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Abstract 

In order to assess the distribution of per- and polyfluorinated compounds (PFC) in ambient air on
temporal as well as spatial scales, air samples were taken during several sampling campaigns in
2007 and 2008. Permanent air monitoring stations close to Hamburg (Germany) as well as 
several research vessels operating in the Atlantic Ocean, the Southern Ocean, and the Baltic Sea
were used as sampling platforms. Airborne PFC were sampled using glass fibre filters (particle-
bound PFC) and a sandwich polyurethane foam and the polymer resin XAD-2 (gaseous PFC).
Samples were extracted by acetone: methyl-tert-butyl ether (1:1) or methanol and detected by
GC-MS or HPLC-MS/MS. Airborne PFC were detected in all of the collected air samples, even
in Antarctica, with southern hemispheric concentrations being lower than those of the northern
hemisphere which provides further evidence that this emerging group of contaminants is subject
to atmospheric long-range transport from mainly northern hemispheric source regions towards
remote areas. While the persistent perfluorinated acids (PFCA, PFSA) were only determined
at concentrations below 1 pg m-3 in the particulate phase, their neutral volatile precursors
(fluorotelomer alcohols (FTOH), fluorotelomer acrylates (FTA), perfluoroalkyl sulfonamides
(FASA), and perfluoroalkyl sulfonamido ethanols (FASE)) occurred predominantly in the
gas phase at concentrations that were usually two orders of magnitude higher and ranged from
4.5 pg m-3 in the Southern Ocean to 335 pg m-3 in source regions in ship-based samples and from
17 to 972 pg m-3 in land-based samples. Furthermore, PFC in ambient air varied strongly over
time as observed during a 14 months lasting sampling campaign close to Hamburg. Emissions
from nearby local sources as well as long-range transport of PFC emitted from diffuse sources
west and southwest of the sampling sites were considered as explanation for the observed pattern.

Atmosphärische Verbreitung und Saisonalität von polyfluorierten Verbindungen in
der Umgebungsluft: Zeitliche und räumliche Konzentrationsvariationen von Land-
und Schiffsmessungen in Norddeutschland, dem Atlantischen Ozean und den
Polarregionen

Zusammenfassung

Um die räumliche Verbreitung und zeitliche Variation der Konzentrationen von per- und
polyfluorierte Verbindungen (PFC) in der Atmosphäre zu untersuchen, wurden Luftproben



während verschiedener Probenahmekampagnen in den Jahren 2007 und 2008 genommen.
Als Probenahmeplattformen dienten Dauermessstellen bei Hamburg (Deutschland) und
verschiedene Forschungsschiffe, die in atlantischen und antarktischen Gewässern sowie in
der Nord- und Ostsee operierten. Die Anreicherung von PFC aus der Luft erfolgete auf Glas-
faserfiltern (partikuläre Phase) und geeigneten Adsorbtionsmaterialien (Gasphase), hier
Polyurethanschaum und XAD-2. PFC wurden mit Aceton:Methyl-tert-butylether (1:1) oder
Methanol extrahiert und mittels GC-MS oder HPLC-MS/MS detektiert. PFC konnten in
allen Luftproben von der Arktis bis zur Antarktis nachgewiesen werden. Dabei waren die
Konzentrationen in der Nordhemisphäre höher als in der Südhemisphäre. Die festgestellte
weltweite Verbreitung von PFC in der Luft bestätigt, dass diese Gruppe von Chemikalien
von hauptsächlich nordhemisphärischen Quellenregionen über weite Strecken in entlegene
Gebiete transportiert werden kann. Während die perfluorierten Säuren (PFCA, PFSA)
ausschließlich in geringen Konzentrationen (meist < 1 pg m-3) in der partikulären Phase
bestimmt wurden, lagen die Summenkonzentrationen ihrer volatilen Vorläufer (Fluortelomer-
alkohole (FTOH), Fluortelomeracrylate (FTA), Perfluoralkylsulfonamide (FASA), und
Perfluoralkylsulfonamidoethanole (FASE)) zwischen 4.5 pg m-3 im antarktischen Ozean und
335 pg m-3 in Quellengebieten (marine Luft) und zwischen 17 und 972 pg m-3 (permanente
Stationen bei Hamburg). Weiterhin wurden während einer 14monatigen Probenahmekampagne
bei Hamburg starke Konzentrationsschwankungen von PFC in Luftproben beobachtet.
PFC-Emissionen von nahe gelegenen lokalen Quellen sowie der Langstreckentransport von
PFC, die von diffusen Quellen westlich und südwestlich von Hamburg emittiert wurden,
schienen den Konzentrationsverlauf zu erklären.
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Summary 

Per- and polyfluorinated compounds (PFC) were recently identified as pollutants that are 

being observed worldwide in all environmental compartments. Some of these compounds, 

particularly perfluorinated carboxylates (PFCA) and sulfonates (PFSA), are considered as 

toxic and extraordinarily persistent substances that accumulate in humans as well as in 

wildlife. It was hypothesized that the atmospheric transport and degradation of volatile 

polyfluorinated PFCA and PFSA precursors may provide an explanation for the presence of 

non volatile persistent perfluorinated acids at locations remote from sources. Comprehensive 

studies about the occurrence of poly- and perfluorinated substances in air were lacking and 

gave reason for further investigations on the distribution of airborne PFC on temporal as well 

as spatial scales.  

In order to be able to accurately detect PFC at low concentrations the analytical procedure 

was optimized. Basically, glass fibre filters and a sandwich polyurethane foam and the 

polymer resin XAD-2 were used to accumulate particle-bound and gaseous PFC, respectively. 

In previous studies, neutral volatile PFC were commonly extracted using ethyl acetate as 

extraction solvent and determined by gas chromatography - mass spectrometry. Ionic PFC 

were methanol-extracted and detected by high performance liquid chromatography - tandem 

mass spectrometry. Although previous analytical methods using this set-up were capable to 

detect airborne PFC, they were characterized by matrix problems that resulted in severe signal 

enhancement of several analytes. During this study’s analyses it soon became evident that the 

matrix problem was rather a solvent problem. This was confirmed by experiments 

investigating the PFC recovery rates after the application of different extraction solvents. 

Whenever ethyl acetate was involved, PFC recovery rates remarkably exceeded 100 %, 

probably due to solvent impurities. Based on these results, the extraction solvent for gas-

phase PFC was changed to a 1:1 mixture of acetone and methyl-tert-butyl ether. Additionally, 

chromatographic parameters were modified to achieve low detection limits. The optimized 

method was used to determine several fluorotelomer alcohols (FTOH), fluorotelomer 

acrylates (FTA), perfluoroalkyl sulfonamides (FASA), and perfluoroalkyl sulfonamido 

ethanols (FASE) in the gas and particulate phase as well as a set of PFCA and PFSA in the 

particulate phase. 

Air concentrations of PFC were determined during several sampling campaigns in 2007 and 

2008. Permanent air monitoring stations close to Hamburg (Germany) as well as several 
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research vessels operating in the Atlantic Ocean, the Southern Ocean, and the Baltic Sea were 

used as sampling platforms. Generally, samples were taken in one to four days intervals 

during these campaigns. Airborne PFC occurred predominantly in the gas phase. While the 

persistent perfluorinated acids (PFCA, PFSA) were only determined at low concentrations in 

the particulate phase, their volatile neutral precursors (FTOH, FTA, FASA, FASE) occurred 

predominantly in the gas phase in concentrations that were usually two orders of magnitude 

higher. Only some FASA and FASE were observed in the particulate fraction, however, the 

average contribution did not exceed 20 %. Concentrations of gas-phase PFC varied between 

one and two orders of magnitude on temporal as well as on spatial scales. Total gas-phase 

concentrations ranged from 4.5 pg m-3 in the Southern Ocean to 335 pg m-3 in source regions 

in ship-based samples and from 17 to 972 pg m-3 in land-based samples. With about 80 % on 

average, the class of FTOH clearly dominated the gas-phase substance spectrum. The 

compound that was usually detected in highest concentrations was perfluorooctyl ethanol      

(8:2 FTOH) with a maximum concentration reaching 600 pg m-3 in the gas phase. 

Concentrations of individual particulate-bound precursors were usually below 1 pg m-3. 

During a 14 month lasting sampling campaign at two sites in the vicinity of Hamburg, PFC 

concentrations were observed to vary strongly over time. This reveals the limited 

interpretation potential of singular measurements. Concentration variations of precursor PFC 

were characterized by a fluctuating baseline and singular events of strongly enhanced PFC 

concentrations, probably due to emissions from local sources. The exclusion of these singular 

high concentration events from the time series resulted in a less interrupted concentration 

course where individual precursor concentrations were higher in summer than in winter. 

Temperature-dependent emissions of volatile PFC from diffuse sources to the gas phase were 

presumed to be responsible for this observation. Trajectory analysis revealed that the origin of 

sampled air was a driving parameter influencing the PFC levels of these samples. Elevated 

baseline concentrations of PFCA and PFSA precursors occurred, whenever air was arriving 

from industrialized and populated regions west and southwest of Hamburg. Trajectory, 

cluster, and correlation analyses performed on samples taken in the German Bight also 

confirmed that medium to long-distance transport of airborne PFC from south-westerly 

located source regions was an important factor determining the PFC level in northern 

Germany and the North Sea region. Airborne PFC were detected on a global scale in all of the 

collected air samples, even in Antarctica. PFC concentrations decreased from continental or 

coastal areas towards the open sea and from Central Europe towards the poles. Southern 

hemispheric concentrations of PFCA and PFSA precursors were significantly lower than 
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those of the northern hemisphere. Atmospheric residence times of volatile PFC calculated on 

the basis of temporal and spatial concentrations variations were in the order of 20 to 60 days.  

As comprehensively demonstrated in this thesis, the ubiquitous detection of airborne PFC as 

well as their residence time estimates give further evidence that this emerging group of 

contaminants is subject to atmospheric long-range transport from mainly northern 

hemispheric source regions towards remote areas.  
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Zusammenfassung 

Per- und polyfluorierte Verbindungen (PFC) sind vielfältig verwendete chemische 

Substanzen, die mittlerweile weltweit und in allen Umweltmedien nachgewiesen werden 

konnten. Einige PFC, vor allem Perfluorcarboxylate (PFCA) und Perfluorsulfonate (PFSA), 

sind persistent, toxisch und reichern sich in Lebewesen, auch im Menschen, an. In einigen 

Studien wurde festgestellt, dass der atmosphärische Transport und Abbau von neutralen 

volatilen PFCA und PFSA Vorläufersubstanzen die Existenz dieser persistenten perfluorierten 

Säuren in quellenfernen Gebieten erklären könnte. Obwohl erste Einzelmessungen von 

volatilen PFC in Luftproben an verschiedenen Standorten einen atmosphärischen Transport 

bestätigten, fehlen bisher Studien, die die Verbreitung von poly- und perfluorierten 

Verbindungen umfassend darstellen. Aus diesem Grund wurde mittels intensiver 

Luftbeprobung die Variabilität der PFC-Konzentrationen auf räumlicher und zeitlicher Ebene 

untersucht.  

Um PFC in Luftproben exakt und im Ultraspurenbereich bestimmen zu können, wurde 

basierend auf publizierten Verfahren die analytische Methode optimiert. Prinzipiell werden 

PFC in der Luft auf Glasfaserfiltern (partikuläre Phase) und geeigneten 

Adsorbtionsmaterialien (Gasphase), hier Polyurethanschaum und XAD-2, angereichert. In 

früheren Untersuchungen wurden neutrale volatile PFC vor allem mit Ethylacetat extrahiert 

und mittels Gaschromatographie - Massenspektrometrie detektiert. Diese Methode war jedoch 

durch starke matrixbedingte Störungen gekennzeichnet, die sich vor allem durch 

Signalverstärkung diverser Analyte äußerten. Während der vorliegenden Arbeiten wurde klar, 

dass das Matrixproblem auf das verwendete Extraktionsmittel zurückzuführen war. 

Experimente mit verschiedenen Extraktionsmitteln bestätigten, dass immer dann, wenn 

Ethylacetat verwendet worden ist, die Wiederfindungen von einigen polyfluorierten 

Substanzen auf weit über 100 % stiegen. Aufgrund der Ergebnisse dieser Experimente wurde 

das Extraktionsmittel für neutrale PFC von Ethylacetat auf Aceton:Methyl-tert-butylether 

(1:1) gewechselt. Weiterhin wurden chromatographische Parameter modifiziert, um niedrige 

Nachweisgrenzen zu erreichen. Die optimierte Methode wurde angewendet, um verschiedene 

PFC in Luftproben zu bestimmen. Darunter waren Fluortelomeralkohole (FTOH), 

Fluortelomeracrylate (FTA), Perfluoralkylsulfonamide (FASA), and 

Perfluoralkylsulfonamidoethanole (FASE) in der Gas- und Partikelphase sowie PFCA und 

PFSA in der partikulären Phase.  



 

  ZUSAMMENFASSUNG 

 

 xvii

Die Luftkonzentrationen von PFC wurden in Proben aus verschiedenen Probenahme-

kampagnen der Jahre 2007 und 2008 bestimmt. Als Probenahmeplattformen dienten 

Dauermessstellen bei Hamburg (Deutschland) und verschiedene Forschungsschiffe, die in 

atlantischen und antarktischen Gewässern sowie der Nord- und Ostsee operierten. Die 

Luftproben wurden in Ein- bis Viertagesintervallen genommen. Polyfluorierte Verbindungen 

in der Luft lagen vor allem in der Gasphase vor. Die perfluorierten Säuren (PFCA, PFSA) 

wurden ausschließlich in geringen Konzentrationen in der partikulären Phase bestimmt. Im 

Gegensatz dazu waren die Gasphasenkonzentrationen ihrer neutralen volatilen Vorläufer 

(FTOH, FTA, FASA, FASE) bis zu zwei Größenordnungen höher. Nur einige FASA und 

FASE wurden auch in der partikulären Phase detektiert. Durchschnittlich lag dieser Anteil 

unter 20 %. Die Gasphasenkonzentrationen von PFC variierten zwischen ein und zwei 

Größenordnungen auf räumlicher und zeitlicher Ebene. PFC Summenkonzentrationen in 

Luftproben, die auf Forschungsschiffen genommen wurden, variierten zwischen 4.5 pg m-3 im 

antarktischen Ozean und 335 pg m-3 in Quellengebieten. Die Summenkonzentrationen in 

Luftproben von den permanenten Stationen bei Hamburg lagen zwischen 17 und 972 pg m-3. 

Mit durchschnittlich mehr als 80 % dominierten die FTOH das Substanzspektrum in der 

Gasphase. Perfluoroctylethanol (8:2 FTOH) war die Einzelsubstanz, die in höchsten 

Konzentrationen vorgefunden wurde. Die Einzelstoffkonzentrationen in der partikulären 

Phase lagen meist unter 1 pg m-3. 

Während einer 14monatigen Probenahmekampagne an zwei Dauermessstationen bei 

Hamburg wurden die zeitlichen Variationen von PFC Konzentrationen untersucht. Die 

beobachteten starken Schwankungen über diesen Zeitraum verdeutlichten die limitierte 

Aussagekraft von Einzelmessungen. Der Konzentrationsverlauf der volatilen PFCA- und 

PFSA-Vorläuferverbindungen war durch eine fluktuierende Grundlinie gekennzeichnet, die 

durch einzelne, unregelmäßig vorkommende Ereignisse stark erhöhter Konzentrationen 

unterbrochen wurde. Diese Hochkonzentrationsereignisse könnten durch lokale Quellen 

verursacht worden sein. Die Bereinigung der Zeitreihen von diesen Einzelereignissen führte 

zu weniger gestörten Konzentrationsverläufen, bei denen die Konzentrationen der 

Vorläuferverbindungen in den Sommermonaten höher als die in den Wintermonaten waren. 

