local variation of stress-strain curves for the stochastic approach

The local variation of stress-strain curves are incorporated in a continuum based macro model, by
which the deformation behavior of the colonies is captured. The variation of equivalent stress-strains
of the colonies, as shown in Fig. 6.5b, is considered for this macro scale modeling. These σ-ε curves
describe the von Mises type plasticity for the colonies.

For modeling simplicity, only the upper limit and the lower limit of the curves are taken as the vari-
ation band. This band is equally divided into five σ−ε curves, i.e., σ−ε.1 to σ−ε.5 as depicted in
Fig. 6.9. The σ−ε.3 curve is the arithmetic mean of the five σ−ε curves. The polycrystal average
behavior is described by this curve. This curve will also be denoted as σ-ε.Mid.
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Figure 6.8: Effects of lamellae orientation along the load-axis: (a) for a single PST crystal, (b) for a
polycrystal consisting of 64 colonies
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6.2 Fracture simulation of tensile bar at a macro scale

In the present section the influence of material properties on the scatter of experimental stress-strain
curves will be investigated. For this analysis fracture simulations are performed on the tensile spec-
imens using a stochastic approach of the cohesive model. The deformation behavior of the tensile
model is described by local stress-strain curves of the polycrystal colonies, while the fracture is de-
scribed by cohesive strength and cohesive energy. The parameters are considered to be stochastic in
nature and have a certain variation band. The variation bands in the present case are taken from exper-
imental results and numerical simulations. For example, the variation band of the local stress-strain
curves (σe-εe curves) of the polycrystal are obtained from the two-scale simulation. For cohesive
strength, T0, exact values can not be obtained by straightforward means. However, for brittle or
quasi-brittle material like γTAB, reasonable approximations of the T0 are the experimentally deter-
mined global maximum stresses from the true stress-strain curves, which are very close to the physical
fracture strengths. With this assumption the variation band for T0 is approximated and taken between
680 and 820 MPa. The variation band of the cohesive energy, Γ0 is determined from the fracture tests
of the bend specimen. The band lies between 3 to 5 N/mm.

6.2.1 FE modeling

Due to three fold symmetry one-eighth of the flat tensile bar was modeled. The experimental tensile
bar and the meshed FE model are shown in Fig. 6.10(a,b). The fracture plane was constructed at the
symmetry plane using a layer of 3D cohesive elements (see Fig. 6.10(c), number 3). The 3D cohesive
elements are the zero thickness interface elements, which respond according to the “cohesive law of
separation” to simulate crack propagation along the fracture plane.

The fracture plane was divided into 100 x 100 μm2 quadratic areas which are denoted as “cohesive
blocks”. Each cohesive block was subdivided into fine meshes with a 20 x 20 μm2 size. Therefore,
each cohesive block contains 25 FE elements. Above the fracture plane two regions were chosen, the
moderate mesh (marked with “2”) and the coarse mesh (marked with “1”) in Fig. 6.10(c). Three types
of models were developed for this investigation.

Model A: Global fracture of a tensile bar influenced by the stochastic nature of fracture param-
eters.

For this investigation, the fracture parameters of the cohesive model (T0 and Γ0) were randomly
assigned throughout the cohesive blocks in region 3, see Fig. 6.10(c). The rest of the model was
considered as a homogeneous polycrystal which follows an average von-Mises type elastic-plastic
constitutive behavior described by σ−ε.3. The curve σ-ε.3 will also be denoted as σ-ε.Mid
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Figure 6.10: FE model of the flat bar tensile specimen: (a) Tensile specimen, (b) FE model of the
tensile bar, (c) Mesh detail. The stress-strain curves are defined in section 6.1.

Model B: Global fracture of a tensile bar influenced by the stochastic nature of fracture pa-
rameters coupled with the evolution of local inhomogeneous stress-strain developments in the
vicinity of the fracture process zone.

For this investigation, the fracture parameters, T0 and Γ0, were distributed in the same way as Model
A. Additionally the σ-ε.1 to σ-ε.5 curves were randomly distributed in region 2. With this arrange-
ment, the inhomogeneous deformation (described by the five individual von-Mises type elastic-plastic
constitutive behaviors) in the vicinity of the fracture process zone was phenomenologically described.

The bottom faces in region 2 were compatibly attached to the cohesive blocks in region 3. For this
reason, region 2 was divided into 3D blocks of 100 x 100 μm2 faces and denoted as continuum blocks.
Thus, the global response of the model incorporated the influence of both elastic-plastic behavior of
the colonies and their fracture properties.

The rest of the model (region 1) was considered as a homogeneous polycrystal which follows an
average von-Mises type elastic-plastic constitutive behavior described by the σ−ε.Mid.

60



Model C: Global deformation and fracture of a tensile bar influenced by the stochastic nature
of fracture parameters and local inhomogeneity of stress-strain fields throughout the model.

For this investigation the fracture parameters, T0 and Γ0, and the σ-ε.1 to σ-ε.5 curves were randomly
distributed like Model B. Moreover, in region 1, contrary to Model B, the σ-ε.1 to σ-ε.5 curves were
stochastically distributed. By doing this, the local polycrystal deformation was phenomenologically
described in the whole tensile model.

6.2.2 Distribution of stochastic parameters

For cohesive strength, T0 and cohesive energy, Γ0:

Discrete values of T0 and Γ0 within the variation band were generated using a random generator.
For Models A and B these values were randomly distributed under a constant frequency distribution,
defined by a rectangular distribution function (see Fig. 4.4), along the 100 cohesive blocks. This
kind of distribution represents a constant probability density with equal probability of failure for each
block.

For Model C, the frequency distribution functions shown in Fig. 4.6 were used to define the variation
of cohesive parameters, T0 and Γ0. By implementing such distribution functions one can set priorities
to the occurrence of certain fracture properties.

For σ−ε curves:
For Model B, the five σ-ε curves were randomly distributed like T0 and Γ0 using the rectangular
distribution function (as shown in Fig. 4.4) along the 100 continuum blocks.

For Model C, the fiveσ-ε curves were also distributed according to the frequency distribution function
shown in Fig. 4.6. The whole tensile model was divided into small volumes, where the random
parameters were applied. With these distribution functions, priorities are given to certain σ-ε curves
to control the influence of global elastic-plastic behavior.

A summary of the property distribution and the models is shown in Fig. 6.11.

Region 1: σ−ε.Mid
Region 2: σ−ε.Mid
Region 3: Random T0 and Γ0

Model: A

equally distributed

Region 1: 5 σ−ε curves
Region 2: 5 σ−ε curves
Region 3: Random T0 and Γ0

Model: C

distributed according to
frequency distribution

function

Region 1: σ−ε.Mid
Region 2: 5 σ−ε curves
Region 3: Random T0 and Γ0

Model: B

equally distributed

Figure 6.11: Summary of the model analysis.
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6.2.3 Tensile test simulation using stochastic approach

Model A and Model B:

The stochastic parameters for model A and B are summarized in Table 6.2. For Model A only one
simulation was performed denoted as RD.Mid, while for Model B three cases were simulated with
three different distributions, denoted as RD.01, RD.02, and RD.03. Additionally, the variation of
cohesive parameters for RD.03 were assigned to be the same as RD.Mid in order to compare the
effect of local inhomogeneous stresses and strains in the vicinity of the fracture zone. By comparing
the RD.03 and RD.Mid the effects of the global fracture, crack initiation, and crack evolution on the
σ−ε curves can be identified.

Model-Case σ-ε curve T0, MPa Γ0, N/mm Random generation
Model A-RD.Mid Only σ-ε.Mid 680-820 3 - 5 T0 and Γ0 variations

are identical to RD.01
Model B-RD.01 σ-ε.1 - σ-ε.5 680 - 820 3 - 5 Distribution type 01
Model B-RD.02 σ-ε.1 - σ-ε.5 680 - 820 3 - 5 Distribution type 02
Model B-RD.03 σ-ε.1 - σ-ε.5 680 - 820 3 - 5 Distribution type 03

Table 6.2: Case of study for different random distributions

The simulation results for the four models are shown in Fig. 6.12. Due to the same elastic-plastic
constitutive behavior (described by σ-ε.Mid) all the curves lie on the average σ−ε curve (σ−ε.Mid).
However, minor variations in the fracture points were obtained, which were caused by the variation
of T0 (820-680 MPa) and Γ0 (5-3 N/mm).
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62



In Fig. 6.13 a magnified view of the maximum stress level is shown. For RD.01 RD.02 and RD.03
minor differences near the maximum can be observed. These differences came from the locally devel-
oped inhomogeneous stress due to the variable σ-ε-curves near the fracture surface. At the maximum
stress a small plateau can be seen. This occurred due to the constant traction part of the Rect-TSL.
On this maximum stress plateau, locally no fracture takes place i.e., no crack initiation occurs. The
data attained from the FE calculations showed that local crack initiations had occurred at a lower
T0, however, due to the local deformation constraint all specimen failed around the average cohesive
strength, T0,mean = 750 MPa.
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Figure 6.13: High resolution of the maximum region of the stochastic simulations.