Wir vermuten, dass temperatur-abhängige Emissionen von diffusen Quellen für diesen 

beobachteten Konzentrationsverlauf verantwortlich sind. Die Luftmassenherkunft hatte einen 

starken Einfluss auf die PFC Konzentrationen dieser Luftproben. Die Untersuchung der 

Luftmassenherkunft mittels Trajektorien ließ auf westlich und südwestlich von Hamburg 

gelegene Quellenregionen mit hoher Bevölkerungs- und Industriedichte schließen. 
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Trajektorien-, Korrelations- und Clusteranalysen von Luftproben aus der Deutschen Bucht 

bestätigten, dass Mittel- bis Langstreckentransport einen wichtigen Einfluss auf das 

detektierte PFC Niveau in Luftproben aus Norddeutschland und der Nordsee hat. Poly- und 

perfluorierte Verbindungen konnten in allen Luftproben von der Arktis bis zur Antarktis 

nachgewiesen werden. Dabei nahmen Konzentrationen von kontinentalen und küstennahen 

Regionen zur offenen See und von Mitteleuropa zu den Polen ab. Die 

Einzelstoffkonzentrationen waren in der Nordhemisphäre signifikant höher als in der 

Südhemisphäre. Auf Grundlage der zeitlichen und räumlichen Konzentrationsvariationen 

konnten atmosphärische Verweilzeiten für die analysierten PFC berechnet werden. Diese 

lagen im Bereich von 20 bis 60 Tagen.  

Die Ergebnisse dieser Arbeit liefern neue Erkenntnisse über atmosphärisch transportierte 

PFC. Sowohl die atmosphärischen Verweilzeiten als auch die festgestellte weltweite 

Verbreitung von PFC in der Luft bestätigen, dass diese Gruppe von Chemikalien von 

hauptsächlich nordhemisphärischen Quellenregionen über weite Strecken in entlegene 

Gebiete transportiert werden können.  
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1. Introduction 

1.1. Rationale 

Fluorine is a key element in modern chemistry. In recent years, there was hardly another 

element that chemistry contributed to the progress in numerous fields to the same extent as 

fluorine did (Röschenthaler, 2008). The group of poly- and perfluorinated organic compounds 

(PFC) is one example of many other substance classes containing one or more fluorine atoms. 

Due to their thermal and chemical stability as well as their surface activity, PFC or PFC-

containing products are applied in a variety of industrial and consumer products or household 

agents and thus are a part of everyday life. Recently, it has become evident that those PFC 

properties that are beneficial for their use as well as the extensive application of PFC itself 

resulted in serious environmental problems. Most of the PFC are extremely persistent in the 

environment and those PFC that do degrade, the so called precursor PFC, finally yield the 

persistent compounds (Prevedouros et al., 2006). Some PFC have been identified to be toxic 

(Lau et al., 2007) and bioaccumulative (Conder et al., 2008) and wildlife monitoring studies 

revealed the worldwide distribution of PFC, even to remote regions such as the Arctic (Houde 

et al., 2006). Given these aspects, PFC were classified as “new” chemicals of emerging 

environmental concern and partly being scrutinized for possible persistent organic pollutant 

(POP)-like behavior according to the Stockholm Convention (KemI, 2005).  

One key issue for a compound’s classification or legislative regulation efforts is its potential 

for long-range environmental transport. Oceanic transport is known to contribute significantly 

to the PFC contamination of remote regions (Wania, 2007). In contrast, the importance of 

long-range atmospheric transport of precursor PFC for the overall PFC contamination of these 

ecosystems is less known. Analysis of the atmospheric transport of precursor PFC is also of 

particular interest against the background of legislative regulations which aim to restrict 

manufacturing and use of selected persistent PFC but not of their volatile precursors. In order 

to better understand the atmospheric transport pathway it is essential to study the distribution 

of airborne PFC. Particularly, the description of PFC air concentration variations on temporal 

and spatial scales provides valuable information.  
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1.2. Background  

Per- and polyfluorinated compounds are substances that contain an alkyl chain of typically 

four or more carbon atoms where all or most of the hydrogen atoms are replaced by fluorine 

(Prevedouros et al., 2006). Due to the strength of the carbon-fluorine bond this replacement 

causes the stability of the alkyl chain (Key et al., 1997). Additionally, PFC also contain a 

more reactive functional group, e.g. an carboxyl, sulfonyl, or alcohol moiety, or their 

derivatives. Together with the fluorinated chain these functional groups dictate the 

compound’s characteristic physical, chemical, and toxicological properties. Several hundred 

of these PFC are known today (Jensen et al., 2008), those, that will be focused on in this study 

are presented in table I. They comprise ionic substances such as perfluoroalkyl carboxylates 

(PFCA), -sulfonates (PFSA) or -sulfinates (PFSI) as well as neutral compounds like 

fluorotelomer alcohols (FTOH), fluorotelomer acrylates (FTA) perfluoroalkyl sulfonamides 

(FASA), and -sulfonamido ethanols (FASE).  

PFC are surface-active compounds. Lowering the surface tension much more than other 

surfactants at relatively low concentrations, they repel water, grease and dirt, and are therefore 

used as detergents or impregnating agents in numerous industrial or consumer products 

(Jensen et al., 2008; Kissa, 2001). Specifically, PFC are being applied as emulsifiers and 

processing aids in the manufacture of inert fluoropolymers such as polytetrafluoro ethylene 

(PTFE) or foaming hydrocarbons, in various coatings (wetting or grease resistance, leveling, 

spreading, anti-blocking) for textiles, carpets, upholstery, or paper and packaging, in floor and 

shoe polishes, personal care products, lubricants, corrosion inhibitors, paints, dyes, specialty 

inks, electrical insulation, micro electronics, fire fighting foams, or pesticides (Begley et al., 

2005; Buck, 2008; Ellis and Mabury, 2003; Jensen et al., 2008; Johns and Stead, 2000; Paul et 

al., 2009; Prevedouros et al., 2006). Trade names like Teflon®, Scotchgard®, Baygard®, Gore-

Tex®, Zonyl®, or Stainmaster® are just some well known examples of PFC containing 

products. Generally, the eight-carbon chemicals (perfluorooctanoate (PFOA), perfluorooctane 

sulfonate (PFOS) and its derivatives) have been most effective in commercial uses and 

therefore were heavily applied in the past (Lau et al., 2007; Prevedouros et al., 2006). All of 

the applications and products mentioned above contribute to the PFC contamination of the 

environment, either directly during manufacturing, use, and disposal, or indirectly by washout 

or evaporation of unbound residuals left from the manufacturing process (Dinglasan-Panlilio 

and Mabury, 2006).  



 

EXTENDED SUMMARY  INTRODUCTION 

 

 5

Table I: Overview about poly-and perfluorinated compounds analyzed in this study. 

Analytes Acronym Structure 

Fluorotelomer alcohols (FTOH) 

4:2 fluorotelomer alcohol 4:2 FTOH OHF3C
CF2

CF2

CF2
CH2

CH2

 

6:2 fluorotelomer alcohol 6:2 FTOH F3C
CF2

OHCF2

CF2
CF2

CF2
CH2

CH2

 

8:2 fluorotelomer alcohol 8:2 FTOH F3C
CF2

CF2

CF2
OHCF2

CF2
CF2

CF2
CH2

CH2

 

10:2 fluorotelomer alcohol 10:2 FTOH F3C
CF2

CF2

CF2
CF2

CF2
OHCF2

CF2
CF2

CF2
CH2

CH2

 

12:2 fluorotelomer alcohol 12:2 FTOH F3C
CF2

CF2

CF2
CF2

CF2
CF2

CF2
OHCF2

CF2
CF2

CF2
CH2

CH2

 
Fluorotelomer acrylates (FTA) 

6:2 fluorotelomer acrylate 6:2 FTA 
CH2

F3C
CF2

CF2
CF2

CF2
CF2

CH2
CH2

O
C

O

C
H

 

8:2 fluorotelomer acrylate 8:2 FTA 
CH2

F3C
CF2

CF2
CF2

CF2
CF2

CF2
CF2

CH2
CH2

O
C

O

C
H

 

10:2 fluorotelomer acrylate 10:2 FTA F3C
CF2

CH2

CF2
CH2

CF2
CF2

CF2
CF2

CF2
CF2

CH2
CH2

O
C

O

C
H

 
Perfluoroalkyl sulfonamides (FASA) 

N-methyl-perfluorobutane 
sulfonamide 

MeFBSA 
HF2C

CF2
CF2

CF2

N
S

O

O

CH3  

N-methyl-perfluorooctane 
sulfonamide 

MeFOSA 
HF3C

CF2
CF2

CF2
CF2

CF2
CF2

CF2

N
S

O

O

CH3  

N,N-dimethylperfluorooctane 
sulfonamide 

Me2FOSA 
CH3

CH3

F3C
CF2

CF2

CF2
CF2

CF2
CF2

CF2

N
S

O

O

 

N-ethyl perfluorooctane 
sulfonamide 
 

EtFOSA 
CH2

F3C
CF2

CF2

CF2
CF2

CF2
CF2

CF2

N
S

O

O

CH3

H

 

perfluorooctane sulfonamide PFOSA F3C
CF2

CF2

CF2
CF2

CF2
CF2

CF2

NH2

S

O

O
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Table I: cont. 

Analytes Acronym Structure 

Perfluoroalkylsulfonamido ethanols (FASE) 

N-methyl-perflurobutane 
sulfonamido ethanol 

MeFBSE CH2F3C
CF2

CF2

CF2

N
S

O

O

CH3OH

CH3  

N-methyl-perfluorooctane 
sulfonamido ethanol 

MeFOSE CH2F3C
CF2

CF2

CF2
CF2

CF2
CF2

CF2

N
S

O

O

CH3OH

CH3  

N-ethyl-perfluorooctane 
sulfonamido ethanol 

EtFOSE CH2F3C
CF2

CF2

CF2
CF2

CF2
CF2

CF2

N
S

O

O
CH3OH

CH2 CH3  
Perfluoroalkyl carboxylates (PFCA) 

perfluorobutanoate PFBA F3C
CF2

CF2

COO
-

 

perfluoropentanoate PFPA F3C
CF2

CF2
CF2

COO
-

 

perfluorohexanoate PFHxA F3C
CF2

CF2

CF2
CF2

COO
-

 

perfluoroheptanoate PFHpA F3C
CF2

CF2
CF2

CF2
CF2

COO
-

 

perfluorooctanoate PFOA F3C
CF2

CF2

CF2
CF2

CF2
CF2

COO
-

 

perfluorononanoate PFNA F3C
CF2

CF2
CF2

CF2
CF2

CF2
CF2

COO
-

 

perfluorodecanoate PFDA F3C
CF2

CF2

CF2
CF2

CF2
CF2

CF2
CF2

COO
-

 

perfluoroundecanoate PFUnDA CF2
CF2

CF2
CF2

CF2
CF2

CF2
CF2

COO
-

CF2

F3C

 

perfluorododecanoate PFDoDA F3C
CF2

CF2

CF2
CF2

CF2
CF2

CF2
CF2

COO
-

CF2

CF2

 

perfluorotridecanoate PFTriDA F3C
CF2

CF2
CF2

CF2
CF2

CF2
CF2

CF2
CF2

COO
-

CF2

CF2

 

perfluorotetradecanoate PFTeDA F3C
CF2

CF2

CF2
CF2

CF2
CF2

CF2
CF2

CF2
CF2

COO
-

CF2

CF2

 

perfluoropentadecanoate PFPeDA F3C
CF2

CF2
CF2

CF2
CF2

CF2
CF2

CF2
CF2

CF2
CF2

COO
-

CF2

CF2

 

perfluorohexadecanoate PFHxDA F3C CF2
CF2

CF2
CF2

CF2
CF2

CF2
CF2

CF2
CF2

CF2
CF2

COO
-

CF2

CF2

 

perfluoroheptadecanoate PFHpDA F3C
CF2

CF2
CF2

CF2
CF2

CF2
CF2

CF2
CF2

CF2
CF2

CF2
CF2

COO
-

CF2

CF2

 

perfluorooctadecanoate PFOcDA F3C
CF2

CF2

CF2
CF2

CF2
CF2

CF2
CF2

CF2
CF2

CF2
CF2

CF2
CF2

COO
-

CF2

CF2
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Table I: cont. 

Analytes Acronym Structure 

Perfluoroalkyl sulfonates (PFSA) 

perfluorobutane sulfonate PFBS F3C
CF2

CF2
CF2

SO3
-

 
perfluorohexane sulfonate PFHxS F3C

CF2

CF2
CF2

CF2
CF2

SO3
-

 
perfluoroheptane sulfonate PFHpS F3C

CF2
CF2

CF2
CF2

CF2
CF2

SO3
-

 
perfluorooctane sulfonate PFOS F3C

CF2

CF2
CF2

CF2
CF2

CF2
CF2

SO3
-

 

perfluorodecane sulfonate PFDS CF2
CF2

CF2
CF2

CF2
CF2

CF2
CF2

SO3
-

CF2

F3C

 

Perfluoroalkyl sulfinates (PFSI) 

perfluorohexane sulfinate PFHxSi F3C
CF2

CF2
CF2

CF2
CF2

SO2
-

 
perfluorooctane sulfinate PFOSi F3C

CF2

CF2
CF2

CF2
CF2

CF2
CF2

SO2
-

 
perfluorodecane sulfinate PFDSi CF2

CF2

CF2
CF2

CF2
CF2

CF2
CF2

SO2
-

CF2

F3C

 
 

PFC are being produced since the late 1940s (Paul et al., 2009; Prevedouros et al., 2006). The 

total historical worldwide production of PFOA was estimated to be 3600-5700 t (Prevedouros 

et al., 2006). Paul et al. (2009) estimated the total production of perfluorooctane sulfonyl 

fluoride that was used to produce PFOS and its derivatives to be 96000 t or 122500 t 

including unusable wastes. The production of PFC increased within the past 50 years. 

Whereas in 1979, a total of 200 t fluorosurfactants were produced (Shoeib et al., 2004), the 

production of PFOS in 2000 or PFOA in 2003 alone was estimated to be above 3500 and 

500 t, respectively (Lau et al., 2004). Fluorotelomer alcohol production increased from zero in 

1960 (Smithwick et al., 2006) over 5000-6000 t a-1 in 2000-2002 (Ellis and Mabury, 2003) to 

currently 11000-14000 t a-1 (Dinglasan-Panlilio and Mabury, 2006).  

PFC were mainly produced by Simons electrochemical fluorination (ECF) or 

fluorotelomerization. During ECF, hydrogen fluoride is used to replace hydrogen with 

fluorine atoms of hydrogen-containing organic substances (Simons, 1949). This process 

yields linear and branched isomers and impurities of different chain length (De Silva and 

Mabury, 2004; Giesy and Kannan, 2002; Kissa, 2001). In contrast, fluorotelomerisation, a 

polymerisation process that involves the reaction of perfluoroalkyl iodides with perfluorinated 

alkenes such as tetrafluoroethylen, forms straight-chain substances only (Kissa, 2001). 
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Fluorotelomer alcohols which generally have the form CF3(CF2)n(CH2)2OH (n=odd 

numbered) and are named (n+1):2 FTOH are products of this process. A third, however less 

often used synthesis to produce fluorocarbons is liquid phase direct perfluorination (LPDPF) 

which uses a hydrogen-containing starting material that is dissolved in a perhalogenated 

liquid medium (De Silva and Mabury, 2004).  

1.3. Environmental Concerns 

Since the late 1990s, an increasing number of scientific studies pointed at the potential 

environmental problems involved with PFC and brought these chemicals in the focus of 

international public environmental concern. Several PFC are considered as toxic and 

extraordinarily persistent substances that contaminate and accumulate in humans as well as 

wildlife all over the world. Today, the awareness of producers as well as political stakeholders 

for appropriate action concerning these compounds is reflected by voluntary commitments of 

the fluorochemical industry and regulation efforts of political institutions. Examples are the 

voluntary phase out of PFOS-based compounds by its main producer 3M in 2002 or the 

commitment of PFC producing companies to reduce PFOA emissions by 95 % until 2010 

(US-EPA, 2006) as well as several restrictions concerning manufacturing, marketing, and use 

of PFOS by the United States Environmental Protection Agency or the European Community 

(European Community, 2006; US-EPA, 2002). 

1.3.1. Persistence 

Perfluorinated acids have no known route of biotic or abiotic degradation in the environment 

(Martin et al., 2004; US-EPA, 2002). Although thermal degradation of PFCA and PFSA was 

observed at temperatures above 360-500 °C (Powley et al., 2005; US-EPA, 2000) and PFCA 

were degraded by a technical photochemical system (Hori et al., 2005), perfluorinated acids 

resist degradation by acids, bases, oxidants, reductants, photolytic processes, microbes, and 

metabolic processes at environmental conditions (US-EPA, 2000). This is due to the strong 

carbon-fluorine bond, the presence of three pairs of non-bonding electrons around each 

fluorine atom, and the effective shielding of carbon by the fluorine atoms (Kissa, 2001). 

Consequently, these fluorosurfactants as well as other fluorinated alkyl substances are stable 

under conditions that degrade their hydrocarbon analogues (Kissa, 2001). 

In contrast to the fully fluorinated acids, partially fluorinated compounds such as FTOH, 

FTA, FASA, or FASE can undergo metabolic and atmospheric degradation. Biotic breakdown 
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of FTOH and FASA was demonstrated in various studies using microbial systems (Dinglasan 

et al., 2004; Wang et al., 2005) or in-vitro cultures (Martin et al., 2005; Tomy et al., 2004). 

Several studies gave evidence for abiotic degradation of partially fluorinated compounds in 

the atmosphere (see section 1.4), mostly using smog chambers as experimental approach (Butt 

et al., 2009; D'Eon et al., 2006; Ellis et al., 2004; Hurley et al., 2004b; Martin et al., 2006; 

Solignac et al., 2007; Sulbaek Andersen et al., 2005). Although yields were below 100 %, all 

of these processes resulted in the formation of PFCA and PFSA.  

Based on smog chamber experiments, atmospheric lifetimes of FTA and FASE were 

estimated to be approximately 1 to 2 days, those of FTOH and FASA were estimated to be 

higher than 20 days which is sufficient to reach remote locations (Butt et al., 2009; D'Eon et 

al., 2006; Ellis et al., 2003). Estimates of atmospheric FTOH residence times based on field 

measurements were even higher (Piekarz et al., 2007). Atmospheric lifetimes of PFCA with 

respect to reaction with OH radicals were estimated to be approximately 130 days (Hurley et 

al., 2004a). However, the major atmospheric removal mechanism is supposed to be wet and 

dry deposition which probably occurs on a time scale of the order of 10 days.  

1.3.2. Bioaccumulation 

Numerous biomonitoring studies from all over the world revealed the bioaccumulation and 

bioconcentration potential of several PFSA and PFCA (Bossi et al., 2005; Butt et al., 2008; 

Butt et al., 2007a; Haukas et al., 2007; Houde et al., 2006; Martin et al., 2003; Powley et al., 

2008; Smithwick et al., 2005; Tao et al., 2006). Bioaccumulation of PFC varies species and 

sex dependent (Hundley et al., 2006; Kennedy et al., 2004; Kudo et al., 2001; Olsen et al., 

2009). For example, the half-life time of PFOA was 5.6 days for male rats whereas that of 

female rats was only 2 hours (Kudo et al., 2002). PFOA half-life times in monkeys were 

observed to be between 20 to 30 days (Kennedy et al., 2004). In contrast, Olsen et al. (2007) 

reported mean PFOA and PFOS human serum half-life times of 3.8 and 5.4 years, 

respectively, revealing that humans excrete PFC rather slowly leading to enhanced 

accumulation of these substances. Time trends of PFC concentrations observed in biota 

roughly followed their production trends (Berger et al., 2007; Bossi et al., 2005; Butt et al., 

2007b; Smithwick et al., 2006). Generally, protein-rich tissues such as liver and blood were 

the primary repositories where perfluorinated acids accumulated, usually with concentrations 

that were orders of magnitude higher than those in other biological compartments (Ahrens et 

al., in press; Jones et al., 2003; Martin et al., 2003; Powley et al., 2008; Van de Vijver et al., 
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2005). For example, concentrations of PFOS and PFOA in liver from Arctic polar bears 

ranged from 263-6340 and 3-57 ng g-1, respectively (Martin et al., 2004; Smithwick et al., 

2005). Smithwick et al. (2005) observed that PFOS concentrations in polar bear liver were 

even higher than those of several polychlorinated biphenyls (PCB) in fatty tissue. Human 

blood concentrations of PFOS and PFOA ranged between <1 to 116 ng mL-1 and <1 to 

256 ng mL-1, respectively (Kannan et al., 2004) and reached up to 10600 (PFOS) and 6160 

(PFOA) in occupationally exposed persons (Olsen et al., 2003). The analysis of human breast 

milk revealed that PFC are also being accumulated in this compartment at concentrations 

below 1 ng mL-1 and are thus being transferred to newborns (Kaerrman et al., 2007; Tao et al., 

2008a; Tao et al., 2008b; Voelkel et al., 2008).  

Overall, PFSA were observed to be more bioaccumulative than PFCA of the same fluorinated 

chain length (Houde et al., 2006; Martin et al., 2003; Ohmori et al., 2003). For example, 

bioaccumulation factor means of perfluorononanoate (PFNA) and PFOS (both have eight 

fluorinated carbon atoms) were 900 and 1800 L kg-1, respectively (Conder et al., 2008). 

Furthermore, bioconcentration and bioaccumulation were directly related to the fluorinated 

chain length, i.e. they increased with increasing number of fluorinated carbon atoms (Conder 

et al., 2008). In bioconcentration experiments performed by Martin et al. (2003), PFSA and 

PFCA comprising of less than six or seven carbon atoms, respectively, did not accumulate in 

any of the investigated tissues. Similarly, Conder et al. (2008) concluded that perfluorinated 

acids below these carbon chain lengths are not considered to be bioaccumulative according to 

regulatory criteria.  

Several studies revealed biomagnification of PFCA and PFSA (Conder et al., 2008; Haukas et 

al., 2007; Houde et al., 2006). Biomagnification factors of PFCA and PFSA appeared to be in 

the same order of magnitude, an apparent relationship between fluorinated carbon chain 

length and biomagnification was not observed (Conder et al., 2008). 

1.3.3. Toxicity 

Numerous studies on the toxicity of PFC, especially of PFOS and PFOA, have been 

performed on various species in the past; however, little is known about the human toxicity. 

Basically, the acute toxicities of PFCA and PFSA on various species are moderate but 

increase with chain length (Jensen and Leffers, 2008; Mulkiewicz et al., 2007). Fluorotelomer 

acids (FTCA), intermediates in the degradation of FTOH to PFCA, were observed to be more 

toxic than the PFCA themselves (Phillips et al., 2007). The primary target organ of PFC 
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toxicity was the liver although toxic and/or carcinogenic effects have also been reported for 

other organs such as the thyroid gland or testicles (Fromme et al., 2006). PFOS and PFOA 

were associated with liver enlargement and hepatocarcinogenesis in rodents and nonhuman 

primates which were probably caused by peroxisome proliferation (Kennedy et al., 2004; Lau 

et al., 2007). Both substances induced peroxisome proliferation, either by activating the 

peroxisome proliferator-activated receptor-alpha (PPAR-α) or by perturbing lipid metabolism 

and transport (Berthiaume and Wallace, 2002; Lau et al., 2007). The longer the perfluoroalkyl 

chain of PFCA and PFSA the higher was the accumulation of the compound and thus the 

potency to induce peroxisome proliferation (Kudo et al., 2000; Kudo et al., 2006; Lau et al., 

2007). Peroxisome proliferation and hepatotoxicity in FTOH-fed mice was also described 

since these precursors readily form PFOA (Kudo et al., 2005). Gap junctional intercellular 

communication, a process by which cells exchange ions, small molecules or second messages, 

is involved in normal growth, development and may also play a role in carcinogenesis. 

Perfluorooctane sulfonates and a number of fluorinated compounds structurally related to 

PFOS have been demonstrated to inhibit gap junctional intercellular communication in vitro 

and in vivo (Hu et al., 2002). This effect was dependent on the length of the fluorinated 

carbon chain but not likely by the nature of the functional group (Hu et al., 2002; Lau et al., 

2007).  

Developmental toxicity of perfluoroalkyl acids and their derivatives was reviewed by Lau et 

al. (Lau et al., 2007; Lau et al., 2004). Dose-dependent increased morbidity and mortality of 

newborns was observed in rats after prenatal PFOS exposure during pregnancy. Organ 

development, growth, and weight gain were hindered as well. Precursors such as FASE 

metabolizing to PFOS were observed to cause similar developmental toxicity as PFOS 

(Luebker et al., 2005). Prenatal exposure to PFOA resulted in birth weight reduction and 

neonatal mortality with similar patterns as those obtained for PFOS (Lau et al., 2007).  

Yang et al. (2002; 2000) reported the immunotoxic potential of PFOA which was found 

suppressing the inflammatory response. Several PFCA and PFOS were observed to disrupt 

thyroid hormones and alter steroid hormone biosynthesis (Lau et al., 2007). Estrogen-like 

properties were described for PFOS and FTOH (Austin et al., 2003; Maras et al., 2006).  

Results from animal studies were extrapolated to evaluate the human health risks. It was 

suggested that the health risks for the general, non-occupationally exposed population is 

likely to be low (Fromme et al., 2007; Fromme et al., 2006; Midasch and Angerer, 2006). 
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Trudel et al. (2008) and Vestergren et al. (2008) estimated that the greatest portion of the 

chronic exposure to PFOS and PFOA was likely to result from the intake of contaminated 

foods including drinking water. The contribution of consumer products was expected to be 

minor. The relative importance of precursor-based PFOA and PFOS for the general 

population was estimated to be below 10 % (Vestergren et al., 2008). Based on toxicological 

studies and exposure estimates the tolerable daily intake (TDI) of PFOA and PFOS in 

Germany was set to 0.1 µg kg-1 d-1 (BfR, 2006). The German long-term limit for PFOA in 

drinking water was established at 0.1 µg L-1 (BMG, 2006) and the maximum occupational air 

concentration (MAK) of PFOA at 0.005 mg m-3 (DFG, 2005). 

1.3.4. Long-Range Transport 

First indications for long-range transport of PFC were presented in a study on the global 

distribution of PFOS in wildlife liver and blood samples (Giesy and Kannan, 2001). Since 

then, PFC, mainly PFSA and PFCA, have been detected in hundreds of biota samples from 

the high Arctic to Antarctica revealing their presence at locations remote from sources (Bossi 

et al., 2005; Butt et al., 2007b; De Silva and Mabury, 2004; Houde et al., 2006; Kallenborn et 

al., 2004; Martin et al., 2004; Smithwick et al., 2005; Smithwick et al., 2006; Tao et al., 

2006).  

PFCA and PFSA, particularly those of chain lengths less than ten carbon atoms, have been 

detected globally in rivers and oceans and therefore are considered to be significantly 

transported over long distances via this aqueous pathway (Caliebe et al., 2004; McLachlan et 

al., 2007; So et al., 2007; Wei et al., 2007; Yamashita et al., 2008; Zushi et al., 2008). 

Concentration of PFOS and PFOA ranged from 8.6 and 52 pg L-1 in ocean surface water 

(Yamashita et al., 2008) to 4385 and 3640 ng L-1 in river surface water (Skutlarek et al., 

2006), respectively. Thousand-fold higher PFOS concentrations were observed in a river 

following a spill of PFC containing fire fighting foams (Moody et al., 2001). It is estimated 

that the majority of PFCA and PFSA is emitted directly to the water phase during 

manufacturing and use (Paul et al., 2009; Prevedouros et al., 2006). Perfluorooctanoate that 

reaches the Arctic via oceanic transport is calculated to be between 2 and 23 t a-1 (Armitage et 

al., 2006; Prevedouros et al., 2006; Wania, 2007). Being dissolved in the water phase or 

enriched at the water surface, these ionic PFC may also be transferred to the air in marine 

aerosols (Prevedouros et al., 2006). However, atmospheric removal by wet and dry deposition 

is expected to occur in the order of a few days (Hurley et al., 2004a).  
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Atmospheric transport and degradation of PFCA and PFSA precursors is considered as 

another main long-range transport mechanism. However, its importance is discussed 

controversially. Basically, PFCA and PFSA precursors like FTOH, FTA, FASA, or FASE are 

thought to be emitted to the atmosphere during their manufacturing, the production of 

fluoropolymers (Paul et al., 2009; Prevedouros et al., 2006), and more importantly by diffuse 

sources during use and disposal (Barber et al., 2007; Dinglasan-Panlilio and Mabury, 2006; 

Paul et al., 2009; Sinclair et al., 2007). Precursors are more volatile than PFCA and PFSA 

(Goss et al., 2006; Kaiser et al., 2005; Krusic et al., 2005; Lei et al., 2004) and therefore are 

more likely to undergo atmospheric long-range transport. Being in the atmosphere, these 

volatile compounds are degraded to PFCA and PFSA by hydroxyl (OH) radical initiated 

oxidation (see section 1.4) (Butt et al., 2009; D'Eon et al., 2006; Ellis et al., 2004; Ellis et al., 

2003; Martin et al., 2006). Precursors were detected in air in several studies in North 

America, Europe, Asia, and the Atlantic Ocean (Barber et al., 2007; Jahnke et al., 2007b; 

Jahnke et al., 2007c; Kim and Kannan, 2007; Oono et al., 2008a; Piekarz et al., 2007; Primbs 

et al., 2008; Shoeib et al., 2006; Stock et al., 2007; Stock et al., 2004) and modelling results 

reveal the ubiquitous atmospheric distribution of FTOH and its degradation products 

(Wallington et al., 2006). Concentrations of airborne PFC frequently reported in literature are 

presented in tables II and III. The actual extent to which the atmospheric transport and 

degradation of precursors contribute to the PFCA and PFSA contamination of remote regions 

is still unclear. Some studies estimated that this pathway is less important than oceanic 

transport, mainly due to the low PFCA and PFSA yield of the degradation reactions and too 

low historic precursor emissions (Prevedouros et al., 2006; Wania, 2007). Several recent 

studies estimated the Arctic deposition of perfluorooctanoate from FTOH oxidation to be 

between 50 and 500 kg a-1 (Schenker et al., 2008; Wallington et al., 2006; Wania, 2007; 

Yarwood et al., 2007) whereas an earlier estimate by Ellis et al. (2004) assumed an 

approximate flux of 0.1-10 t a-1 of PFCA to the Arctic. Nevertheless, the presence of PFCA 

and PFSA in glacial ice caps that received their contamination solely from the atmosphere 

(Young et al., 2007), in air and lake water of remote mountains (Loewen et al., 2008), or the 

occurrence of precursor degradation intermediates in precipitation (Loewen et al., 2005; Scott 

et al., 2006), Arctic sediments, and air particles (Stock et al., 2007) reveal that the 

atmospheric transport and degradation of precursors considerably contributes to the PFCA 

and PFSA contamination of remote locations.  
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Table II: Mean outdoor air concentrations of frequently analyzed PFC (gas phase, pg m-3). BDL: below 

detection limit. BQL: below quantification limit. n.a.: not analyzed. 
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Table II: cont. 
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Table III: Mean outdoor air concentrations of frequently analyzed PFC (particle phase, pg m-3). BDL: 

below detection limit. 
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1.4. Atmospheric Chemistry of PFC 

The atmospheric degradation of PFC was investigated in several studies using smog chamber 

experiments (Butt et al., 2009; D'Eon et al., 2006; Ellis et al., 2004; Hurley et al., 2004a; 

Hurley et al., 2005; Martin et al., 2006; Sulbaek Andersen et al., 2005). Since they appeared 

to be virtually non degradable, the atmospheric chemistry of perfluorinated acids themselves 

was reported to be of minor importance (Hurley et al., 2004a). Removal of these acids from 

the atmosphere depended rather on wet and dry deposition, which readily occurs in the order 

of several days, than on gas-phase reactivity. In contrast to PFCA and PFSA, partially 

fluorinated compounds can be significantly degraded in the atmosphere, usually by OH 

radical initiated reactions. An overview about the atmospheric degradation of these substances 

to the persistent acids is presented in figure I.  

N-Et FOSE
N-Me FOSE

F(CF2)8SO2N(R1)CH2CH2OH

N-Et FOSA
N-Me FOSA

F(CF2)8SO2NHR1

PFOS
F(CF2)8SO2OH

F(CF2)8SOO•(OH)N(Ry)(Rz)
F(CF2)8SO2NHR2

F(CF2)8SO2NHR3

F(CF2)8SO2•

F(CF2)8SO2NHR4

F(CF2)x•

F(CF2)xO2•F(CF2)xO•

F(CF2)8OH

F(CF2)7C(O)F

PFO
F(CF2)7COO–

x:2 FTOH
F(CF2)xCH2CH2OH

FTAL
F(CF2)xCH2CHO

PFAL
F(CF2)xCHO

+OH•

+OH•

+OH•
+O2/-HO2•

+OH•
+O2

+OH•
+NO•
+O2

COF2

SO2

other

other

other PFCA
(x < 8)

other

other

other

other

other

x = x–1

+NO•

+O2

+CH3O2• +H2O

+OH•
+O2/-HO2•

+OH•

+OH•

+OH•

y = 1, 2, 3, or 4
Rz = CH2CH2OH or H

x:2 FTA
F(CF2)xCH2CH2OC(O)CHCH2

x:2 FTGly
F(CF2)xCH2CH2OC(O)C(O)H

+OH•
+NO•
+O2

+OH• / hν

 

Figure I: Summary of the most important reactions occurring during the atmospheric degradation of 

FASA, FASE, FTA, and FTOH in air. FTAL: fluorotelomer aldehydes. PFAL: perfluorinated aldehydes. 