For model A and B the bulk material was described by the σ-ε.3-curve. This assumption implies
that the specimens have an identical microstructure. As the miniature specimens were taken from
different positions of the parent material, slight changes in the microstructure for all the specimens
are expected. This microstructural change results in a variation in the experimental σ-ε curves. To
capture this variation a change in the material properties (or a shift in the properties) in each tensile
model needs to be considered. Information about this property changing can only be obtained if the
frequency distribution of the material properties are known. Only six experiments, as has been done
for the present case, are not sufficient to quantify these distributions. Therefore, Model C is generated
with some assumed frequency distributions. The modeling assumptions and the results are discussed
below.

Model C:

To take into account the possible material property variations (i.e., shift in the material properties
from specimen to specimen) four distribution functions, FD.A, FD.B, FD.C and FD.D, were assumed.
The parameters and the assumed histogram of the distributions are shown in a schematic drawing in
Fig. 6.14. Here, the variation bands of the local σ-ε-curves, T0 and Γ0 were divided into five groups
X1, X2, X3, X4, X5 (shown previously in Fig. 4.6a), which are placed along the horizontal axis of
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Fig. 6.14. The frequency of occurrences of these values are plotted along the vertical axis. Frequency
of occurrence in this case means how much volume percent of the material in a specimen is occupied
by a certain parameter-value. For example, higher occurrence of X1 means that the X1 value appears
more frequently than the other parameters, and that this value occupies a larger material volume.
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Figure 6.14: Four assumed frequency distributions.

The material parameters, which follow any of the above distribution functions, are assigned randomly
in the tensile model. In Fig. 6.15 parameter distributions for the calculation set A are shown. Here,
the σ-ε-curves are distributed under FD.A and the cohesive parameters are distributed under FD.A,
FD.B. FD.C and FD.D. Therefore, four models are obtained. The global stress-strain responses of the
models are SR.A1, SR.A2, SR.A3, and SR.A4.

Calculation Set: A
(CS.A)

For σ−ε variation
Frequency distribution: A

(FD.A)

FD.A FD.B FD.C FD.D

For T0/Γ0 variation

Simulation results

SR.A1 SR.A4SR.A3SR.A2

Figure 6.15: Arrangements of the parameters for simulation, calculation set A is shown.

Similar to FD.A, the σ-ε-curves are distributed under FD.B, FD.C and FD.D and the the cohesive
parameters are distributed under FD.A, FD.B. FD.C and FD.D. For each set of σ-ε distribution, four
simulated results are obtained. The parameter arrangements that are used in this investigation are
shown in Table 6.3.

The three parameters, σ-ε, T0, and Γ0 can be arranged in many different ways by combining similar
or different frequency distributions. Each arrangement results in a particular parameter distribution
related to a particular specimen that is taken from a random position of the extruded rod.
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Variation of σ-ε curve Variation of T0 Variation of Γ0 Calculation Results
FD.X∗ FD.A FD.A SR.X1∗
FD.X∗ FD.B FD.B SR.X2∗
FD.X∗ FD.C FD.C SR.X3∗
FD.X∗ FD.D FD.D SR.X4∗

∗X=A, B, C, or D, where A for calculation set A, B for calculation set B, etc.

Table 6.3: Case of study for different random distributions

The results for the case FD.C are shown in Fig. 6.16 and the assigned distributions are shown below
the plotted curves. The global σ-ε curves for FD.C collapse to one. This trend in the global curves
is similar to the results of model B. Such similarities are expected, as the frequency of occurrence of
the σ-ε curves is the same for all the calculations under a particular model. That means, for RD.01,
RD.02, and RD.03 in model B, an equal weight is given for all the σ-ε curves. On the other hand, for
SR.C1, SR.C2, SR.C3, and SR.C4 in model C, all the σ-ε curves were assigned under the FD.C.

In model C, compared to model B, a considerable variation in the fracture stresses and strains was
obtained, which resulted from the different frequency distributions of the fracture parameters. From
the results it was shown that the influence of property variability on the global fracture behavior can be
well described by frequency distribution functions rather than a constant (equal) distribution function.

In Fig. 6.17 all the results from FD.A, FD.B, FD.C, and FD.D are plotted. Each set shows coinciding
elastic-plastic responses, which is, as mentioned before, due to the same distribution of σ-ε curves
within one set.

The shift in the global σ-ε curves as well as the variation of the fracture stresses and strains are
captured fairly well with the stochastic approach. An upper limit and a lower limit of the fracture
stresses was obtained from each type of frequency distribution. The results show that the set SR.A
results in a higher fracture strain than the set SR.B, which means that the fracture strain decreases
with the increase of the curve stiffness.

The experimental and simulated variations of the fracture stresses and strains are compared in Fig. 6.18.
The obtained experimental fracture points lie within the simulated results. The trend of the experi-
mental fracture points match quite well with the SR.C results. This trend can only be confirmed by
a number of experiments. Also, the assumed frequency distribution, FD.C, of the properties can be
verified with the experimentally obtained variation band. Such experimental program was beyond the
scope of the present work.
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Figure 6.16: Stress-strain curves for the calculation type C.
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6.2.4 Simulation of tensile fracture using cohesive model

The tensile failure of brittle or quasi brittle materials occurs mostly dynamically, therefore, detailed
information about crack initiation and propagation can not be easily obtained from experiments.
Instead, the numerical simulations provide information about the local decohesion of material and
degradation of stresses due to fracture. To access this information the numerical fracture under ten-
sile loading for the model RD.01 are explained, and the influences of the local stress evolution on the
crack propagation is discussed.

In Fig. 6.19 a magnified view of the simulated σ−ε curve at the maximum stress region is shown.
The sharp stress drop at the vertical line is due to tensile damage. Three phases can be distinguished
beyond the maximum stress level. These are marked on the global σ−ε curve.

Phase 1: Phase 1 can be phenomenologically interpreted as the start of material degradation or the
damage process. At this point, the global force reduces during displacement controlled loading.
The model can no longer carry external loads and the stress reduces at constant deformation.
This displacement condition is marked by the increment 39 on a vertical tangent.

Phase 2: Further stress reduction occurs at constant displacement, marked by the “100” on the curve.
In this calculation step, crack initiation occurred at a random block by breaking a cohesive
element. Just after the first element breaks, the whole block starts to fail rapidly. Phase 2 ended
by the failure of the first cohesive block.

Phase 3: Phase 2 is followed by multi-block failure. Within a short series of incremental steps,
massive crack propagation along the fracture plane continues. All blocks fail either successively
or simultaneously. There was no regular rule for the failure sequence, instead crack initiation
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and propagation occurred in a stochastic nature, controlled by the distribution of the material
parameters.
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Figure 6.19: Magnified view of stress-strain curves for RD.01 beyond maximum stress levels, divided
in three phases: damage like degradation, crack initiation in a block and the final massive crack
propagation.

In Fig. 6.20 the local fracture strength evolution starting from the crack initiation to the final failure on
the fracture plane is shown. For visual clarity the component stresses, σ22, in the continuum elements
near the fracture interface are shown. The σ22 in the continuum elements and the cohesive traction,
T0, in the cohesive elements (at the fracture plane) are equal.

Fig. 6.20(a) shows the stress contour at increment 32. The stresses in the continuum elements increase
to a maximum level, as long as the cohesive law follows the ascending part up to a maximum traction,
T0. With further increase of the global displacement the blocks begin to soften following the softening
part of the Rect-TSL. Consequently, the global force (or component stresses, σ22) decreases. At
the end of this progress (increment 39), the global displacement cannot be increased further due to
the beginning of damage. Reduction of the global force along the vertical tangent occurs when the
stresses, σ22, decreases according to the last part of the Rect-TSL. As seen in Fig. 6.20(c), the first
element breaks in block 24 (the local component stress σ22, which is equivalent to T0, is reduced to
zero). This situation represents crack initiation in the FE model.