FTGly: fluorotelomer glycoxylate. R1: methyl or ethyl substitutes. R2-R4: various substitutes of 

intermediate degradation products. Scheme adapted from Schenker et al. (2008), modified. 
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Generally, the degradation of precursor substances (D'Eon et al., 2006; Ellis et al., 2004; 

Hurley et al., 2004b; Martin et al., 2006; Sulbaek Andersen et al., 2005; Wallington et al., 

2006) can be distinguished into two parts. First, as revealed by red, purple, green, blue, and 

brown colors in figure I, various OH radical initiated reactions at the compounds’ functional 

group lead to the formation of F(CF2)x radicals. As side product, PFSA may be produced from 

FASE oxidation during these reactions (green color). Second, PFCA are formed (black color). 

PFCA of equal chain length are formed directly from the F(CF2)x radicals by reaction with 

alkyl peroxi radicals; PFCA of chain lengths shorter than x are formed after exiting the 

unzipping cycle during which the chain length is reduced by sequential loss of COF2. 

Whereas the first part of the degradation scheme is different for PFOS-based and FTOH 

precursors, the second part (black colors) is the same. More reactions than those presented in 

figure I might occur during the degradation of precursor compounds, e.g. oxidations at the R1 

chain of FASA and FASE (D'Eon et al., 2006; Martin et al., 2006) or photolysis (Wallington 

et al., 2006) and hydration (Sulbaek Andersen et al., 2006) reactions at the perfluorinated 

aldehyde (PFAL), an intermediate of the FTOH and FTA breakdown. However, to which 

exact extent PFCA and PFSA are formed during precursor degradation remains unclear. 

D’eon et al. (2006) reported approximate yields of PFBS and PFCA from EtFBSE oxidation 

of 1 and 10 %, respectively. The PFCA yields from FTOH and FTA degradation were 

between 1 and 10 % (Butt et al., 2009; Ellis et al., 2004; Hurley et al., 2004b). Overall, yields 

of perfluorinated acids were larger in the absence of NOx than in the presence of NOx (Butt et 

al., 2009; Ellis et al., 2004; Sulbaek Andersen et al., 2005).  

1.5. Research Objectives  

There are still many unknowns concerning environmental fate, distribution, and sources of 

PFC, especially in the perspective of volatile and semi-volatile substances that can be 

atmospherically degraded to persistent perfluorinated acids and are today heavily applied to 

replace those PFC that were restricted or phased out. Therefore, the focus of this work is on 

airborne PFC. Concentrations of airborne PFC were assumed to decrease along gradients 

from source regions to remote or marine areas where they were expected to be present at low 

concentrations. Furthermore, since the degradation of precursor PFC is dependent on OH 

radicals and thus radiation, seasonal concentration variations were hypothesized. Thus, in 

order to improve the understanding of atmospherically transported PFC, it is essential to 

investigate their atmospheric distribution and concentration variations on temporal and spatial 
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scales using a validated and accurate analytical method possessing low limits of detection. 

Specifically, the objectives of this thesis were: 

1. The improvement of existing analytical methods. The analyte spectra ought to be expanded 

in order to cover an increased number of relevant PFC, especially those that are used as 

replacements of restricted compounds. Their detection limits had to be decreased that 

sampling duration could be reduced to increase temporal as well as spatial resolution of PFC 

concentrations. The insufficient chromatographic separation of several compounds had to be 

improved. Previously existing methods were characterized by highly enhanced recovery rates 

of certain analytes. These response enhancements had to be overcome, particularly for those 

substances where compound specific mass-labeled internal standards were not available. 

2. The elucidation of temporal concentration changes of polyfluorinated compounds in 

ambient air. Studies describing the occurrence and distribution of (semi-)volatile 

polyfluorinated compounds in ambient air only display a snapshot of PFC air concentrations; 

emission events, seasonality, or fluctuations in the highly dynamic atmospheric system are not 

accounted for. The knowledge about concentration variations in dependence of distinct 

atmospheric conditions is of importance in order to compare the results of different studies. 

Therefore the aim of this study was to determine and characterize seasonal variations of PFC 

concentrations. Additional parameters that potentially influence PFC concentrations, such as 

air mass history, meteorological or air quality parameters, and nearby sources, should be 

considered as well.  

3. The assessment of concentration variations of polyfluorinated compounds in ambient air at 

a regional scale. Studies concerning concentration variations of airborne PFC along spatial 

gradients only covered large scales with large sampling intervals so far (Jahnke et al., 2007c; 

Shoeib et al., 2006), mostly due to methodological drawbacks. Small scale changes of PFC air 

concentrations are unclear though. Thus, an aim of this thesis was to obtain new information 

on the spatial atmospheric distribution of polyfluorinated compounds on a regional scale in 

Northern Germany and the German North Sea as well as the identification of source regions 

for that area. 

4. The description of concentration variations of polyfluorinated compounds in ambient air at 

a global scale. The transport and degradation of volatile PFCA and PFSA precursors may 

significantly contribute to the contamination of remote ecosystems. Although the worldwide 

distribution of polyfluorinated precursor compounds and their atmospheric transport has been 
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modeled already (Schenker et al., 2008; Wallington and Nielsen, 2002), analytical data on a 

global scale are rare. Only two studies described concentrations of a few PFC along large 

spatial gradients in the North Atlantic and Canadian Archipelago as well as along a transect 

from Germany to South Africa (Jahnke et al., 2007c; Shoeib et al., 2006). Therefore one key 

objective of this thesis was the assessment of the occurrence of airborne PFC on a global scale 

from the Arctic to Antarctica. Spatial gradients of PFC concentrations should be assessed and 

hemispheric (background) levels be defined. It should be elucidated if PFCA and PFSA 

precursors really reach these remote regions and thus may contribute to their presence in 

wildlife there.   

2. Experimental 

2.1. Sampling 

Samples were taken with high volume air samplers. The sampling duration varied in 

dependence on the expected concentration level or accessibility of the site and was generally 

between one and four days. Land-based sampling was conducted at two sites located in the 

vicinity of Hamburg, Germany from 2nd April 2007 to 1st June 2008. The site Barsbüttel 

(BAR), an air monitoring site of the Environmental Agency, is situated approximately 20 km 

east of Hamburg (1770000 inhabitants) at 53°34’14’’ N and 10°12’55’’ E. The GKSS site is 

located about 40 km southeast of the city centre of Hamburg close to the city of Geesthacht 

(30000 inhabitants) at 53°24’26’’ N, 10°25’20’’ E. Both sites have a semi-rural character.  

Ship-based samples were taken at the observation deck of different research vessels (RV 

Polarstern, RV Maria S. Merian, RV L’Atalante, RV Atair) during several sampling 

campaigns in the Baltic Sea, the Atlantic, and Southern Ocean along north-south and east-

west transects as well as in coastal areas (figure II; Atair 155, German Bight, North Sea, 

09/2007; MSM05/1, Las Palmas, Spain - St. John’s, Canada, 04/2007; MSM05/6, 

Longyearbyen, Norway - Kiel, Germany, 08/2007; MSM08/3, Rostock, Germany - Tallinn, 

Estonia - Kiel, Germany, 06/2008; AntXXIV-1 and AntXXV-1, Bremerhaven, Germany - 

Cape Town, South Africa, 11/2007, 11/2008; AntXXV-2, Cape Town, South Africa - 

Neumayer Station, Antarctica - Cape Town, South Africa, 12/2008; L’Atalante leg 2 

MARSÜD, Recife, Brazil - Dakar, Senegal, 01/2008).  
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Figure II: Overview about sampling campaigns discussed in this thesis. Black dots mark the positions 

where the sampling started. Sampling was conducted between this and the following point (for directions 

see text). Barsbüttel (BAR) and GKSS were stationary sites where samples were taken for 14 months.  
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To minimize ship-borne contamination air samplers were controlled by a computer connected 

to the ship’s meteorological system assuring that the sampling was interrupted when relative 

winds were arriving from the rear of the ship. The average sampling rate for land- and ship-

based samples was about 450 m³d-1. Airborne PFC were enriched on glass fiber filters 

(particle-bound PFC) and cartridges filled with a sandwich of polyurethane foam (PUF) and 

Amberlite XAD-2 (gaseous PFC). Prior to the sampling, 50 µL of an internal standard 

solution containing mass-labeled PFC were spiked directly onto the upper PUF disk to 

account for gas-phase analytes’ losses during sampling and sample preparation. Samples were 

sealed air tight and stored at -20 °C until analysis in the laboratory. 

2.2. Extraction 

The extraction procedure of gas-phase PFC was evaluated thoroughly (study 1) because signal 

enhancements up to 300 % had frequently been observed in the analyses of (semi-)volatile 

polyfluorinated compounds using ethyl acetate as solvent (Barber et al., 2007; Jahnke et al., 

2007a; Jahnke et al., 2007d). Recovery enhancements mainly affected FASA and FASE but 

were also observed for long-chain FTOH. These increased recoveries were generally 

explained by matrix effects that resulted in higher detection efficiencies in samples compared 

to standard solutions (Jahnke et al., 2007a; Schenck and Lehotay, 2000). However, enhanced 

recoveries observed in solvent blanks have not been explained (Jahnke et al., 2007a). This is 

of importance since it may lead to false estimates of environmental concentrations of critical 

analytes, particularly if compound specific mass-labeled internal standards are not available 

as it was in previous studies.  

In order to improve the extraction method of gas-phase PFC, nine different solvents were 

investigated for their potential to induce signal enhancement. The solvents were chosen 

because of similar polarity compared to ethyl acetate, their application in other studies, and/or 

general laboratory use for the extraction of semi-polar compounds. Polyfluorinated 

compounds containing solutions were spiked at different concentration levels to 50 mL of 

each solvent. After evaporation, measurement, and quantification, the analytes’ recovery rates 

were calculated. As expected, recovery rates of certain PFC using ethyl acetate as solvent 

were up to 300 %. This was attributed to ethyl acetate impurities, primarily acetic acid. In 

contrast to ethyl acetate and other solvents, recovery rates of dichloromethane (DCM), 

methyl-tert-butyl ether (MTBE), and acetone were close to 100 % (figure III). The evaluation 

of their extraction efficiency in comparison to ethyl acetate revealed that all of these solvents 
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were suited to extract gas-phase PFC. For most analytes, recovery rates using acetone, MTBE 

and DCM as solvents were comparable to or partly even higher than those of the established 

solvent ethyl acetate.  

 
a b 

c d 
Figure III: Average recovery rates of PFC after the evaporation of 50 mL solvent. Error bars are 

standard deviations. a: ethyl acetate. b: dichloromethane. c: acetone. d: methyl tert-butyl ether. 

 

A mixture of acetone and MTBE (1:1; v:v) was chosen as alternative solvent to replace ethyl 

acetate. Recovery rates using this solvent mixture were mostly between 50 and 100 % and the 

mixture appeared to extract the analytes more efficiently than DCM (figure 1-5 and 1-6). The 

use of DCM also led to a higher matrix background within the samples, making the solvent 

less suitable for extraction. The relative polarity of MTBE is slightly lower, the one of 

acetone little higher than that of ethyl acetate, providing a broad range of polarity that 

furthermore supported the mixture’s suitability. Boiling points of MTBE and acetone are 

lower than that of ethyl acetate, allowing a more gentle evaporation of the solvent during 

sample preparation and thus potentially resulting in higher recovery rates of the most volatile 

compounds. Detailed information on these experiments are presented in study 1 of the 

cumulative studies section. 

Finally, the optimized method for the extraction of gas-phase analytes was as follows. 

Cartridges were extracted thrice with acetone:MTBE 1:1 (v:v). Solvent was filled into the 

cartridges until the entire sandwich was covered. For the extraction, the solvent was allowed 

to soak into the adsorption material for 1hour (extraction step 1 and 2) and ½ hour (extraction 
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step 3). After each extraction step, the solvent drained into a flask and the remaining solvent 

in the cartridge was blown out with nitrogen. The combined solvent (approximately 500 mL) 

was evaporated using rotary evaporators and a gentle stream of preheated nitrogen. An 

injection standard was added prior to the measurement. 

Particle-bound PFC were extracted using fluidized bed extraction. Mass-labeled internal 

standards were added to the filters prior to the extraction. Neutral volatile PFC were extracted 

with acetone:MTBE 1:1 (v:v), ionic PFC with methanol as extraction solvent. Injections 

standards were used to correct for instrumental irregularities.  

2.3. Instrumental Analysis & Quantification 

Quantification of volatile neutral PFC (FTOH, FTA, FASA, FASE) was performed by gas 

chromatography-mass spectrometry (GC-MS) with positive chemical ionization (PCI) using 

the selected ion monitoring (SIM) mode. For confirmation, samples were also run in negative 

chemical ionization (NCI) mode. Instrumental parameters, particularly concerning the 

injection, the inlet, and the capillary column were optimized thoroughly to obtain optimum 

instrumental performance. The final GC-MS parameters are given in detail in study 1. 

Methanol-extracted polyfluorinated compounds (PFCA, PFSA, PFSI) were determined by 

high performance liquid chromatography - tandem mass spectrometry (HPLC-MS/MS) using 

electrospray ionization (ESI). Instrumental specifications concerning HPLC-MS/MS 

measurements are described in detail by Ahrens et al. (2007).   

Quantification was based on peak areas. Analyte concentrations were calculated with the 

internal standards method using a seven point calibration. Internal standards were used to 

correct for analyte losses. Whole method average recovery rates for analytes in the gas phase 

ranged between 21+/-27 % (13C 4:2 FTOH, n=127) and 68+/-32 % (MeFOSE D7, n=173) for 

ship-based samples and 25+/-17 % (13C 4:2 FTOH, n=113) and 60+/-19% (EtFOSE D9, 

n=243) for land-based samples. Average recovery rates for particle-bound analytes were 

between 41+/-15 % (13C 4:2 FTOH, n=117) and 123+/-76 % (13C PFUnDA, n=43) for ship-

based samples and between 22+/-15 % (13C 4:2 FTOH, n=85) and 95+/-64 % (13C PFUnDA, 

n=238). Compounds were classified as not detected (n.d.) with signal to noise ratio (S/N) 

below 3 and not quantified (n.q.) with S/N below 10. Based on the signal to noise ratio, the 

instrumental limits of detection (LOD) were between 0.2 pg and 8.2 pg, the instrumental 

limits of quantification (LOQ) were between 0.4 pg and 16.4 pg. Method detection limits 

(MDL) were typically below 1 pg m-3. 
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2.4. Quality Assurance & Quality Control 

Since polyfluorinated materials are often applied in laboratory equipment, it was crucial to 

take severe precautionary measures to avoid contamination. Sample preparation was 

performed in a clean lab (class 10000). Perfluorinated materials or fluorinated polymers were 

avoided during sampling, sample preparation, and instrumental detection. Prior to the 

sampling, PUF/XAD-2/PUF cartridges were cleaned with MTBE:acetone and acetone for 24 

hours using Soxhlet extraction. Filters were heated at 300°C for at least 24 hours. Barrier 

septa, that are free of PFC were used for the detection of ionic PFC at the HPLC-MS/MS. 

Silicon-Teflon septa were used for GC-MS measurements (vials), however, pre-tests showed 

no contamination with (semi-)volatile polyfluorinated compounds. The glassware was 

machine-washed, heated at 250 °C for twelve hours, and washed with the applied solvent 

before use. Mass-labeled injection standards and internal standards were used to correct for 

losses and irregularities during sampling and analysis. Standard solutions were only used at 

room temperature. A seven point calibration was run with each set of samples (6-8 samples) 

measured. Field, solvent, and filter blanks were frequently taken to determine possible 

contamination of the entire method. 