Just after the first cohesive element failure, local failure progresses for each cohesive element across
the whole block (Fig. 6.20(d)).

This continuous fracture process causes further reduction of the external forces (Fig. 6.20(e)). The
fracture continues producing massive irregular cracking throughout the cross section (Fig. 6.20(f)).
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Figure 6.20: σ22 distribution of the simulation RD.01 across the fracture plane for characteristic
loading steps showing the evolution of crack initiation and propagation: (a) for increment 32, (b) for
increment 39, (c) for increment 100, (d) for increment 105, (e) for increment 110 (f) for increment
120.
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The experimental force-displacement records exhibit only the initial part of Phase 1. However, the
experimental stress-strain response is quite similar to the simulated one. In Fig. 6.21 two results of
experimental σ−ε curves (belonging to the tensile tests ZQ4 and ZQ5) at and beyond their maximum
stress levels are shown with a high magnified view. In both cases a plateau is reached which sustains
over a small range at the strain axis. The simulated curves with the stochastic approach also show a
narrow plateau at the maximum stress level followed by a vertical drop (Fig. 6.13 and Fig. 6.19). For
the experiments, the very last data points just before failure can not be collected by the experimental
setup. The curves are, therefore, tentatively extrapolated until a vertical tangent is reached.
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Figure 6.21: Magnification of stress-strain curves around maximum load of two tensile tests.

6.2.5 Local stress evolution

Following the evolution of damage in the hard and soft colonies in a lamellar microstructure is dis-
cussed. The meso-scale deformation of the hard and soft colonies were described by the higher and
lower stress-strain curves (i.e., σ-ε.5 andσ-ε.1 curves). To obtain a better knowledge about the colony
failure, interplay between the locally developed stresses and the material separation under the cohe-
sive damage model have been discussed. For this purpose, a fracture model with RD.01 arrangement
was used. Since the cohesive tractions, T, at the interface elements equal the normal stresses, σ22, at
the attached continuum elements, the normal stresses and strains at the attached continuum elements
are studied. Additionally, elastic-plastic analyses (without fracture) were performed to compare the
stress evolution in cracked and uncracked models.

For the investigation, four exemplary blocks were chosen among the 100 blocks: blocks 24 and 59
as hard colonies and blocks 52 and 68 as soft colonies. The blocks 24 and 59 were attributed to the
highest σ−ε curve (curve σ−ε.5). A higher fracture strength, T0 = 802.43 MPa to block 24 and a
lower fracture strength, T0 = 689.93 MPa to block 59 were assigned. Similarly, the blocks 52 and 68
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were attributed to the lowest σ−ε curve (curve σ−ε.1). A higher fracture strength, T0 = 803.54 MPa
to block 52 and a lower fracture strength, T0 = 686.92 MPa to block 68 were assigned.

The local evolution of stresses and strains in load direction (σ22, and ε22) for the fractured and de-
formed (without fracture) models are shown in Fig. 6.22(a) and Fig. 6.22(b)
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Figure 6.22: Activation of the component stresses σ22: (a) for blocks 24 and 59 with σ-ε.5 curve, (b)
for blocks 52 and 68 with σ-ε.1 curve, (c) view of the block positions and their assigned values.

In Fig. 6.22(a), two continuous σ22-ε22 curves, a, b, (without stress degradation) for the hard colonies
(blocks 24 and 59) are shown which resulted from the damage free models. The minor variation in
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the hardening behavior (shown as a gray zone) of both blocks was due to the deformation constraint
resulting from the neighboring colonies. Similar results were obtained from the soft colonies (curves
e and f) as shown in Fig. 6.22(b). The yield stress of a and b is higher than the yield stress of e and f.

If fracture is introduced in the elastic-plastic model using only one set of T0 and Γ0 (without stochastic
T0 and Γ0 under the variation band), the evolution of σ22 and ε22 would be similar to the previous
cases (curve a,b or e,f) until the σ22-ε22 curve is truncated by the cohesive parameters. The required
ε22 to attain σ22 depends on the local higher or lower σ22-ε22 curves, i.e., the curves with higher or
lower yield stress. For example, for a higher σ22-ε22 curve (curve a or b), a lower ε22 is required to
attain the maximum σ22 corresponding to T0. For a lower σ22-ε22 curve (curve e or f), a large ε22 is
required to gain the same maximum σ22 corresponding to T0.

If fracture is introduced by a random set of T0 and Γ0 values, the evolution of σ22 and ε22 will be
quite different from the previous cases of a single set of T0 and Γ0. In this case, the local σ22 and
ε22 developments will be highly influenced by the deformation constraint of the poly-colonies. Such
cases are shown in Fig. 6.22(a) with c and d curves, and in Fig. 6.22(b) with g and h curves.

For the curves c and d, a higher σ-ε.5 was attributed to the hard colonies. Therefore, less ε22 was
sufficient to increases theσ22 up to the equivalent stress to fracture (T0 = 802 and 689.93). The colony
was deformed pure plastically until the stress begins to fall down due to damage evolution. On the
other hand, for the curves g and h corresponding to soft colonies, larger local strains, ε22 should be
needed to achieve the required fracture stresses defined by the cohesive tractions, T0. But larger ε22

can not be achieved in the model as the ε22 can not increase freely due to the deformation constraint
of the colonies. Rather, the local stress, σ22, increased sharply to gain the required fracture stress, T0.

Thus, it can be shown that the required ε22 to attain σ22 for crack initiation is notably influenced
by the deformation constraint of the colonies. This phenomenon can not be captured if the fracture
surface is completely described by a single set of cohesive parameters, which basically simulates a
homogeneous crack propagation without the influence of colony fracture properties. The stochastic
approach simulates the crack initiation in a polycrystal quite realistically and provides a meaningful
explanation about the role of inhomogeneous stress development to initiate cracks.

6.2.6 Generation of random crack

In Fig. 6.23 the nodal displacement, U2, along the loading direction at the fracture plane of RD.01
(Model B) is shown. The separations, δ, of the cohesive elements are equals the U2 for the continuum
elements at the fracture interface. Due to the symmetric model, the plotted U2 is equal to δ/2. In the
figure the attained U2 is shown on the right hand side and the colored contours are shown on the left
hand side.

The smallest value of δ0 (δ0 = 4.93 μm) was attributed to block 24 during random data assignment
which initiated the first crack in the model. As the δ follows the TSL of the cohesive model, the
evolution of δ is dependent on the evolution of the T. The evolution of the T is again influenced
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Figure 6.23: Displacement contours of the simulation RD.01 along the cohesive layer displaying the
cohesive separation across the fracture plane, crack initiation occurs in block 24.

by the locally defined elastic-plastic behavior of the colonies as well as the deformation constraint
imposed by the neighboring blocks. Thus, the crack initiation is correlated to the local deformation
and evolution of stress at the fracture surface.

The stress distributions, σ22, across the fracture plane at the beginning of a block failure for the
stochastic cases of RD.01, RD.02, and RD.03 are shown in Fig. 6.24. The stochastic values were kept
same for RD.01, RD.02, and RD.03 but were differently distributed throughout the fracture surfaces.
The figure shows that the initiation of cracks in all cases occur at different blocks, which clearly proves
that the random location of crack initiation results from the heterogeneous deformation described by
the random elastic-plastic curves of the colonies.

6.2.7 Concluding remark

Tensile failure of γTAB with lamellar microstructure has been described phenomenologically using
the cohesive model. Adopting the stochastic assumptions for property variability, the mechanisms
of failure are explained fairly well as well as the experimental scatter is captured in an acceptable
range. It has been shown that the distribution functions for assigning the random parameters into the
model significantly influence the global tensile responses. The polycrystal deformation and failure are
also realistically predicted. The results show that the local deformation constraint plays an important
role for attaining required local stresses for crack initiation. The crack initiation is found to be mostly
stochastic in nature. After the initiation of a crack load drops rapidly, which can be seen at the vertical
tangent of the global σ−ε curve. Crack propagates dynamically at this line. It has been found that the
rapid crack propagation begins just after the failure of a single element.
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Figure 6.24: σ22 distribution of the stochastic simulation RD.01, RD02, RD.03 showing the initiation
in different blocks.