2.5. Air Mass Back Trajectories 

Seven days air mass backward trajectories were calculated with the model Hysplit 4.8 using 

NCEP’s Global Data Assimilation System (GDAS) data with 1 degree latitude/longitude 

resolution provided by NOAA-Air Resources Laboratory (Draxler and Rolph, 2003). 

Trajectories were calculated for intervals of three and six hours. The sampling height was set 

as arrival height. In order to verify the origin of air masses obtained by these computations, 

back trajectories were also calculated exemplarily for arrival heights of 100 and 500 m using 

GDAS data as well as for the sampling height using NCEP’s reanalysis data. The observed 

differences were in the range of the trajectories’ uncertainty. To obtain main air mass 

pathways for the BAR and GKSS site, cluster analysis of trajectories was performed with 

Hysplit 4.8. Detailed information on this issue is presented in study 2.   



 

RESULTS & DISCUSSION  EXTENDED SUMMARY 

 

  26

3. Results & Discussion 

3.1. Synopsis of PFC Concentrations in Ambient Air 

Neutral precursor PFC were detected almost exclusively in the gas phase which is 

corroborated by octanol-air partition coefficients determined for these substances (Dreyer et 

al., 2009; Goss et al., 2006; Thuens et al., 2008). Only FASA and FASE were observed on 

particles. On average, the particle-phase contribution of these compounds did not exceed 

20 %. Figure IV summarizes gas-phase concentrations of FTOH, FTA, FASA, and FASE. 

Concentrations of gas-phase PFC varied between one and two orders of magnitude on 

temporal as well as on spatial scales. Total gas-phase concentrations ranged from 4.5 pg m-3 

in the Southern Ocean to 335 pg m-3 in source regions in ship based samples and from 17 to 

972 pg m-3 in land-based samples. Gas-phase concentrations of PFC observed at Barsbüttel 

and GKSS were comparable to those determined at similar (Jahnke et al., 2007b) or other 

urban sites in Europe (Barber et al., 2007) or North America (Martin et al., 2002; Shoeib et 

al., 2006; Stock et al., 2004; Stock et al., 2005) and were at least one order of magnitude 

higher than marine PFC concentrations in the northern hemisphere published by Shoeib at al. 

(2006). Ship-based PFC concentrations were in the same range as those determined in studies 

covering similar locations (Jahnke et al., 2007c; Shoeib et al., 2006). With about 80 % on 

average, FTOH were the dominant class of PFC, followed by FASA, FASE, and FTA. In gas-

phase samples 8:2 FTOH was usually observed in highest concentrations. The gas-phase PFC 

composition corroborates results of other studies in Europe and the Atlantic Ocean (Barber et 

al., 2007; Jahnke et al., 2007c; Shoeib et al., 2006). 

Concentrations of individual particle-bound precursors were usually below 1 pg m-3. 

Maximum particle-phase concentrations were reached for MeFOSE in the port of Hamburg 

(9 pg m-3). MeFOSA and MeFOSE were the compounds that were most frequently observed. 

In contrast to other studies (Barber et al., 2007; Shoeib et al., 2006), FTOH were not detected 

in the particle fraction. Of ionic PFC, PFOS, PFBA, PFHxA, PFOA, PFNA, and PFDA were 

quantified most frequently in the particle fraction. Other ionic PFC detected occasionally 

were PFBS, PFHxS, PFPA, PFUnDA, PFDoDA, and PFTriDA. Particle-phase concentrations 

of ionic PFC were below < 1 pg m-3 on average. Maximum concentrations were observed for 

PFOS (13 pg m-3) and PFOA (6 pg m-3) in samples taken close to Hamburg or in the German 

Bight. Since sorption of gaseous PFCA to the glass fiber filters has been demonstrated by Arp 
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and Goss (2008) particle-phase concentrations may be biased. Because of the low 

concentrations and the uncertainties involved during sampling and analysis, particle-phase 

PFC were not taken into account for further discussions. 

a b 

c d 
Figure IV: Box-Whisker plots of gas-phase concentrations (pg m-3) of ΣFTOH, ΣFTA, ΣFASA, and 

ΣFASE from studies 2-4 summarized for selected regions. : minimum/maximum. : 1/99 percentile. 

Whiskers: 5/95 percentile. Box: 25/75 percentile and median. : mean. 

3.2. Temporal Concentration Variations of PFC in Ambient Air  

Significant variations of PFC gas-phase concentrations were observed in time series of 14 

months at two locations (BAR, GKSS) in the vicinity of Hamburg revealing the limited 

interpretation potential of singular measurements (study 2). The concentration courses over 

time were characterized by fluctuating baselines that were interrupted by short singular and 

unevenly distributed events of high PFC concentrations. This is exemplarily presented for 
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8:2 FTOH in figure V. High concentration events were observed more often in summer than 

in winter, they did not necessarily occur at the same time at both sampling sites, and did not 

reveal any compound-specific fingerprint or correlation to meteorological or air quality 

parameters. Therefore, this suggests that these events give evidence for different nearby 

sources of airborne PFC with pulsing emission patterns and point-source like character. 

 
Figure V: Gas-phase concentrations (pg m-3) of 8:2 FTOH at Barsbüttel (blue) and GKSS (orange) over 

the 14 months sampling period. Strongly elevated concentrations are supposed to result from nearby 

sources. In contrast, fluctuations of “baseline” concentrations appear to depend on diffuse sources and air 

mass origin. 

 

High concentration events were excluded for the analysis of seasonal PFC concentration 

variations. Averages of smoothed concentrations of individual PFC decreased in the order of 

summer > spring, fall > winter and were most pronounced for the substances found in high 

concentrations. However, as correlation and trajectory analyses reveled, PFC concentrations 

varied rather dependent on the air mass origin (see section 3.4) than on seasonality. In winter, 

the lower planetary boundary layer height as well as reduced degradation by OH radicals 

should have led to increased PFC concentrations during the winter season as it was observed 

by Barber et al. (2008). This suggests that temperature dependent emissions of volatile PFC 

from diffuse sources, for instance residual PFC present in products that are currently in use 
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(Dinglasan-Panlilio and Mabury, 2006; Kaiser et al., 2004), were the reasons for this 

observation. Depending on the air mass origin, samples were influenced by these sources to 

different degrees. Enhanced deposition in winter due to increased PFC partitioning to 

particles may additionally explain the observed concentration differences for FASA or FASE 

but not for FTOH since these were not observed on particles.  

3.3. Spatial Concentration Distribution of PFC in Ambient Air 

Although the number of detected substances varied, precursor PFC were determined in all air 

samples, even in Antarctica. The distribution of PFC in ambient air on a global scale is 

exemplarily presented for 8:2 FTOH in figure VI (study 4, figures S4-2 – S4-7). These results 

clearly demonstrate the long-range atmospheric transport potential of this group of chemicals. 

Concentrations and occasionally PFC composition varied in dependence of the location, i.e. 

distance to source regions, and air mass history (see section 3.4). Consequently, PFC 

concentrations decreased from continental or coastal areas towards the open sea and from the 

northern hemispheric mid latitudes (Central Europe) towards the north and the south. Overall 

and marine background concentrations of precursors were lower in the southern hemisphere 

than in the northern hemisphere (table 4-2). Lowest concentrations in the southern hemisphere 

were observed in Antarctic air. There, the only PFC detected significantly above the field 

blanks were 8:2 FTOH and 10:2 FTOH. They were observed in concentrations of about 

2  pg m-3. Lowest PFC concentrations in the northern hemisphere were determined in marine 

air masses that were sampled in temperate regions in the middle of the Atlantic Ocean. There, 

ΣFTOH concentrations were around 15 pg m-3. ΣFASA concentrations were around 1 pg m-3, 

ΣFASE concentrations were below 3.5 pg m-3, and ΣFTA concentrations were below          

1 pg m-3. In contrast, arctic air sampled close to Svalbard, Norway, was characterized by 

around twice as high PFC concentrations. These elevated concentrations probably reveal the 

more concentrated human activity in that region compared to the open ocean. The spatial 

distribution of volatile PFC obtained in our studies are consistent with findings of other 

authors (Jahnke et al., 2007c; Shoeib et al., 2006) as well as for persistent organic pollutants 

such as PCB, PBDE or organochlorine pesticides in similar regions (Choi et al., 2008; Jaward 

et al., 2004a; Jaward et al., 2004b; Luek et al., 2008; Montone et al., 2005).  
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Figure VI: Spatial distribution of 8:2 FTOH gas-phase concentrations (pg m-3) determined during several 

cruises in the Baltic Sea, the Atlantic and Southern Ocean. Note that the close-up of the Baltic Sea region 

is not to scale.  
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3.4. Influence of Air Mass Origin on Concentrations of PFC  

As pointed out above, PFC concentrations were strongly influenced by the origin of the air 

mass that was sampled. Detailed analyses on this issue were conducted in study 2 and 3 using 

air mass back trajectories. These analyses revealed that gas-phase PFC levels at Barsbüttel 

increased whenever air was arriving close to ground and at low velocities from surrounding 

and southwestern directions (figure VII). Air masses that originated in northern and 

northwestern directions, particularly those traveling at high velocities, were significantly less 

contaminated with PFC. These results were supported by regional PFC concentration 

variations investigated during a field campaign on the research vessel Atair in the German 

Bight and its coastal regions (study 3). The regional differences of PFC air concentrations 

were likely due to the varying degree air masses had passed coastal and/or terrestrial areas. 

During this cruise lowest concentrations of volatile PFC were observed when air masses 

originated completely from marine regions (figure VIIIb). Quite the opposite was observed 

when sampled air masses had passed Southern UK, the Netherlands, and highly industrialized 

areas of Germany, regions that are known to be point sources for other inorganic and organic 

pollutants (EEA, 2008). Under these conditions, PFC concentrations significantly increased at 

land-based and ship-based sites (figure VIIIa). Elevated PFC gas-phase concentrations of air 

masses arriving from Central Europe were also observed by Barber et al. (2008). Similarly, 

other authors noted the importance of long-distance transport from continental Europe 

(mainly southwestern directions) for the pollution of the North Sea areas (Bjorseth et al., 

1979; Lunde and Bjorseth, 1977; Preston and Merrett, 1991). Correspondingly, figure 4-3 

illustrates that comparable transport events commonly occurred in various areas during all 

sampling campaigns.  

Of course, air mass back trajectories do not explain the entire concentration variability that is 

observed in real samples. Although they offer important information on the air mass history, 

trajectory analyses may neither account for local phenomena nor provide sufficiently high 

resolution to be applicable to all samples. For instance, this was observed for a sample taken 

close to land in the German Bight. Elevated concentrations in that sample might be explained 

by local winds from southwesterly located coastal regions which were observed by onboard 

measurements but were not shown by the trajectories. Hence, it is important to monitor and 

thoroughly mind meteorological conditions throughout field campaigns. 
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Figure VII: Average concentrations of 8:2 FTOH at Barsbüttel in dependence on main air mass origins. 

The main air mass origins are represented by average trajectories that are based on cluster analyses of 96 

hours back trajectories for the 14 months sampling period. Triangles present the location of the air mass 

parcel in twelve hours intervals. Cluster means of 8:2 FTOH concentrations (also see table 2-1) were peak 

event-corrected and calculated from individual sample concentrations of those samples that were assigned 

to the corresponding cluster. Further details of results and cluster analysis are given in study 2.  

 

 
Figure VIII: Total gas-phase PFC concentrations as a function of air mass history expressed as back 

trajectories of selected samples. a: High concentration scenario. Prior to being sampled, air passed 

populated and/or industrialized areas of The Netherlands and western Germany. b: Low concentrations 

scenario. Air masses arrived from marine regions. Trajectories were calculated for 3 hours intervals. 

Asterisks mark the location of the sampling site or the ship’s positions, respectively. Triangles, squares, 

and rhombs show the position of the air parcel in twelve hours intervals for Atair, Barsbüttel, and GKSS 

samples, respectively. Trajectory heights are presented as well. Further details are given in study 3. 

Atair: 105 pg m-3              Atair: 35 pg m-3 
GKSS: 205 pg m-3              GKSS: 40 pg m-3 
BAR : 244 pg m-3              BAR : 99 pg m-3 
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3.5. Atmospheric Residence Times  

An important parameter that influences the transport of a substance and hence is crucial for its 

ability to be transported to remote areas over long distances in the atmosphere is the 

substance’s atmospheric life or residence time. The large spatially and temporally resolved 

data set of this thesis enabled the calculation of atmospheric residence times using the two 

indirect methods suggested by Junge (1974) and Manchester-Neesvig and Andren (1989). The 

Junge method was already applied to obtain atmospheric residence times of several 

compounds such as methyl bromide (Colman et al., 1998), mercury (Slemr et al., 1981), PCB 

(Anderson and Hites, 1996; Manchester-Neesvig and Andren, 1989; Panshin and Hites, 

1994), or recently FTOH (Piekarz et al., 2007). Applying the Junge method, we calculated the 

atmospheric residence times separately using the temporal (14 months time series at land-

based sites) and the spatial approach (ship-based samples, study 4). Since it is based on the 

partitioning of gas-phase chemicals to the particle phase, the method by Manchester-Neesvig 

and Andren (1989) was only applied to those analytes where partitioning to particles was 

actually observed.  

Atmospheric residence times of precursor PFC are given in table IV. They varied between the 

different approaches up to a factor of 2, in case of EtFOSE by a factor of 3.5. Residence times 

calculated for FTOH were between those estimated by Piekarz (2007) using the Junge method 

(50 d, 80 d, and 70 d, for 6:2 FTOH, 8:2 FTOH, and 10:2 FTOH, respectively) and 

atmospheric lifetimes of 20 days determined in smog chamber studies (Ellis et al., 2003). 

Atmospheric residence times of FASA and FASE were in the same range as lifetimes 

determined in smog chamber studies (D'Eon et al., 2006; Martin et al., 2006), except for 

MeFBSE (2 days, D’Eon et al. 2006). Atmospheric residence times calculated for FTA were 

one order of magnitude above those estimated by Butt et al. (2009). However, limitations of 

the indirect methods estimating the atmospheric residence times should be taken into account. 

Samples that were collected at different locations do not reflect potential seasonal changes. In 

ship-based samples FASA and FASE were often observed in concentrations close to the 

detection limit. Partitioning of FASA and FASE is in contradiction to the Junge-method’s 

assumption of one uniformly distributed sink (Junge, 1974). Furthermore, the analytical 

method to detect trace amounts of PFC might not be as precise as required to get accurate 

residence times. Considering these limitations, atmospheric residence times determined here 

are in good agreement to those observed in other studies. Most importantly, these results 

further demonstrate that the persistence of volatile precursor PFC in the atmosphere is 
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sufficient to allow long-range transport. Therefore long-range transport may contribute 

significantly to the contamination of remote regions with persistent PFCA and PFSA. 

 

Table IV: Atmospheric residence times (τ) in days based on the Junge relation and the partitioning ratio 

of a gaseous substance to particles. n.c.: not calculated, due to lack of data. 

 τ (Junge relation; d) τ (partitioning ratio; d) 

 ship samples BAR samples ship samples BAR samples 

4:2 FTOH n.c. n.c. n.c. n.c. 

6:2 FTOH 39 52 n.c. n.c. 

8:2 FTOH 56 48 n.c. n.c. 

10:2 FTOH 66 46 n.c. n.c. 

12:2 FTOH 48 26 n.c. n.c. 

6:2 FTA 33 30 n.c. n.c. 

8:2 FTA 33 33 n.c. n.c. 

10:2 FTA 23 30 n.c. n.c. 

MeFBSA 39 40 n.c. n.c. 

MeFOSA 46 53 36 n.c. 

Me2FOSA n.c. n.c. n.c. n.c. 

EtFOSA 27 55 57 n.c. 

PFOSA n.c. n.c. n.c. n.c. 

MeFBSE 42 50 66 n.c. 

MeFOSE 46 49 30 35 

EtFOSE 38 53 15 n.c. 

 

3.6. Where Did They Come From? – A Discussion About Sources of Atmospheric PFC 

A variety of products and processes may contribute to the emission of polyfluorinated 

compounds to the atmosphere. The majority of PFC are emitted as persistent perfluorinated 

acids to the water phase (Paul et al., 2009; Prevedouros et al., 2006). Direct emission of 

PFCA and PFSA to the air is rather particle-related and thus subject of fast deposition (Barton 

et al., 2006). In contrast to the persistent ionic PFC, volatile and semi-volatile PFCA and 

PFSA precursors are readily emitted to the air during manufacturing of fluorochemicals and 

fluorochemical-containing polymers (Paul et al., 2009; Prevedouros et al., 2006). More 

importantly, emissions from application or volatilization of volatile and semi-volatile 

polyfluorinated compounds which have been found in commercial and industrial 

fluoropolymers, surfactants, and other agents (Dinglasan-Panlilio and Mabury, 2006; Fiedler 
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et al., submitted; Jensen et al., 2008; Paul et al., 2009) contribute to the diffuse air 

contamination. With the data obtained in this thesis, distinct PFC sources, particularly for 

PFCA and PFSA precursors, cannot be identified. Nevertheless, some basic conclusions about 

PFC sources influencing this data set can be drawn.  

Single events of significantly enhanced concentrations of volatile PFC were observed during 

the analysis of the time series at Barsbüttel and GKSS (study 2). Since these events were 

irregular and occurred on very short time scales, unknown sources located in short distance to 

the sampling sites were assumed to be responsible for these observations. Detailed 

investigation about potential contributors is underway in an ongoing diploma project. 

Evidence for a distinct local source of certain precursor PFC was also observed in the ship 

yard of Las Palmas, Spain (study 4). Sampling was conducted at the research vessel Maria S. 

Merian while it was waiting for repair in the shipyard. Around the sampling site, many other 

ships were refurbished; their (underwater) coatings were ground off and/or renewed. In these 

samples very high PFC concentrations (ΣPFC 335 pg m-³) were observed and with an 

EtFOSA contribution of 20 % also an unusual PFC gas-phase composition. Further 

indications that paints or dyes may contain and release certain precursors were obtained in 

samples taken at the research vessel L’Atalante in the tropical Atlantic. In some samples of 

that cruise, unusually high concentrations of MeFBSE were detected after painting works on a 

deck below the sample inlet.  

Despite of these incidents, this study’s data suggest that emissions from diffuse PFC sources 

like application, volatilization, or distant manufacturing were rather responsible for the 

concentration variations observed. This assumption was not only based on trajectory analyses 

as described above but also on correlation and fingerprint analyses. Fiedler et al. (submitted) 

investigated FTOH fingerprint ratios of several PFC containing products. However, ratios 

observed in samples described in this thesis revealed that there must have been far more than 

those sources. Our results were confirmed by a study of Piekarz et al. (2007) applying 

trajectory analyses and FTOH concentration ratios to identify PFC source regions at the 

American west coast. We identified source regions in the Gulf of Finland around Helsinki, 

Finland and Tallinn, Estonia as well as in Central Europe in an area roughly covering northern 

parts of Belgium, The Netherlands, Southern UK, and north-western Germany (study 2-4). 

For the identification of additional regions, the spatial and temporal resolution of ship- and 

land-based samples was too low. Results were particularly convincing for the latter source 

region which is known for point sources of other inorganic and organic pollutants such as 
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NOx, SOx, hydrofluorocarbons, or polycyclic aromatic hydrocarbons (PAH) (EEA, 2008). 

Moreover, several facilities producing fluorochemicals such as Dyneon, Clariant, or Atofina 

are located in that area (Hekster et al., 2002), among them is one of the two largest production 

sites of the company 3M located in Antwerp, Belgium (Paul et al., 2009). Whenever air 

masses arrived from that densely populated and industrialized region, elevated air 

concentrations of PFCA and PFSA precursors were observed. Increasing concentrations of 

these volatile PFC in air masses arriving from this central European region were also 

determined by Barber et al. (2008). 

Several studies reported PFC air concentrations to be higher at urban than at rural sites 

(Barber et al., 2007; Primbs et al., 2008; Stock et al., 2004). Based on these studies one might 

assume that, overall, Hamburg acts as significant PFC source. However, it was not possible to 

completely evaluate the PFC air contamination potential of the city of Hamburg, mainly 

because the sampling set up was not sufficiently suited for this purpose. Concentrations of 

volatile PFC in samples taken in the port of Hamburg which is located in the city centre did 

not differ from those determined in samples of Barsbüttel and GKSS at the same time. Taken 

these results into account, the source strength of Hamburg appears to be rather small. This 

finding was also confirmed by Jahnke et al. (2007b) who did not observe distinct 

concentration differences of airborne PFC between the city of Hamburg and the remote 

sampling site at Waldhof located approximately 100 km southeast of Hamburg. Based on the 

results of study 2 and 3, the origins of airborne PFC appeared to be rather from temperature 

dependent diffuse sources and/or medium to long-distance atmospheric transport from highly 

populated and industrialized areas southwest and west of Hamburg than from the city itself.  

The ubiquitous presence of volatile PFCA and PFSA precursors in air demonstrates the global 

presence of PFC emitting sources. Although atmospheric lifetimes of volatile PFC are long 

enough to enable their long-range transport they appear to be not sufficiently long to pass the 

Intertropical Convergence Zone (ITCZ) where exchange processes occur in the order of a 

year. Thus, polyfluorinated compounds detected south of the ITCZ must have been emitted 

from sources located in the southern hemisphere. Since PFC concentrations were higher in the 

northern than in the southern hemisphere it is evident that southern hemispheric PFC sources 

are less significant and that PFC are applied more heavily in the northern hemisphere, 

probably due to the relatively high degree of industrialization and prosperity there.  
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4. Conclusion 

Applying an optimized analytical method, polyfluorinated substances were detected in every 

air sample from the Arctic to Antarctica. While PFCA and PFSA were determined in low 

concentrations in the particle phase, their neutral precursors occurred in concentrations that 

were usually two orders of magnitude higher. Fluorotelomer alcohols were the precursor 

compounds observed in highest concentrations and proportions, followed by FASE, FASA, 

and FTA. Precursors were predominantly detected in the gas phase corroborating recent 

studies on octanol-air partition coefficients. Regardless of the substance or the location, PFC 

concentrations of the sampled air mainly depended on the air mass origin. Generally, PFC 

concentrations significantly increased when air masses were arriving from densely populated 

and/or industrialized regions. Concentrations of gas-phase PFC were observed to vary 

strongly over the year without revealing a distinct temperature dependence or significant 

seasonality. Nevertheless, concentrations of volatile PFC were higher in summer than in 

winter time, probably due to varying emissions from diffuse sources. On the contrary, 

abruptly occurring singular events of high concentrations were most likely caused by local 

sources that were characterized by a point-source pattern. This demonstrated that 

measurements covering long periods are necessary and provide valuable tools to assess 

concentration variations. Overall, studies cumulated in this thesis underline that volatile and 

semi-volatile PFCA and PFSA precursors are being transported over long distances in the 

atmosphere. Due to their volatility and long atmospheric residence times, these compounds 

are able to reach remote ecosystems such as the Arctic or Antarctica via that pathway where 

they may serve as an important source of persistent, bioaccumulative, and toxic perfluorinated 

acids. Although studies in this thesis cannot resolve the extent to which atmospheric transport 

contributes to the PFCA and PFSA contamination of remote regions, they provide substantial 

new data and information that had never been obtained before to that extend, both temporally 

and spatially. These data significantly help to validate environmental fate models of 

polyfluorinated compounds. 

In contrast to data of PFCA and PFSA in the water phase, information on airborne PFC is still 

limited. Analytical efforts to determine volatile precursors in air have yet to be extended. As it 

was performed for the water phase (Van Leeuwen et al., 2006), additional intercomparison 

studies to compare sampling and analytical techniques of airborne PFC like that presented by 

Dreyer et al. (2008) have to be carried out. To further improve our understanding of the 
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atmospheric transport and degradation of volatile PFC, additional analytical methods should 

be applied. Methods should be less solvent and time consuming than the procedure applied in 

these studies. Temporal resolution is to be decreased further. New accumulation and 

analytical techniques such as thermodesorption might be suited to achieve these goals. 

Atmospheric processing of aerosols may have an important influence on the PFC degradation 

process that occurs in the atmosphere and should be considered in future studies. 

Furthermore, the deposition behavior of PFC, particularly of PFCA and PFSA is only poorly 

understood and studied up to now and should therefore be subject of future research as well. 

Source identification and characterization will have to continue. This includes the evaluation 

of individual diffuse and point sources as well as the assessment and characterization of 

source regions. Estimates of source strengths or emission factors will provide crucial 

information for environmental fate studies. The collection of new information will finally 

help scientists and political stakeholders to asses those PFC that are not subject to regulation 

efforts today.  
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An Optimized Method Avoiding Solvent-Induced Response Enhancement 

in the Analysis of Volatile and Semi-Volatile Polyfluorinated Alkylated 

Compounds Using Gas Chromatography-Mass Spectrometry 
 

 

Annekatrin Dreyer, Christian Temme, Renate Sturm, and Ralf Ebinghaus 

 

Institute for Coastal Research, GKSS Research Centre Geesthacht, Max Planck Str. 1, 21502 

Geesthacht, Germany 

 

 

Abstract 

A method for the analysis of airborne (semi-)volatile polyfluorinated alkyl substances (PFAS) 

was optimized to avoid solvent-induced response enhancements as observed using ethyl 

acetate as extraction solvent (recoveries up to 300 %, likely due to acetic acid as impurity). Of 

nine solvents tested, only the use of acetone, DCM, MTBE, and acetone:petroleum ether 1:1 

(v:v) resulted in recoveries below 100 % and acetone:MTBE 1:1 (v:v) was chosen as suited 

extraction solvent. An appropriate GC capillary column and the application of mass-labeled 

internal standards appeared to be essential for these analyses. Instrumental LOD of <0.2 

(Me2FOSA, EtFOSA D5, MeFOSA D3) to 8.2 (PFOSA) pg and LOQ of 0.4 (Me2FOSA, 

EtFOSA D5, MeFOSA D3) pg to 16.4 (PFOSA) pg were determined.  

Keywords 

Fluorotelomer alcohols; FTOH, perfluoroalkyl sulfonamides, perfluoroalkylsulfonamido 

ethanols, PFAS, PFC, matrix effect, acetic acid 

1. Introduction 

Perfluorocarboxylic and -sulfonic acids such as PFOA and PFOS belong to the group of 

polyfluorinated organic compounds that have been distributed globally in the past due to 

extensive industrial application and consumer use (Berger, 2004; Giesy and Kannan, 2001; 
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Martin et al., 2004; Prevedouros et al., 2006; Smithwick et al., 2006; Young et al., 2007; 

Young et al., 2005). Atmospheric transport and subsequent degradation of volatile and semi-

volatile precursor compounds like fluorotelomer alcohols (FTOH), perfluorinated 

sulfonamides (FASA) and perfluorinated sulfonamido ethanols (FASE) to the persistent acids, 

is assumed to be a main transport mechanism (Barber et al., 2007; Ellis et al., 2004; Jahnke et 

al., 2007b; Martin et al., 2002; Shoeib et al., 2006; Wallington et al., 2006).  

FTOH, FASA, and FASE have been analysed in air samples of laboratory (smog-chamber 

studies, determination of partitioning coefficients) (D'Eon et al., 2006; Ellis et al., 2004; Goss 

et al., 2006; Hurley et al., 2005; Lei et al., 2004; Martin et al., 2006) and environmental 

studies (Barber et al., 2007; Berger et al., 2005; Jahnke et al., 2007b; Shoeib et al., 2006; 

Shoeib et al., 2005). In general, substances in air were concentrated on XAD-2 (smog 

chamber studies) (Ellis et al., 2004), polyurethane foam (PUF, active and passive air 

sampling) (Shoeib et al., 2004; Shoeib et al., 2005), or a sandwich of both, usually 

PUF/XAD-2/PUF (active air sampling) (Barber et al., 2007; Jahnke et al., 2007a; Jahnke et 

al., 2007b; Martin et al., 2002; Shoeib et al., 2006). As common extraction solvent (in 

combination or alone), ethyl acetate was used (Barber et al., 2007; Ellis et al., 2004; Jahnke et 

al., 2007a; Jahnke et al., 2007c; Martin et al., 2002; Stock et al., 2004), however, 

acetone:petroleum ether (Shoeib et al., 2006) and methanol (Ellis et al., 2004) were also 

applied. Highly enhanced recoveries, partly exceeding 200 %, mainly of FASA and FASE but 

also for longer chain FTOH was a problem frequently observed in the analyses of (semi-

)volatile polyfluorinated compounds using ethyl acetate as solvent (Barber et al., 2007; Berger 

et al., 2005; Jahnke et al., 2007a; Jahnke et al., 2007c). These increased recoveries were 

generally explained by matrix effects, i.e. that co-eluting parts of the sample matrix block 

active sites in the measurement system (usually GC-MS) leading to higher detection 

efficiencies in samples compared to standard solutions (Jahnke et al., 2007a; Schenck and 

Lehotay, 2000). However, enhanced recoveries observed in solvent blanks have not been 

explained (Jahnke et al., 2007a). This is of great importance since environmental 

concentrations of critical analytes might be overestimated if compound-specific mass-labeled 

internal standards were not used or were not available at the time of the studies. It is also 

noteworthy that some authors applied native compounds as standards for volume correction, 

e.g. 11:1 FA, which might result in enhanced recoveries as well (Jahnke et al., 2007a). 

In this paper we present an optimized method for the analysis of gas-phase fluorotelomer 

alcohols, fluorotelomer acrylates, perfluorinated sulfonamides, and perfluorinated 

sulfonamido ethanols. By comparison of different extraction solvents we show that the choice 
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of solvent for extraction should be thoroughly made to avoid adverse effects such as solvent-

induced response enhancement as observed with ethyl acetate. Furthermore, we give evidence 

for the importance of appropriate mass-labeled internals standards to be used in the analysis 

of these (semi-)volatile substances.        

2. Experimental 

2.1. Chemicals 

Standards, native compounds: perfluorobutyl ethanol (4:2 FTOH, 97 %, Aldrich, Munich, 

Germany), perfluorohexyl ethanol (6:2 FTOH, 97 %, Lancaster Synthesis, Frankfurt, 

Germany), perfluorooctyl ethanol (8:2 FTOH, 97 %, Lancaster Synthesis, Frankfurt, 

Germany), perfluorodecyl ethanol (10:2 FTOH, 97 %, Lancaster Synthesis, Frankfurt, 

Germany), perfluorododecyl ethanol (12:2 FTOH, DuPont), perfluoroheptyl methanol (7:1 

FA, 97 %, Lancaster Synthesis, Frankfurt, Germany), perfluorononyl methanol (9:1 FA, 

98 %, Lancaster Synthesis, Frankfurt, Germany), perfluoroundecyl methanol (11:1 FA, >90 

%, Lancaster Synthesis, Frankfurt, Germany), perfluorotridecyl methanol (13:1 FA, 96 %, 

Lancaster Synthesis, Frankfurt, Germany), perfluorohexyl ethylacylate (6:2 FTA, 97 %, 

Aldrich, Munich, Germany), perfluorooctyl ethylacylate (8:2 FTA, 97 %, Fluorochem, UK), 

perfluorodecyl ethylacylate (10:2 FTA, 97 %, Fluorochem UK), n-methyl perfluorobutane 

sulfonamide (MeFBSA, 3M, USA), n-methyl perfluorooctane sulfonamide (MeFOSA, 3M, 

USA), n-ethyl perfluorooctane sulfonamide (EtFOSA, 95 %, ABCR, Karlsruhe, Germany), 

perfluorooctane sulfonamide (PFOSA, 3M, USA), dimethylperfluorooctane sulfonamide 

(Me2FOSA, 98 %, Wellington Laboratories, Guelph, Canada), n-methyl perfluorobutane 

sulfonamido ethanol (MeFBSE, 3M, USA), n-methyl perfluorooctane sulfonamidoethanol 

(MeFOSE, 3M, USA), n-ethyl perfluorooctane sulfonamido ethanol (EtFOSE, Mabury group, 

University of Toronto, Canada). All native FOSAs/FOSEs were a mixture of linear and 

branched isomers at a ratio of approximately 70:30 (Jahnke et al., 2007a). 