The influence of the stochastic property variation on the crack initiation and propagation can be
understood more clearly by analyzing a stable crack propagation. Such a controlled crack propagation
can be obtained through fracture testing of notched bend specimens. In the next section the stochastic
approach is validated comparing the scatter in the experimental and simulated force-displacement
curves obtained from the chevron notched bend specimens.
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6.3 Verification of the stochastic approach on chevron notched bend
specimens

In this section the crack propagation through lamellar colonies and the sudden failure of specimens
(as seen during fracture testing) are interpreted with the help of numerical simulations. Influences
of the fracture parameters on the scatter of experimental force-displacement curves are investigated.
Chevron notched bend specimens are used for the investigation.

6.3.1 Meshing of the chevron notched bend specimen

A 3D symmetric model of the chevron notched bend specimen was constructed as shown in Fig. 6.25.
The triangular fracture plane was placed at the symmetry plane. Zero-thickness interface cohesive
elements with 20 μm x 20 μm cross section are attached to the triangular plane. Adjacent to the
fracture plane 8-noded brick-like continuum solid elements were chosen, each of which has the same
size as the cohesive element. In such quadratic mesh a slightly jagged edge remains along the notch-
edge of the triangular ligament. This jagged edge has no significant influence on the numerical crack
propagation as well as the development of stress, strain and displacement fields.

To simulate the colony fracture the fracture plane was divided into100 μm x 100 μm blocks (analogous
to the size of lamellar colonies in γTAB polycrystal). Each block contained 25 quadratic cohesive
elements.

F, vLL

Chevron
notch tip

aa)))

28 Symmetry line

Fracture block:
100 μm x100 μm

20 m

20 m Solid element, 8-noded

Cohesive element

b)

Figure 6.25: FE model with mesh design and stochastic blocks for the chevron notched bend speci-
men.
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6.3.2 Simulation with a single set of cohesive parameters

In this investigation fracture was described by a set of fixed fracture parameters, T0 and Γ0. The
parameters were distributed uniformly throughout the fracture surface. With this single set of param-
eters the fracture surface was considered to be homogeneous. The effect of lamellar orientations on
the crack propagation was neglected. Such simplified assumptions are useful to identify the princi-
pal effects of cohesive parameters on the global fracture response. Also, basic information about the
variation band of the fracture properties can be obtained.

A Rect-TSL was used for the fracture simulation. The bulk material above the fracture plane was
described by the classical isotropic von Mises yield criterion. In Chapter 5, the average Γ0 was
determined as 4 N/mm. From the tensile experiments the average T0 was found to be 750 MPa. The
values were considered as mean values of the variation band.

The variation band of Γ0 is determined by comparing the experimental and simulated crack initiation
from the chevron notched bend specimens. For this purpose simulations were performed keeping
the T0 = 750 MPa and changing the Γ0 from 3 to 5 N/mm. Crack initiations in the simulations
were defined at the point where more than two cohesive elements were broken. These elements were
confined to the first colony at the chevron notch tip. As at the notch tip only one block is involved,
the initiation of crack is significantly influenced by the notch-tip colony behavior.

In Fig. 6.26(a) the simulated F-vLL curves are shown. For some cases a continuous growth of crack-
front was obtained that shows a gradual reduction of force, for example, in the case of Γ0=3.75, 4, 5
and 8 N/mm. The continuous growth of crack during increasing deformation can be termed as “stable
crack propagation”. For the other cases (Γ0 lower than 3.35 N/mm), the crack propagation stopped
during increasing deformation. Numerical calculation was cut off due to the model instability. This
situation can be interpreted as sudden failure of the specimen.

The simulations show that the deformation controlled crack propagation varies with the Γ0-values.
With decreasing Γ0, the load-displacement curves change from continuous softening to sudden failure.
The transition lies close to Γ0 = 3.75 N/mm, shown as a gray zone in Fig. 6.26(a). Also, small load-
drops (pop-in) were observed. In this calculation a pop-in is defined as a global vertical load drop at
a constant (non-increasing) load-line displacement, vLL. After a final load drop the load can increase
again, and the crack can propagate further in a stable manner. During pop-in, the traction in the
cohesive elements soften to zero according to the third part of the Rect-TSL. However, the global
load-line displacement, vLL, remains unchanged. In reality, the pop-in is a dynamic load drop at non-
increasing vLL due to local material instability. The numerical pop-in depends on the loading system
and the material properties, i.e., the cohesive parameters T0 and Γ0.

The numerical pop-ins for different Γ0 are depicted in Fig. 6.26(b). The pop-in phenomena depend
on the Γ0. The first pop-ins occur at a certain applied vLL. For further increment of vLL a second
pop-in may arise or the curve may end by a final load-drop. For Γ0 = 3.33 N/mm, sudden failure has
been observed at the first relatively large pop-in. With somewhat increased Γ0 (Γ0 = 3.75 N/mm), still
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Figure 6.26: Simulations of chevron notched bend specimens with homogeneous cohesive parameters
and average elastic-plastic bulk behavior: (a) influence of Γ0 on the global behavior, (b) numerical
pop-in effects emerging in the curves.

relatively large pop-ins were obtained, which did not lead to unstable failure. After this pop-in the
crack propagation proceeded further in a stable manner.

The pop-in phenomenon gradually vanishes with further increase of Γ0. For example, a smaller pop-in
was observed for Γ0 = 5 N/mm and it vanished completely beyond Γ0 = 6 N/mm.

In Table 6.4, cohesive parameters and the simulation results are summarized.

Case T0, MPa Γ0, N/mm δ0, μm F-vLL behavior
1 750 3.33 5.07 Sudden failure
2 750 3.75 5.72 Continuous softening, significant pop-in
3 750 5.00 7.62 Continuous softening, reduced pop-in
4 750 6.00 9.15 Continuous softening, pop-in smoothed
5 750 8.00 12.19 Continuous softening, without pop-in

Table 6.4: Simulations with homogeneous cohesive parameters

In all simulations, ABAQUS [76] “Stabilization Parameter” has been applied. This control parameter
enables one to simulate pop-ins or sudden failure. The stabilization parameter initiates an artificial
damping on the FE model at the onset of an unstable condition. Due to the artificial damping, the
solution can proceed further at a constant load-line displacement, vLL, showing vertical load drop.

In a statically loaded system no equilibrium in the numerical solutions can be found during vertical
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load drop. Simulations without stabilization parameter stop generally at the onset of an unstable
condition. On the other hand, the artificial stabilization parameter promotes reduction of internal
stresses in the cohesive elements at a fixed global displacement. The action leads to a vertical load
drop in the global F-vLL curve. Further load drop progresses with the incremental steps till a next
equilibrium condition.

The stabilization parameters have to be chosen according to the model geometry and the loading
system. The default parameter determined by ABAQUS for the pre-notched specimen is able to
generate a quasi-stable equilibrium condition at least for small load drops. For large load drops the
calculation stops at intermediate incremental steps. Many incremental steps can be produced along
the fixed global displacement. Such situation is observed in the simulation curve with Γ0 = 3.33
N/mm.

The experimental curves of the tested chevron notched bend specimens (CV1-CV8) are plotted in
Fig. 6.27 together with the simulations of homogeneous cohesive parameters. The experimental scat-
ter lies within the simulated curves of Γ0 = 3-5 N/mm. The curve for Γ0 = 6 N/mm is not included,
as the simulated maximum load is far beyond the experimental one. Below Γ0 = 3 N/mm, the simula-
tion predicts unstable failure that occurred at the elastic slope. The maximum achieved load is pretty
lower than the experimental maximums. Equivalently, the forces at crack initiation as indicated in
Fig. 6.26(a), lie in the same range as the experimental ones.

The Γ0 within the variation 3-5 N/mm satisfies the experimental observation qualitatively with respect
to pop-in and sudden failure. The range 3-5 N/mm can be taken as a valid variation band for Γ0.
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6.3.3 Fracture simulation with stochastic cohesive parameters

The features of the F-vLL curves, e.g., the saw-tooth irregularity in the F-vLL curves with pop-in
phenomena, the different locations of the maximum loads, and irregularly occurring sudden failure
are due to translamellar crack propagation through the randomly oriented lamellar microstructure.
From the previous analysis of a homogeneous fracture surface such characteristic features of the
global curves have not been captured in detail.

The necessity of implementing random cohesive parameters on the fracture surface is obvious. Such
random properties may describe the underlying principle of crack propagation through the γTAB
polycrystal. Therefore, in the following section details of the stochastic approach will be verified on
the chevron notched bend specimen.