Internal standards, mass-labeled compounds: 2-Perfluorohexyl-(1,1-²H2)-(1,2-13C2)-ethanol 

(13C 6:2 FTOH), 2-Perfluorooctyl-(1,1-²H2)-(1,2-13C2)-ethanol (13C 8:2 FTOH), 2-

Perfluorodecyl-(1,1-²H2)-(1,2-13C2)-ethanol (13C 10:2 FTOH), methyl-D3-perfluorooctane 

sulfonamid (D3 MeFOSA), ethyl-D5-perfluorooctane sulfonamid (D5 EtFOSA), methyl-D7-

perfluorooctane sulfonamido ethanol (D7 MeFOSE), ethyl-D9-perfluorooctane sulfonamido 

ethanol (D9 MeFOSE; all > 98 %, Wellington Laboratories, Guelph, Canada). 
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Internal standards for volume corrections, mass-labeled compounds: hexachlorobenzene 13C6 

(13C HCB, 97 %, Dr. Ehrensdorfer, Augsburg, Germany), 1,3,5-trichlorobenzene D3 (TCB D3, 

98 %, Aldrich, Munich, Germany). 

Solvents: ethyl acetate (SupraSolv, Merck, Darmstadt, Germany), acetone, ethyl acetate, 

toluene, butan-2-one, methyl-tert-butyl ether (MTBE), dichloromethane (DCM), 

tetrahydofuran (THF), petroleum ether (all Picograde, Promochem, Wesel, Germany). 

2.2. Sample Preparation 

Recovery experiments on solvents: Since it was observed that ethyl acetate lead to unusually 

high recoveries of some polyfluorinated compounds, different solvents (acetone, toluene, 

MTBE, DCM, butanone, acetone:petroleum ether 1:1 (v:v), and THF) were applied and 

evaluated in addition to ethyl acetate (Picograde and SupraSolv). The solvents were chosen 

because of similar polarity compared to ethyl acetate, their use in literature, and/or general 

laboratory use for semi-polar compounds. 100 µL of a standard solution containing 

4:2 FTOH, 6:2 FTOH, 8:2 FTOH, 10:2 FTOH, 12:2 FTOH, 6:2 FTA, 8:2 FTA, 10:2 FTA, 

7:1 FA, 9:1 FA, 11:1 FA, 13:1 FA, MeFOSE, EtFOSE, MeFOSA, EtFOSA, MeFBSA, 

MeFBSE, and Me2FOSA in ethyl acetate were spiked at two concentration levels (100 pg µL-

1, 500 pg µL-1) to 50 mL of each solvent. The solvents were firstly evaporated to about 1 mL 

using rotary evaporators and then to 200 µL using a gentle stream of nitrogen. Fifty µL of 

HCB (500 pg µL-1) were added as injection standard prior to the measurement to correct for 

volume differences. In addition to these experiments, 100 µL of the analyte standard solution, 

at the same two concentration levels, and 50 µL of HCB were added to 100 µL of each 

solvent directly within the vial. All experiments were performed in triplicate.  

Extraction experiments: To evaluate the extraction efficiency of three pre-selected solvents 

(acetone, MTBE, and DCM) in comparison to ethyl acetate, glass cartridges (Orbo Tubes 

6000 Supelco, Munich, Germany) industrially filled with 25 g XAD-2 between two 6 cm 

polyurethane foam (PUF) plugs, were spiked with 50 µL of a standard solution containing 

4:2 FTOH, 6:2 FTOH, 8:2 FTOH, 10:2 FTOH, 12:2 FTOH, 6:2 FTA, 8:2 FTA, 10:2 FTA, 

MeFOSE, EtFOSE, MeFOSA, EtFOSA, MeFBSA, MeFBSE, Me2FOSA, and PFOSA 

(200 pg µL-1). As internal standard 50 µL of a solution containing 13C 6:2 FTOH, 
13C 8:2 FTOH, 13C 10:2 FTOH, D3 MeFOSA, D5 EtFOSA, D7 MeFOSE, and D9 MeFOSE 

(200 pg µL-1) were added. Solvent was filled into the cartridges until the entire sandwhich 

was covered with solvent. For the extraction, the solvent was allowed to soak for 1 hour (first 
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extraction) and ½ hour (second extraction). After each extraction step, the remaining solvent 

in the cartridge was blown out using nitrogen. All cartridges were extracted twice and the 

solvent (approximately 350 mL) was evaporated with ethyl acetate as keeper to 150 µL using 

rotary evaporators and nitrogen. Fifty µL of the injection standard containing TCB D3 and 
13C HCB (500 pg µL-1) were added prior to the measurement to correct for volume 

differences. Experiments were performed in triplicate. 

Confirmation of the quality of the chosen extraction solvent: Since it turned out that a mixture 

of acetone and MTBE might be a suitable alternative to ethyl acetate, 50 mL MTBE:acetone 

1:1 (v:v) and two PUF/XAD-2/PUF cartridges were spiked with 50 µL of a standard solution 

containing 4:2 FTOH, 6:2 FTOH, 8:2 FTOH, 10:2 FTOH, 12:2 FTOH, 6:2 FTA, 8:2 FTA, 

10:2 FTA, MeFOSE, EtFOSE, MeFOSA, EtFOSA, MeFBSA, MeFBSE, Me2FOSA, and 

PFOSA (200 pg µL-1). Additionally the method was applied to two real samples which were 

collected at a site close to Hamburg within 3 days in June 2006 using high volume air 

samplers (about 1500 m³. 50 µL of the solution containing 13C 6:2 FTOH, 13C 8:2 FTOH, 
13C 10:2 FTOH, D3 MeFOSA, D5 EtFOSA, D7 MeFOSE, and D9 MeFOSE (200 pg µL-1) 

were added to all samples for correction of analyte recoveries. All cartridges were extracted 

twice with MTBE:acetone 1:1 (v:v) as described above. The solvent was evaporated with 

ethyl acetate as keeper to 150 µL using rotary evaporators and nitrogen. Fifty µL of the 

injection standard containing TCB D3 and 13C HCB (500 pg µL-1) were added prior to the 

measurement to correct for volume differences. 

2.3. Instrumental Analysis & Quantification 

Quantification was performed by gas chromatography-mass spectrometry with positive 

chemical ionization (PCI) using the selected ion monitoring (SIM) mode. For confirmation, 

samples were also run in negative chemical ionization (NCI) mode. The 6890 GC (Agilent 

Technologies, Waldbronn, Germany) was equipped with a PTV inlet and coupled to a 5975 

inert MS (Agilent Technologies, Waldbronn, Germany). The following previously optimized 

instrumental conditions were used: injection volume: 2 µL; injection mode: pulsed splitless; 

pulse pressure: 40 psi, initial inlet temperature 60 °C hold for 0.10 min; heating rate: 

400 °C min-1 to 270 °C hold for 20.00 min; oven temperature program: initial oven 

temperature 50 °C hold for 2 min, 3 °C min-1 to 70 °C hold for 0 min, 10.00 °C min-1 to 

130 °C hold for 0 min, 20 °C min-1 to 220 °C hold for 0 min, 120 °C min-1 to 275 °C hold for 

5 min, 10 °C min-1 to 270 °C hold for 10 min; transferline temperature: 250 °C; column flow: 

1.5 mL min -1; carrier gas: He; reactant gas: CH4; ion source temperature (PCI): 300 °C; 
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quadrupole temperature (PCI) 150 °C; ion source temperature (NCI): 150 °C; quadrupole 

temperature (NCI) 150 °C. The capillary column was thoroughly chosen in separate 

experiments (also see supplemental information), finally analytes were separated on a 

Supelcowax10 (Supelco, Munich, Germany) capillary column, 0.25 mm i.d., 0.25 µm film 

thickness, 60 m and 30 m for the evaluation of pure solvents, 60 m for the remaining 

experiments.  

Recoveries of analytes spiked to 50 mL of pure solvents were calculated using standard 

solutions of the equal concentration levels in the same solvent. For quality assurance a five 

point calibration was measured with each set of solvent and used for control calculations of 

evaporated and not evaporated samples.  

Quantification was based on peak areas. Analyte concentrations in the extraction experiments 

were calculated using a seven point calibration. Internal standards were used to correct for 

analyte losses. Based on the signal to noise ratio, the limit of detection was between 0.2 pg 

(various analytes) and 8.2 pg (PFOSA), the limit of quantification was between 0.4 pg 

(various analytes) and 16.4 pg (PFOSA, also see supplemental information).  

2.4. Quality Assurance & Quality Control 

All experiments were performed in a clean lab (class 10.000). Perfluorinated materials or 

fluorinated polymers were avoided. Silicon-Teflon septa were used for measurements (vials), 

however, extensive pre-tests showed no contamination with (semi-)volatile polyfluorinated 

compounds. The glassware was machine-washed, heated at 250 °C for twelve hours, and 

washed with the used solvent before use. Standard solutions were only used at room 

temperature. If not mentioned differently, mass-labeled injection standards and internal 

standards were used to correct for losses and irregularities during analysis and measurement. 

For each compound, one target ion (PCI) and one qualifier ion (PCI and/or NCI) were 

measured for the GC-MS identification of the compounds. If not mentioned differently, a 

seven point calibration was run with each set of samples measured. Linearity of the GC-MS 

measurements was determined as described in DIN 32645 (1994). Blank samples were 

measured to determine possible cross contamination of the entire method. No signals were 

found. 
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3. Results & Discussion 

3.1. Recovery Experiments on Solvents 

The recoveries of analytes spiked to 50 mL solvents are shown in figure 1-1. Recoveries 

varied among solvents. They were lowest for the most volatile analytes and increased with 

decreasing volatility. For some solvents (ethyl acetate, butanone, THF), recovery rates far 

above 100 % were achieved for analytes, generally of molecular weights above 400 g mol-1 

which eluted relatively late. Analytes spiked to the solvent ethyl acetate resulted in recoveries 

between about 60 and 300 %. Except for MeFOSA, recoveries using ethyl acetate Picograde 

were slightly but not significantly lower than for ethyl acetate SupraSolv. Only the use of 

acetone, DCM, MTBE, and acetone:petroleum ether 1:1 resulted in analyte recoveries below 

or close to 100 %. No clear difference was found between both concentration levels tested. 

Analytes in pure (not evaporated) solvents showed no signal enhancements. 

 

  a b c 

d e f 

g h i 
Figure 1-1: Average analyte recoveries (n=3) of different solvents at concentrations of 100 pg µL-1 and 

500 pg µL-1. Error bars are standard deviations. The analytes were measured using a 30 m Supelcowax10 

capillary column and are aligned according to their retention time. a: ethyl acetate SupraSolv, b: ethyl 

acetate Picograde, c: acetone, d: toluene, e: butanone, f: methyl tert-butyl ether, g: dichloromethane, h: 

acetone:petroleum ether 1:1 (v:v), i: tetrahydrofuran. Note the differences in the ordinates’ scale. 
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For some solvents, calculated recoveries were far above 100 % because analyte responses 

were strongly enhanced. This finding appeared unusual since no real-sample matrix was 

present in these experiments. In environmental samples the so called matrix effect is a well 

known problem. Co-extracted sample compounds block active sites in the GC-MS system and 

thus lead to greater analyte detection efficiency in the sample compared to the calibration 

standard (Schenck and Lehotay, 2000). However, in the recovery experiments performed 

here, no real-sample matrix was present and the solvent was the only matrix. Potential 

contamination leading to these effects was not discovered. Signal enhancement of MeFOSE 

and EtFOSE was also observed by other authors (Barber et al., 2007; Berger et al., 2005; 

Jahnke et al., 2007a). Some of these authors  explained the presence of matrix effects only for 

real samples and PUF/XAD-2/PUF cartridges by the theory mentioned above, solvent-

induced response enhancements observed for ethyl acetate were not further investigated 

(Jahnke et al., 2007a). The results clearly lead to two major consequences: Firstly, mass-

labeled standards to correct for the high recovery rates should be applied whenever possible, 

which was already pointed out by Jahnke et al. (2007a) and Martin et al. (2002). The use of 

perfluoroalkyl methanols (X:1 FA) as used by some authors (Jahnke et al., 2007a; Martin et 

al., 2002) as correction substances is not advisable since these compounds are prone to 

strongly enhanced responses, however to different degrees compared to other analytes of 

interest. Secondly, solutions have to be found to overcome this problem since mass-labeled 

standards are not available for all analytes determined in this and other studies. This means 

that the reason for the solvent-induced response enhancement using ethyl acetate as extraction 

solvent has to be found and proper measures to avoid it are to be applied. Alternatively, 

another extraction solvent has to be chosen and its suitability in the analysis of (semi-)volatile 

polyfluorinated compounds is to be validated. 

Figure 1-2 indicates a possible reason for enhanced analyte recoveries using ethyl acetate. A 

large peak with the mass to charge ratio (m/z) 61 was co-eluting with recovery-enhanced 

polyfluorinated compounds starting with 11:1 FA. The beginning of the m/z 61 peak was 

dependent on the column length and column quality. Since a freshly cut column was used for 

the measurements presented in figure 1-2 the peak started relatively late. With used columns, 

it already started at about the retention time of 8:2 FTOH.  
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Figure 1-2: SIM chromatogram of polyfluorinated compounds and acetic acid (m/z 61, CH3CO(OH2)+) 

measured in evaporated ethyl acetate SupraSolv using a 30 m Supelcowax10 capillary column. Note: 

abundance of m/z 61 x 100. m/z 61 was also detected in scan measurements. 

 

The m/z 61 peak was assigned to acetic acid (CH3CO(OH2)+ in PCI measurements), which is 

a common impurity of ethyl acetate (titrated acid < 0.0008 mass equivalents g-1). Its presence 

was also validated in EI measurements. Due to the higher boiling point of acetic acid (118 °C) 

compared to ethyl acetate (77 °C), it is concentrated in the process of solvent evaporation to 

concentrations exceeding 50 pg µL-1 (figure 1-3) .The acetic acid might interfere with active 

sites of liner, column, and/or ion source of the GC-MS and thus lead to higher detection 

efficiencies of co-eluting analytes in the evaporated solvent compared to not evaporated 

solvent. Furthermore, acetic acid is a major decomposition product of ethyl acetate during 

chemical ionization (Jelus et al., 1974) and therefore might lead to interferences within the ion 

source (Schenck and Lehotay, 2000).  
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Figure 1-3: SIM chromatograms of acetic acid (m/z 61, CH3CO(OH2)+) in evaporated ethyl acetate 

SupraSolv, evaporated ethyl acetate Picograde, ethyl acetate SupraSolv that did not undergo evaporation, 

and an acetic acid standard solution (50 pg µL-1) in ethyl acetate using a 30 m Supelcowax10 capillary 

column. 

 

Figure 1-4 shows that the use of a 60 m column instead of a 30 m column resulted in 

recoveries below 100 % for all analytes with ethyl acetate SupraSolv as solvent. This is 

explained by the enhanced separation of substances using the 60 m column. The acetic acid 

(m/z 61) peak was still present taking the 60 m column; however, it was situated right 

between the group of polyfluorinated alcohols and sulfonamides and therefore expressed no 

influence on the analytes. Hence, the use of a 60 m capillary column solves the problem of 

recoveries above 100 % using ethyl acetate as extraction solvent, however, the high acid 

concentrations in the samples shortens the lifetime of the capillary column significantly. As 

we showed, some other solvents did not show problematic recoveries. Therefore, we suggest a 

change of solvent instead (see below).  
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Figure 1-4: Recoveries of polyfluorinated compounds after the evaporation of 50 mL ethyl acetate 

SupraSolv using a 30 m and a 60 m Supelcowax10 capillary column. 

3.2. Extraction Experiments 

The following experiments were run on 60 m Supelcowax10 columns. The efficiency of the 

four pure solvents, which showed good results in the recovery experiments before (ethyl 

acetate SupraSolv, acetone, MTBE, DCM) to extract (semi-)volatile polyfluorinated 

compounds spiked to PUF/XAD-2/PUF cartridges is shown in figure 1-5. In general, all of the 

solvents were efficient to extract the analytes. For most analytes, recoveries using acetone, 

MTBE and DCM as solvents were comparable to or partly even higher than those of the 

established solvent ethyl acetate. We decided on taking a mixture of acetone and MTBE (1:1; 

v:v) as alternative solvent for ethyl acetate, since recoveries appeared to be more reproducible 

than those of DCM. Besides the higher toxicity compared to acetone and MTBE the use of 

DCM also led to more matrix background within the samples, making the solvent less suitable 

for extraction. The relative polarity of MTBE is slightly lower, the one of acetone little higher 

than that of ethyl acetate SupraSolv, giving a broader range of polarity for extraction and 

hence underlining the suitability of the mixture. Boiling points of MTBE and acetone (55.2 

and 56.6 °C, respectively) are lower than that of ethyl acetate (77 °C), allowing a more gentle 

evaporation of the solvent during sample preparation and thus potentially resulting in higher 

recovery rates of the most volatile compounds (e.g. 4:2 FTOH, boiling point: 65 °C). The 

final confirmation of the suitability of acetone:MTBE 1:1 (v:v) is presented in figure 1-6. 