In this approach, the randomly oriented colonies in a polycrystal and their contributions to fracture
were described with the random representation of cohesive parameters. The stochastic parameters
and their distributions were generated as described for the tensile specimens in section 6.2.2. The T0

and Γ0-parameters used in the simulations are as follows:

T0, MPa

Average value 750 taken from the average fracture strength
(from the tensile tests)

Variation band 680-820 taken from the variation band of the fracture strengths
(from the tensile tests)

Γ0, N/mm

Average value 4 From simulations with homogeneous
parameters

Variation band 3-5 From simulations and experimental comparison
of chevron notched bending tests

Table 6.5: Selected cohesive parameters

Here, the fracture process was fully attributed to the cohesive parameters without any influence of the
variation of stress-strain curves in continuum elements above the fracture surface. Simulations with
both the variation of stress-strain and cohesive parameters will be discussed in section 6.3.4.

A sample arrangement of the parameter variation for T0 and Γ0, are depicted in Fig. 6.28(a,b). In
Fig. 6.28(b) the assigned random cohesive parameter values in each block were shown in differ-
ent color columns. The parameter variations can be clearly seen from a 3D view, as shown in
Fig. 6.29(a,b), where the stochastic values of each block were plotted for T0 and Γ0 respectively.

Several simulations are performed from which only three random arrangements are selected. They
are denoted as RC1, RC2, and RC3. The stochastic analysis requires a number of simulations to
accommodate the experimental scatter. To reduce the numerical efforts, some manually selected
changes on the parameter distribution have been performed at the chevron notch tip. However, this
particular selection is related to the microstructural information of colonies at the chevron notch tip.

In agreement to the observations, some cohesive parameters are manually re-ordered to some par-
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Figure 6.28: Stochastic arrangement of quadratic blocks: (a) variation band of the cohesive parame-
ters, T0 and Γ0, (b) spatial stochastic arrangement, RC1, with blocks of 100 μm x 100 μm and their
color depiction of the column levels for Γ0-values.
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Figure 6.29: 3D view of the stochastic arrangement of the cohesive parameter variation for RC1: (a)
for cohesive traction, T0, (b) for cohesive energy, Γ0.

ticular blocks adjacent to the chevron notch tip. Lower or higher values of cohesive parameters are
manually implemented at the notch tip, which will represent the effect of weaker or stronger colonies.
This manual re-distribution is considered as one occurrence among many randomly mixed parame-
ters, all of which can not be simulated due to computational expenses.

In Fig. 6.30(a), the F-vLL curves from the stochastic parameters and the single set parameters are
shown. It clearly demonstrates that uniform parameters are not able to predict the experimental curves
properly, whereas the curves from the stochastic approach cover all experimental aspects, like pop-in,
variations in sudden failure, different extensions of load-line displacements and different maximum
loads.

The Fig. 6.30(b) presents a comparison of the simulations for three different random arrangements,
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RC1, RC2, RC3, with the experimental curves. The simulated results from the stochastic approach
satisfy the experimental scatter of F-vLL curves. They lie within the experimental variation band. The
zigzag nature during crack propagation, the pop-in phenomena, the sudden failure either early or later,
is described in a right order.
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Figure 6.30: Comparison of simulations and experiments of chevron notched bend specimens: (a)
simulations with homogeneously and stochastically distributed cohesive parameters, (b) simulations
with stochastic approach and experiments.

Simulation with the arrangement RC1 exhibits a long extended continuous F-vLL curve. On the
decreasing part beyond maximum load, the calculation stops at a certain point which is interpreted
as sudden failure of the specimen, i.e., equilibrium is no more reached in the last increment. At the
chevron notch tip relatively weak cohesive parameters (lower value combinations of T0 and Γ0) were
situated, which promoted stable crack propagation after crack initiation. A lower cohesive traction,
T0, allows the break of the first few blocks adjacent to the chevron notch tip.

In arrangement RC1, a rugged crack front is obtained during subsequent crack propagation. Here,
the blocks with higher parameters behave like obstacles and promote pop-in when high stresses relax
according to the third part of the Rect-TSL. Numerical pop-ins occurred during stress reduction of a
hard colony.

Due to the neighboring blocks of different parameter sets, the crack can propagate continuously by
increasing the stresses in neighboring blocks. Along the decreasing part of the F-vLL curve, the crack
front may stop at a point where an increasing width of the crack front causes sudden failure.

In contrast to arrangement RC1, the RC2 exhibits sudden failure just after crack initiation (Fig. 6.30).
Higher values of T0 combined with smaller values for Γ0 were assigned at the notch tip. Just after
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breaking the first cohesive elements the calculation terminated, even with the ABAQUS stabilization
parameters.

In the case of arrangement RC3, some moderate values of T0 and Γ0 were attributed in several blocks
at the chevron notch tip. There were also some “hard” combinations (higher T0 and Γ0 values) of
the cohesive parameters situated just after the notch tip. From Fig. 6.30(b), it can be seen that the
calculation for RC3 terminates anywhere in between the limit borders of RC1 (“soft” initiation) and
RC2 (“hard” initiation). Sudden failure at various vLL can thus be simulated using the random ar-
rangement of weak and strong combination of T0 and Γ0. Thus, controlling only a few blocks at
the chevron notch tip the experimental fracture behavior can be globally satisfied fairly well without
performing a huge number of calculations with different random arrangements.

In Fig. 6.31, the F-vLL response for arrangement RC1 is plotted together with the corresponding
crack front evolution. The random approach produces an irregular crack front until the model shows
a non-equilibrium condition (which is interpreted as sudden failure of a specimen).
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Figure 6.31: Crack propagation at three loading steps for stochastic arrangement RC1.

The three simulations RC1, RC2 and RC3 provide information about the influence of the variability
of material properties on crack propagation and resulting F-vLL curves. A particular experimental
curve can be satisfied by changing the material parameters based on the knowledge of previous three
calculations. In Fig. 6.32(a), the F-vLL curve of an additional arrangement RC4 is plotted and com-
pared with the experimental records of specimen CV3. These arrangements were changed manually
not only adjacent to the chevron notch tip but also somewhere inside the fracture plane. The crack
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initiation and maximum load is still higher compared to the experiment. The experimental lower load
was due to the pre-damage at the notch tip which promotes easy crack initiation. This kind of material
defects came from specimen preparation. Such effects were not considered in the numerical model.

In the specimen the fracture process contains interlamellar cleavage facets inside the first colony at
the chevron notch tip, see Fig. 6.32(b). This may be due to the specific lamellae orientation allowing
for interlamellar fracture. For a pure interlamellar fracture, the Γ0 is very low in general which is
approximately in the range of 0.05-0.1 N/mm. In the FE model no such weak interlamellar fracture
parameter is included within a colony. A colony always takes a single set of cohesive parameters
without considering explicitly micro-level fracture parameters. The lower limit of the variation band
for Γ0 is 3.0 N/mm, which is appropriate for translamellar fracture in the colony of γTAB polycrystal
but is much higher compared to the pure interlamellar fracture resistance.

12 16 20 24 28 32 36 40
400

500

600

700

800

900

Fo
rc
e
F,
N

Elast

RC4

CV3

Load-line displacement vLL, m

Experiment
Simulation

(a)

50 m
(1) Interlamellar fracture facets

CV3

(1)

(1)

(1)

(b)

Figure 6.32: Stochastic distribution with respect to interlamellar fracture adjacent to the chevron
notch tip taken from specimen CV3: (a) comparison of the simulation for arrangement RC4 with the
record of specimen CV3, (b) microstructural detail at the chevron notch tip of the fracture surface of
specimen CV3.

In Fig. 6.33, the experimental and numerical fracture surfaces for specimen CV1 and simulation RC1
are compared. The results are taken at the point of failure. An almost similar crack front was obtained
from the simulation. At the onset of unstable failure the simulated crack length was found to be 0.96
mm, which is close to the experimentally determined crack length of 1.04 mm.

The above results indicate that the stochastic random arrangements of cohesive parameters are able to
predict the behavior of experimental curves almost entirely. An exact agreement with the experimen-
tal curves is, however, not possible as the macro scale simulations do not take the real microstructure,
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Figure 6.33: Specimen CV1: (a) fracture surface at the end of the test, (b) simulated fracture surface
for stochastic arrangement RC1 at unstable failure.

its local crystallographic deformation and fracture features into consideration. Nevertheless, the hy-
pothesis about the random distribution of cohesive traction, T0, and cohesive energy, Γ0, under the
stochastic approach as well as the assumptions of colony-sized blocks is sufficient to capture the
quasi-brittle fracture. The fracture characteristics, even for the complicated lamellar microstruture,
can be well reproduced on the macro scale.

6.3.4 Simulation with stochastic cohesive parameters and variable stress-strain curves

The local stress development near the fracture surface is influenced by the deformation behavior of
colonies. The variation of local stress-strain curves at the colonies produces inhomogeneous stress
states that may influence the initiation of cracks. To verify this influence, variable σ−ε-curves are
applied in the colonies near the fracture surface.

To apply the stochastic concept with variations of σ−ε curves, several layers of continuum elements
above the cohesive elements were selected from the chevron model, see Fig. 6.34. The size of con-
tinuum elements and cohesive elements at the fracture surface was 20 μm x 20 μm. 100 μm x 100
μm blocks were constructed with cohesive and continuum elements that represent simplified lamellar
colonies. The choice of the σ−ε variation and their random distributions were the same as in the
simulation of the tensile specimens (section 6.2).

To comprehend the effects of σ−ε variations a model RD1 was established. The RD1 had exactly the
same distribution of T0 and Γ0 as the model RC1. The only difference between them is the mechanical
behavior of continuum elements above the fracture plane. In RD1 five σ-ε-curves were distributed at
the continuum blocks near the fracture surface that result in inhomogeneous stresses near the fracture
process zone (FPZ), whereas in RC1 only the average σ-ε curve (σ-ε.Mid) was attributed which
generate a homogeneous stress at the FPZ.

84



1
2

3

y
x

z

Bulk

1
2
3

Layer

Homogeneous bulk, average σ−ε curve (σ−ε.Mid ≅ σ−ε.3)
Stochastic variation of σ−ε curves (σ−ε.1 to σ−ε.5)
Cohesive interface

Figure 6.34: Chevron notched bend specimen including a layer of stochastic distributed stress-strain
curves above the cohesive interface.

The simulated global F-vLL curves are shown in Fig. 6.35(a,b). Both the arrangements RC1 and RD1
showed coinciding F-vLL curves up to the maximum load. For arrangement RD1, sudden failure
occurred just after reaching the maximum load whereas in arrangement RC1 stable crack propagation
continued beyond the maximum load.

In Fig. 6.35(b), the F-vLL curves of both random arrangements, RC1 and RD1, are shown in an
enlarged window where the onset of cracks can be seen. The pop-ins in RD1 occurred earlier than
the RC1. This slight change in pop-ins is due to the inhomogeneous stress states that resulted from
the variable σε-curves at the notch-tip.

The local variation of σ−ε curves has no immediate effect on the global response except for the final
failure points on the curves. Differences in local stress and strain development are observed only
locally at the fracture plane.

From Fig. 6.36(a-d), the stress and strain fields in the continuum elements above the cohesive layer
are depicted for both arrangements (RC1 and RD1) at the last load increment of RD1, just before
the failure point (vLL = 30.6 μm). The figure shows slight differences in stress and strain fields as
well as in crack fronts, which are due to the variation in local σ-ε-curves. A higher local σ−ε-curve
in a block produces higher stresses at lower strains, in contrast to a lower local σ−ε curve, which
eventually influences the evolution of T(δ) and δ.
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Figure 6.35: Comparison of the stochastic arrangements RD1 and RC1, with and without stochastic
stress-strain curves, both with exact distributed stochastic cohesive parameters: (a) entire force vs.
load-line displacement curve, (b) enlarged window at crack initiation.

Slightly different crack initiation and propagation can be seen in the Fig. 6.35 and Fig. 6.36. This is
due to different notch tip properties of the RC1 and RD1, i.e., different σ-ε curves at the notch tips
(σ-ε.5 for RD1, but average σ-ε.Mid for RC1), which results in different evolution of local σ22 and
ε22 at RC1 and RD1.

6.3.5 Short summary

• The influence of the stochastic nature of the fracture parameter to the global response including
sudden failure has been justified numerically with a stochastic approach in combination with
the cohesive model.

• Some microstructural features have to be considered in the model for a better prediction of
the experimental behavior. The information of the lamellae tilting, which produces a weak
or strong colony (or soft and hard grain [77]), is applied to the chevron notch tip. With this
additional information the simulations can quantitatively describe the experimental scatter.

• The stochastic approach considers a small variation band of the cohesive properties. Looking
at the micro scale, the local variability may be larger than assumed (but not known in any case).
At such micro-level the colony effect vanishes. Here, the variation band is considered for the
meso surface of the colonies, where the very local variations are homogenized. Therefore, a
small variation band for the fracture properties can be assumed.

• Simulations using a variation of σ-ε curves together with the cohesive parameters T0 and Γ0,
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Figure 6.36: Stress and strain fields across the ligament for the stochastic arrangements RC1 and RD1
(as Fig. 6.35) at unstable failure of RD1 (vLL = 30.6 μm): (a) RD1 with variable σ-ε curve with stress
component normal to the fracture plane, (b) RC1 with homogeneous bulk (σ-ε.Mid), (c) RD1 with
variable σ-ε curves, strain component normal to the fracture plane, (d) RC1 with homogeneous bulk
(σ-ε.Mid).

show that the local constraint due to variable σ-ε-curves does not significantly influence the
global response. Therefore, quite the same F-vLL curves are found for the two different ar-
rangements of RC1 and RD1. However, variations in the local deformation constraints have
minor influence on the crack initiation.
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Chapter 7

Transferability of the cohesive
parameters

To predict the failure of structures the transferability of material parameters from laboratory test spec-
imens to components has to be assured. A rigorous validation check with parameter transferability on
a complex geometry is hard to conduct. Some transferability factors (e.g., constraint due to geometry
or loading, environment) have to be determined that have to be related to the behavior of laboratory
specimens and real components. For a simple case, the transferability of the model parameters can
be verified on appropriate laboratory specimens with different geometries under equivalent loading
conditions that are known from real component tests.

In this chapter, transferability of material parameters will be examined on a single edge notched bend
(SE(B)) specimen with a straight notch. Such an SE(B) specimen with straight notch seems to have
sufficient distinguished characteristics compared to the chevron notched bend specimen. Due to the
differences in the straight and triangular notches, the crack initiation and propagation conditions are
different.

As components are considered to be initially free of cracks, a bend specimen without a notch (or
equivalent defect free) is also simulated. Such unnotched bend specimen is a worthwhile approxi-
mation of complicated loaded components like turbine blades, which undergoes bending and tension
across the thickness.

7.1 Transferability of the cohesive parameters to the SE(B) specimen

A symmetric 3D geometry of the SE(B) specimen with the mesh design is shown in Fig. 7.1. The
fracture plane was constructed with regular quadratic cohesive elements (20x20 μm2). Shallow and
deep notches with a0/W = 0.35 and 0.6 were simulated. Details of the geometry are given in chapter
3, Fig. 3.2.
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Figure 7.1: FE model of SE(B) specimen with a0/W = 0.6

A single set of cohesive parameters was assigned to the fracture plane. In such assumption, the crack
propagates evenly throughout the material showing no irregularities at the crack front.

For this analysis, the maximum cohesive traction, T0, was fixed to 750 MPa, and the maximum cohe-
sive energy, Γ0, was varied from 3, 4 and 5 N/mm. The bulk material was assumed to be homogeneous
and its elastic-plastic behavior was described by the σ−ε.Mid curve. Fig. 7.2(a) shows the sensitivity
of force-displacement curves (F-CMOD) for both notch depths calculated by a single set of cohesive
parameters.

As expected from the analysis of chevron notched bend specimens, the global F-CMOD curves for
the straight notch geometry is either continuous or discontinuous depending on the cohesive energy.
For the discontinuous curves, the deformation controlled crack propagation could not extend further
and the numerical calculations stopped, the situation is interpreted as uncontrolled crack propagation
leading to abrupt failure as seen in the real specimens. In chapter 6, a similar behavior has been shown
for the case of chevron notched bend specimens.

The simulations show that the maximum force and crack initiation for the straight notched SE(B)
specimens satisfied the experimental results quite well, however, neither the scatter in force-deformation
curves nor the scatter in failure points in the curves is fully satisfied by a single set of cohesive pa-
rameters.

The analysis is extended to the stochastic approach, where the cohesive parameters, T0 and Γ0 were
randomly assigned across the entire fracture plane under its variation band. The variation bands for
T0 and Γ0 were same as the chevron notched bend specimen, i.e., 680 � T0 � 820 MPa and 3 � Γ0

� 5 N/mm.

In Fig. 7.2(b), the stochastic simulations are compared with the experimental records of the F-CMOD
curves for both notch depths, a0/W = 0.35 and 0.6. For the case of a0/W = 0.6, two random distribu-
tions have been performed, i.e., RS100a and RS100b. The effects of these distributions on the crack
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Figure 7.2: F-CMOD curves for SE(B) specimen for a0/W = 0.35 and a0/W = 0.6: (a) simulation
results with a single set of cohesive parameters compared with the experimental curves, (b) simulation
results with the stochastic arrangements compared with the experimental curves.

propagation can be seen from the global F-CMOD curves at their maximum load. Similarly, the dis-
tribution, RS100b, has been performed for the a0/W = 0.35. From the simulation of both notch-depths
it is shown that the randomly distributed stochastic parameters satisfy the characteristic features of
the experiments very well, equivalent to the case of chevron notched specimens.

The maximum force and the onset of failure are reasonably predicted. For both notch depth ratios,
the failure points on the curves are nearly equal to the experimental onset of abrupt failure. For the
notch depth ratio, a0/W = 0.35, the numerical instability occurs just after the onset of a crack. The
prediction of specimen failure by the simulations is close to the experimental one.

It has been seen from the Fig. 7.2(a)(b) that the experimental curves lie somewhat below the simulated
curves. The explanation may be related to the notch preparation. The spark eroded notch tip sustains
some local damage at the notch surface which may introduce some strength decrease in the first row
of colonies, which were not taken into account in the simulations.

The crack profiles of the homogeneous and the stochastic parameters at maximum load are shown
in Fig. 7.3. An uneven crack front is obtained using the stochastic simulations. The characteristic
behavior of the F-CMOD curves depends mainly on the amount of crack propagation, but marginally
on the evolution of the crack front across the thickness. It seems that the stochastic approach can
realistically simulate the crack front in a lamellar polycrystal on a macro-scale.
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Figure 7.3: Crack profiles and fracture process zone with crack propagation at maximum force: (a)
homogeneous or regular crack front using a single set of cohesive parameters, (b) irregular crack front
using the stochastic arrangement, RS100a.

7.2 Influence of block size on the stochastic approach

Based on the information of lamellar microstructure, the colonies are simplified as blocks (100 μm x
100 μm) in the simulation. With this assumption the simulations satisfied the experimental results very
well. To justify the applied block size, effects of the blocks on global force-displacement behavior
have also been investigated.

The real microstructural fracture properties within a single colony may vary due to intra-lamellae
fracture. Whereas in a block the micro-scale fracture properties are assumed to be averaged by a
single set of cohesive parameters.

The simulations are systematically performed with quadratic blocks of 100, 60 and 20 μm sizes,
where the lower limit of the block size is the cohesive element size itself, i.e., 20 μm. The stochastic
approach is applied to the SE(B) specimens with a notch depth ratio of a0/W = 0.6. Respective
variation bands of the cohesive parameters are the same as before.

In Fig. 7.4(a), the simulated F-CMOD curves for three block sizes are plotted and compared with
the single parameter set, T0 = 750 MPa, Γ0 = 4 N/mm as well as with the stochastic approach. The
inserted window shows the curves at maximum force.

The F-CMOD curve for the 20 μm block size, the stochastic combination RS20, is completely contin-
uous and follows the curve of the single parameter set. The 60 μm and 100 μm block sizes, RS60 and
RS100a,b respectively, exhibit numerical failure where the failure-points are situated close to each
other. The RS100a and RS100b have the same block sizes but are attributed with different random
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Figure 7.4: Influence of block size on the F-CMOD curves for a0/W = 0.6: (a) stochastic arrangements
compared with the single set parameters, (b) stochastic arrangements compared with the experimental
curves.

distributions.

For the 20 μm block the stochastic distribution is more refined. Due to small block size, the block
failure per element results in a micro-sized defect. In global force-displacement response, initiation
of a single micro-sized defect has no significant influence. However, when several micro-sized de-
fects are clustered somewhere on the fracture plane, a significant change in the force-displacement
curves can be noticed. In the case of 20 μm block size, a clustered area on the fracture plane is not
obtained by the randomly distributed fracture parameters. A clustered area, however, is automatically
generated by the larger blocks. With reducing block size the colony characteristics are lost, which
makes qualitatively almost no difference with the complete homogeneous case.

In Fig. 7.4(b), the F-CMOD curves from stochastic simulations for three types of blocks are compared
with the experimental data. The simulated unstable failures with the bigger blocks (100 and 60
μm) match very well with the experimental failure points. The experimental curves are found to
be marginally softer before reaching the maximum force which are situated below the simulation
maximum. Under-estimating the experimental maximum load is due to the notch damage during
notch preparation. Such effects are not considered in the present simulation.
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Fig. 7.5 shows the crack profiles for the different block sizes. As shown, the crack paths for the 100
and 60 μm block sizes are better related to the microstructural observation of the lamellar fracture
surfaces. This irregularity along the crack front is homogenized with the reduction of the block size
and no significant differences have been found between the crack fronts for the random approach with
block size 20 μm and the homogeneous approach with a single set parameter.
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Figure 7.5: Crack profiles and activated cohesive zones during crack propagation for different block
size.

The above investigations suggest that the choice of block sizes has to be appropriately related to the
given microstructure. Providing this microstructural information the micromechanical based cohesive
damage model can predict the global fracture behavior of the γTAB as seen in the experiments.

7.3 Fracture behavior of a defect-free bend specimen

Force-displacement behavior of a defect-free (unnotched) bend specimen is presented in this section.
Failure of a component with possible crack development under bending can be qualitatively explained
with this simplified specimen.

The geometry of the bend specimen is taken from the pre-notched bend specimen, only the notch has
been eliminated from the FE mesh. As there is no pre-crack in the model, no crack-mouth-opening-
displacement (CMOD) can be measured. However, in the present analysis, the displacement, CMOD,
on the unnotched bend specimen is calculated on the same points as were taken for the notched bend
specimens. The gauge length is the notch width, i.e., about 70 μm (this width is due to the spark
erosion with a 50 μm wire).
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A fracture surface is modeled with a single set of cohesive parameters. For the cohesive energy, Γ0,
three values are considered, i.e., Γ0 = 3, 4, and 5 N/mm, each of them is combined with a fixed
cohesive traction, T0 = 750 MPa. The simulation results are shown in Fig. 7.6(a).
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Figure 7.6: Simulated F-CMOD curves for unnotched bend specimens: (a) F-CMOD curves for
different cohesive energies, Γ0, (b) comparison of unnotched and notched bend specimens.

For all F-CMOD curves shown in the figure, the simulations stopped after showing short nonlinear
deformation. Such numerical performance can be interpreted as unstable failure of a specimen (also
recall numerical instability discussed in section 5.1 and 6.3). At this point the separation of a cohesive
element did not yet reach the maximum separation, δ0, to initiate a physical crack. As understood, a
full separation of the cohesive elements (i.e., crack initiation) is not necessarily required for develop-
ing unstable failure situation in an unnotched specimen in contrast to a precracked specimen.

The failure points shown in Fig. 7.6(a) lie very closely for the different Γ0 values. The nonlinear
F-CMOD behavior prior to unstable failure is a result from the Rect-TSL. An ideally plastic behavior
is activated before reaching the unloading part in the TSL.

With a very large Γ0 value, unstable failure would be shifted along the extrapolation (dotted line) of
the initial curve in Fig. 7.6(a). For infinite Γ0, no unstable failure would occur, instead, a saturation
level with plastic collapse due to an ideal-plastic material behavior would be reached.

As no crack propagation prior to failure has been obtained, stochastic nature of crack initiation and
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propagation can not be predicted. Therefore, no fracture simulations with the stochastic approach
have been performed. From the knowledge of the previous analysis it can be said for the unnotched
bend specimen that the stochastic approach will produce variable strain to failure, which will lie
within the values as obtained from the single set parameter calculations with different Γ0 values.

The simulated F-CMOD curves for different bend specimens (unnotched and notched) are compared
in Fig. 7.6(b). The displacement, CMOD, on the unnotched bend specimen is determined at the same
points as were taken for the notched bend specimens. The notch effects can easily be seen from
the curves. The F-CMOD relation for an unnotched specimen is not confirmed by the experiments.
However, in previous sections this F-CMOD relations have been validated for the notched specimens.
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Chapter 8

Summary and conclusion

A hybrid methodology of characterizing the quasi-brittle fracture of fully lamellar γTAB alloy has
been presented in this work. The methodology incorporates micromechanics based damage defined
by a traction-separation law within a cohesive model and scatter of material properties described by
the stochastic approach. The following assumptions are taken for the analysis:

• Fracture of a colony (at meso-scale) is fully described by the fracture properties of the cohe-
sive model (fracture strength is represented by cohesive strength, T0, and fracture toughness is
represented by cohesive energy, Γ0).

• The variation band of the fracture parameters at a meso-scale (scale of colonies) is taken small
assuming that the very local fracture parameters at a micro-scale (scale of lamellae) are aver-
aged in a colony. However, the variation band of fracture parameters for single lamellar break
is probably quite large.

• Some extreme frequency distributions of the fracture properties are assumed. The stochastic
nature of fracture is fully attributed to the stochastic distribution of cohesive fracture properties.
Crack initiation (or fracture) in a colony is defined by the stochastic values of critical material
separation, δ0, which is calculated from the Eq. (4.3).

The fracture behavior is investigated adopting experiments, fracture surface analyses, and simulations.
Mechanical properties of the γTAB alloy and its quasi-brittle fracture behavior have been identified
by testing miniature specimens. Thereafter, global force-displacement phenomena of this particular
material have been simulated adopting macroscopic FE models. A micromechanical based crystal
plasticity model has been used to determine the local variability of the stress-strain responses of
lamellar colonies in a polycrystal.

As the fracture plane is known in advance for the tested specimens, a predefined fracture plane has
been introduced in the FE model. Random effects of material fracture properties are attributed to this
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fracture plane. Fracture properties of the colonies and their variations are represented by cohesive pa-
rameters. The variations of colony-stiffness are represented by the respective stress-strain responses.
Some microstructure related assumptions, like colony size, colony orientation etc. are also introduced
in the numerical model. The lamellar colonies are simplified as quadratic blocks. The fracture be-
havior of strong or weak colonies (depending on the orientation of lamellar colonies) are interpreted
through the combination of high and low values of the cohesive parameters (T0 and Γ0). The global
fracture behavior as seen from the bending specimens, which is influenced by the differently oriented
colonies at the triangular notch tip, has been numerically captured by varying the material proper-
ties in few blocks at the notch tip. The required information for this variation was taken from the
fractographic analysis.

The model parameters and their variation band are determined in several steps. Preliminary informa-
tion of the model parameters has been obtained from a 2D simulation of the bend specimen. They
are verified on the 3D FE models of bend specimens and validated with the experimental results.
The variation band of cohesive traction, T0, has been taken from the fracture points of the tensile-
test curves and the variation band of cohesive energy, Γ0, has been obtained by fitting the cohesive
fracture simulation with the experimental curves from bending tests. The variation bands of the local
fracture parameters (T0 and Γ0) are found small compared to the local variation band reported in the
literature. However, the small variation band has been validated with the global fracture phenomena
of the chevron notched bend specimen. Finally, material parameters from Chevron notched specimen
are transferred to a fracture specimen of different geometry (SE(B) with straight notch) for which the
global unstable failure has been predicted quite well.

From the tensile test simulations, crack initiation and final failure under tensile loading are predicted
close to the reality. The scatter band of the experimental σ−ε curves from the tensile tests has been
fairly captured. From the simulation of chevron notched bend specimen, the influence of the variabil-
ity of fracture properties on the global response has also been justified. It has been shown that the
realistic simulation of fracture evolution and the prediction of experimental scatter need a qualitative
description of the microstructure in the numerical model.

The presented approach showed that the cohesive damage model combined with the proposed stochas-
tic approach with a simplified distribution function and a small variation band of local material pa-
rameters can quantitatively predict the quasi-brittle fracture of the γTAB alloy. The scatter of the
fracture curves obtained from the bending tests, pop-in phenomena, and unstable failure have been
quantitatively predicted. The approach can give an appropriate physical insight into the effects of
property variability on the crack initiation and propagation for the fully lamellar γTAB alloy.

From the investigation of deformation and fracture behavior of γTAB alloy, several conclusions can
be drawn, which are stated subsequently:
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Micromechanical crystal plasticity model of tensile deformation:

• Two-scale simulations on a 4x4x4 colony cube with random orientations proved that the in-
homogeneous local stress-strain response depends on the deformation constraint exhibited by
the lamellar colonies in a polycrystal. The plastic part of the σ−ε curve up to 1-2% plays an
important role for the local constraintd behavior. In polycrystals this constraint effects prevail
everywhere. The mechanical behavior of a single colony embeded in a polycrystal is influenced
by the imposed constraint from the neighbouring colonies.

• The random orientation of lamellae in radial direction (orientation against the load axis) delivers
the strongest contribution to the constraint effects (refer to the section 6.1.4).

• Simulations with a crystal-plasticity deformation model indicate that the local mechanical be-
havior of the colonies expressed in terms of stress-strain curves vary within a large range. The
model does not include fracture, therefore, no information about the variation of fracture tough-
ness and strength in a colony is obtainable.

Macromechanical modeling of fracture:

• The tensile simulations showed that the local stress evolution due to deformation constraint
plays an important role for crack initiation. The bending test simulations showed that the local
colony orientations control the crack propagation through the lamellar microstructure.

• Stochastic simulations using the frequency distribution functions proved that each tensile spec-
imen has its own distribution function of the material properties.

• The proposed modeling approach can quantitatively explain almost all phenomena of quasi-
brittle fracture of γTAB that have been observed from the global load-displacement curves. A
statistical approach can not be realistically applied when a few test data is available. However,
using limited test results in the proposed model, quite good prediction of the global crack prop-
agation and failure has been made. In this case a quantitative analysis from the fractography
was needed for a better description of the model.

• A small variation band of local fracture properties for colony break has been assumed in the
simulation, and is validated with the global responses of the specimens. As common in statisti-
cal FE method, a big variation band of local properties has to be assumed which would satisfy
the global scatter described by the phenomenological Weibull distribution. Such statistical FE
method considers very local fracture properties (e.g., micro-defect due to particle failure) but
not the microstructural information like colony orientation or colony size etc. However, the
proposed approach assumes that the fracture properties and the material response are related
to a meso scale description. It has been shown that the small variation band can reproduce the
global experimental scatter quite satisfactorily.
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• Prediction of crack initiation and final failure is quite important for structures or components.
It has been shown that the cohesive model with an appropriate TSL shape (here the Rect-TSL)
can capture the basic fracture phenomena of a component. Stochastic crack initiation, crack
extension can be predicted quite well.

Outlook

Prediction of component failure using micromechanics based description of deformation and damage
at full length-scale (micro-meso-macro) is the recent modeling challenge. In the present work, differ-
ent length scales are considered discretely, for example, a micro-meso model for explaining scatter
in local stress-strain behavior that are influenced by the colony orientation, the meso-scale fracture of
the colonies described by the cohesive model, and the scatter in the global force-displacement behav-
ior using macro-scale specimens. Until now, no comprehensive multi-scale model for TiAl alloy can
be found that links the global failure of a component with the micro-scale fracture mechanisms, for
example, micro-crack initiation and propagation through lamellae. Also, in any micro-scale model
for TiAl alloy, the evolution of cracks considering the influences of the variation of local stiffness
and fracture properties is not explicitly defined. An extensive work has to be done to develop such
full-scale model.

The present approach predicts the global failure of a fully lamellar alloy considering microstructural
variation of material properties. However, its application to a wide range of TiAl microstructures (for
example, globular, nearly lamellar, duplex, etc.) is still open. Some other critical issues related to the
proposed approach are stated as follows:

• Information about the variation band of the fracture parameters at a micro-level was not exper-
imentally obtained. Sufficient knowledges about the variation band can be obtained through
tensile testing of a single colony with different orientations, or adopting micro-hardening tests
on single colonies.

• The distribution functions of the material properties were unknown. A number of experiments
are needed to obtain the functions.

The effectiveness of the approach can be enhanced by answering these issues. Moreover, further
investigations are needed to ensure the transferability of the model parameters to a real component.
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