Recovery rates of almost all analytes were between 50 and 100 %. 
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Figure 1-5: Average relative recoveries (n=3) of volatile and semi-volatile polyfluorinated compounds 

spiked to PUF/XAD-2/PUF cartridges using ethyl acetate SupraSolv, acetone, MTBE, and DCM as 

extraction solvents. Samples were measured using a 60 m Supelcowax10 capillary column. 

 

a b 
Figure 1-6: Relative recovery rates of (semi-)volatile fluorinated compounds using acetone:MTBE 1:1 

(v:v) as extraction solvent. a: recoveries of analytes spiked to 50 mL acetone:MTBE 1.1 (v:v). b: recoveries 

of analytes spiked to PUF/XAD-2/PUF cartridges and extracted with acetone:MTBE 1:1 (v:v). Samples 

were measured using a 60 m Supelcowax10 capillary column. 

 

The method was applied to real samples. Concentrations of target analytes are shown in 

table 1-1. 8:2 FTA and 10:2 FTA were found in low concentrations in these environmental 

samples. 8:2 FTOH showed maximum concentrations of all FTOH determined, which is 

consistent with previous results of other authors (Barber et al., 2007; Jahnke et al., 2007a; 

Jahnke et al., 2007b; Shoeib et al., 2006). 12:2 FTOH was found in low environmental 
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concentrations comparable to those determined by Barber et al. (2007), 4:2 FTOH could not 

be detected. MeFBSA and MeFBSE were detected in similar concentrations than their C8 

analogues and were comparable to results of Barber et al. (2007). Overall, environmental 

concentrations of ΣFTOH were higher than those of ΣFASA+FASE, or ΣFTA, confirming 

previous results of sampling in European environments (Barber et al., 2007; Jahnke et al., 

2007a; Jahnke et al., 2007b) in contrast to some results of sampling in American 

environments (Martin et al., 2002; Shoeib et al., 2006; Stock et al., 2004). Interestingly, we 

observed Me2FOSA, which is used as injection standard by various groups (Barber et al., 

2007; Shoeib et al., 2006), in environmental samples. The occurrence of Me2FOSA was 

confirmed by NCI measurements. Blank samples of pure solvents and PUF/XAD-2/PUF 

cartridges revealed no contamination. Carry-over within the GC-MS was not found to occur. 

Hence, we suggest the use of other, if possible mass-labeled injection standards for volume 

correction. 

 
Table 1-1: Concentrations of volatile and semi-volatile compounds in air samples at a site close to 

Hamburg. Values in brackets: concentrations were below the smallest calibration standard. n.d.: analytes 

were not detected. 

  gas-phase concentration (pg m-3)   gas-phase concentration (pg m-3) 

analyte sample 1 sample 2 analyte sample 1 sample 2 

6:2 FTA (0.2) (0.2) 12:2 FTOH 7 12.4 

4:2 FTOH n.d. n.d. EtFOSA 2 2.3 

6:2 FTOH 16 26 MeFBSA 4.7 5 

8:2 FTA (0.9) (1.2) MeFOSA 5.4 6.9 

8:2 FTOH 97 104 MeFOSE 1.9 2.3 

Me2FOSA 0.2 0.2 MeFBSE 2.6 2.9 

10:2 FTA 0.4 0.6 EtFOSE 0.4 0.6 

10:2 FTOH 28 37 PFOSA (0.4) 0.8 

 

Overall, we optimized a method for the analysis of airborne volatile and semi-volatile 

polyfluorinated organic compounds such as FTOH, FTA, FASA, and/or FASE to avoid 

solvent-induced analyte response enhancements. Two possibilities to overcome the major 

problem of strongly enhanced recovery rates using ethyl acetate were shown: Firstly, using a 

60 m capillary GC column reduce the risk of enhanced responses. Secondly, an maybe more 

important, solvent-induced response enhancement is avoided by changing the extraction 

solvent, e.g. to acetone:MTBE 1:1 (v:v). Three extraction steps involving about 500 mL 

solvent are most suited (see also the supporting information). We recommend a combination 



 

REFERENCES  STUDY 1 

 

 72

of these two measures. We want to emphasize again the use and thorough choice of mass-

labeled compounds for recovery and volume correction.  

Supplemental Information 

Supplemental information is available, further elucidating some aspects of the method 

optimization, its validation, and the search for internal standards.  
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Mass Fragments of Volatile & Semi-Volatile Polyfluorinated Substances Analyzed in 

This Study 

 
Table S1-1: Mass fragments of compounds analyzed in this study. m/z: mass to charge ratio. MW: 

Molecular Weight. TI: target ion. Q: qualifier ion. PCI: positive chemical ionization mode. NCI: negative 

chemical ionization mode. The mass-labeled internal standards were used to correct native substances as 

follows: a: 4:2 FTOH, 6:2 FTOH, 6:2 FTA; b: 8:2 FTOH, 8:2 FTA, Me2FOSA; c: 10:2 FTOH, 10:2 FTA, 

12:2 FTOH; d: EtFOSA; e: MeFOSA, MeFBSA; f: EtFOSE, PFOSA; g: MeFOSE, MeFBSE. 

analyte MW m/z TI m/z Q1 (PCI) m/z Q2(NCI) 

4:2 FTOH 264 265.0 227.0 - 

6:2 FTOH 364 365.0 327.0 - 

8:2 FTOH 464 465.0 427.0 - 

10:2 FTOH 564 565.0 527.0 - 

12:2 FTOH 664 665.1 627.0 - 

7:1 FA 400 401.0 345.0 - 

9:1 FA 500 501.0 445.0 - 

11:1 FA 600 601.0 545.0 - 

13:1 FA 700 701.0 645.0 - 

6:2 FTA 418 419.0 447.1 - 

8:2 FTA 518 519.1 547.1 - 

10:2 FTA 618 619.1 647.1 - 

EtFOSA 527 528.0 508.0 507.0 

EtFOSE 571 554.0 572.1 508.0 

MeFOSA 513 514.0 494.0 493.0 

MeFOSE 557 540.0 558.0 494.0 

MeFBSA 313 314.0 294.0 292.9 

MeFBSE 357 340.0 358.0 293.2 

Me2FOSA 527 528.0 444.0 483.0 

PFOSA 499 500.0 381.0 478.9 
13C 6:2 FTOHa 368 369.1 331.0 - 
13C 8:2 FTOHb 468 469.0 431.0 - 
13C 10:2 FTOHc 568 569.0 531.0 - 

EtFOSA D5
d 532 533.1 - 511.9 

MeFOSA D3
e 516 517.0 - 495.9 

EtFOSE D9
f 580 563.1 581.1 514.0 

MeFOSE D7
g 564 547.1 565.1 497.9 
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Instrumental Limits of Detection (LOD) and Limits of Quantification (LOQ) of 

Environmentally Relevant Target Analytes and Mass-Labeled Internal Standards 

Analyzed in This Study 

 

 
Table S1-2: Limits of detection (LOD) and limits of quantification (LOQ) based on the signal to noise 

ratios and on DIN32645 (1994). A substance was detectable with S/N exceeding 3 and quantifiable with 

S/N exceeding 10. 

analyte 
LOD (S/N) 

(pg µL-1) 

LOQ (S/N) 

(pg µL-1) 

LOD (DIN) 

(pg µL-1) 

LOQ (DIN) 

(pg µL-1) 

6:2 FTA 0.1 0.2 7 25 

4:2 FTOH 0.8 1.1 6 20 

6:2 FTOH 13C 0.8 1.0 38 142 

6:2 FTOH 0.9 1.1 6 20 

8:2 FTA 0.1 0.2 4 13 

8:2 FTOH 13C 0.9 1.1 42 167 

8:2 FTOH 0.8 1.0 8 28 

Me2FOSA < 0.1 0.1 9 29 

10:2 FTA 0.1 0.2 4 15 

10:2 FTOH 13C 0.4 0.8 60 203 

10:2 FTOH 0.8 1.0 9 30 

12:2 FTOH 0.8 1.0 26 87 

EtFOSA D5 < 0.1 0.1 12 44 

EtFOSA 0.1 0.2 5 17 

MeFBSA 0.1 0.2 6 22 

MeFOSA D3 < 0.1 0.1 51 173 

MeFOSA 0.1 0.2 3 10 

MeFOSE D7 0.2 0.4 36 137 

MeFOSE 0.1 0.2 10 35 

EtFOSE D9 0.2 0.4 46 156 

MeFBSE 0.1 0.2 5 18 

EtFOSE 0.2 0.4 7 22 

PFOSA 4.1 8.2 10 34 
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Choice of the GC Capillary Column 

The following four different capillary GC columns, each 30 m x 0.25 mm x 0.25 µm in size, 

were tested for their suitability for the measurement of polyfluorinated alcohols, 

sulfonamides, and sulfonamido ethanols: Varian CP-Wax 57 CB, used by (Jahnke et al 2007), 

Optima 210, Optima 17, Supelcowax 10. A standard solution containing 4:2 FTOH, 

6:2 FTOH, 8:2 FTOH, 10:2 FTOH, MeFOSE, EtFOSE, MeFOSA, and EtFOSA at two 

different concentration levels (800 pg µL-1, 20 pg µL-1) was injected and measured with the 

method described in the paper. Suitability for the analysis of volatile and semi-volatile 

polyfluorinated compounds was evaluated in terms of separation, analyte signal to noise ratio, 

and column bleeding (table S1-3). Since analyte separation was much better, column bleeding 

much lower, and the allowed maximum temperature higher (higher heating to clean GC 

column) using the Supelcowax 10 column this one was chosen for further analyses. Note that 

the solvent-induced response enhancements did depend only upon the column length, not 

upon the column type. 

 
Table S1-3: Characteristics of four capillary columns evaluated for the analysis of (semi-)volatile 

polyfluorinated substances. 

 Varian CP Wax 57 CB Optima 210 Optima 17 Supelcowax10 

manufacturer Varian Macherey/Nagel Macherey/Nagel Supelco 

phase 
bonded 

polyethylenglycol 

trifluoropropyl-

methylpolysiloxane 

(50 % trifluoropropyl )

phenyl-

methylpolysiloxane 

(50 % phenyl) 

bonded 

polyethylenglycol 

suited for 

polar analytes such as 

alcohols or halogenated 

compounds 

polar analytes in en-

vironmental analyses, 

among others FTOH 

medium polar ana-

lytes such as stero-

ids or pesticides 

polar compounds such 

as alcohols, fatty acid 

methylester 

maximum 

temperature 
240 280 300 280 

separation 

of PFC 
good good for FTOH only good very good 

S/N high low very low high 

column 

bleeding  
high high Low low 
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Search for Suitable Injection Standards 

Extensive search was performed to find a suitable standard for volume corrections. The 

proper standard was to meet the following demands: give a strong and reliable signal in the 

PCI mode, elute from the GC column in the range of the fluorinated analytes, not subject to 

signal enhancement due to typical matrix effects. Table S1-4 shows a list of compounds 

tested. Finally, mass-labeled tichlorobenzene (TCB) and hexachlorobenzene (HCB) were 

chosen. They reduced the standard deviation of multi measurements significantly (95 %,            

t-test) at concentrations of 200 pg µL-1 and 40 pg µL-1. The difference was not significant 

anymore at 1 pg µL-1 (Table S1-5, S1-6, S1-7). 

 
Table S1-4: Substances evaluated for their suitability as injection standard. MW: molecular weight. BP: 

boiling point. RT: retention time of peak. m/z: mass/charge ratio. TI: target ion. 

compound name 
MW 

(g/mol) 

PB 

(°C) 

RT in 

analytes 

range? 

general remarks 
m/z TI 

(PCI) 

1,3,5-trichlorobenzene D3 181 220 Yes 
not found in environmental samples, 

no matrix influence 
184 

2,4,5-trichlorophenol 198 246 Yes no matrix influence 197 

2,4 dichloro-

phenoxyacetate 
221 160 no peak - - 

3,4-dichlorophenol 163 210 No too late 163 

7:1 FA 400 161 Yes signal enhancement in env. samples 401 

9:1 FA 500 193 Yes signal enhancement in env. samples 501 

11:1 FA 600 228 Yes signal enhancement in env. samples 601 

13:1 FA 700 260 Yes signal enhancement in env. samples 701 

acenaphthene D10 154 280 No too late 165 

acenaphthylene 152 280 Yes low abundance 153 

decanol 158 233 No m/z too low 97 

dichloprop 221 160 no peak - - 

dinitrobenzol 168 303 No too late 139; 169 

diuron 233 180 no peak - - 

endrin 381 245 No too late 349 

ethion 385 165 Yes break down into 3 peaks 199; 215, … 

fenitrothion 277 140 Yes break down into 2 peaks 157; 168 

fenthion 278 210 Yes break down into several peaks 157, 185, … 

fluorene 166 295 Yes low abundance 167 
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Table S1-4: cont.      

compound name 
MW 

(g/mol) 

PB 

(°C) 

RT in 

analytes 

range? 

general remarks 
m/z TI 

(PCI) 

hexachlorobenzene 13C6 190 231 Yes 
not found in environmental samples, 

no matrix influence, 
291 

hexanol D13 115 158 Yes m/z too low 85 

linuron 249 185 no peak - - 

malathion 303 156 No bad peak shape (very broard) 161 

metolachlor 284 100 Yes break down into several peaks 180, 218, … 

octanol D17 147 194 Yes 
m/z low, 

m/z 130 is released by XAD-2 
125, 130 

parathionmethyl 263 154 no peak - - 

PCB 49 286 343 No too late 293 

PCB 6 215 306 No too late 223 

PCB 65 286 345 No too late 293 

PCB 70 286 362 no peak - - 

pentachorophenol 266 300 no peak - - 

pentafluorophenol 184 143 Yes bad peak shape (very broard) 185 

phenylethanol 122 220 Yes m/z 105 is released by XAD-2 105 

profluralin 347 393 No too late 348 

teflubenzuron 381  No too late 158 

tefluthrin 419 156 no peak - - 

terbutylazine 230 373 No too late 194 

toluensulfonamide 171 221 no peak - - 
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Table S1-5: Analyte standard deviations of multi measurement of a 200 pg µL-1 standard solution. A: peak 

area. S.D.: standard deviation. 

 
S.D. A(analyte)           

(%) 

S.D. A(analyte)/A(TCB) 

(%) 

S.D. A(analyte)/A(HCB) 

(%) 

6:2 FTA 4.8 1.5 1.2 

4:2 FTOH 4.6 1.2 0.9 

6:2 FTOH 13C 4.8 1.4 1.2 

6:2 FTOH 4.6 1.4 1.3 

8:2 FTA 4.8 1.9 1.7 

8:2 FTOH 13C 4.8 2.0 1.8 

8:2 FTOH 4.2 1.5 1.4 

10:2 FTOH 13C 4.3 2.1 2.0 

10:2 FTOH 4.5 1.9 2.0 

12:2 FTOH 6.6 3.2 2.9 

EtFOSA D5 4.4 1.3 1.3 

EtFOSA 3.7 1.4 2.0 

MeFBSA 3.9 0.8 1.2 

MeFOSA D3 4.4 1.3 1.3 

MeFOSA 5.1 1.9 1.9 

MeFOSE D7 5.5 2.2 2.2 

MeFOSE 6.4 3.1 3.0 

EtFOSE D9 5.5 2.2 2.2 

MeFBSE 4.5 1.1 1.2 

EtFOSE 5.2 1.9 1.8 

PFOSA 9.0 6.7 6.7 
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Table S1- 6: Analyte standard deviations of multi measurement of a 40 pg µL-1 standard solution. A: peak 

area. S.D.: standard deviation. 

 
S.D. A(analyte)            

(%) 

S.D. A(analyte)/A(TCB) 

(%) 

S.D. A(analyte)/A(HCB) 

(%) 

6:2 FTA 3.5 1.1 2.4 

4:2 FTOH 3.3 1.3 1.7 

6:2 FTOH 13C 4.2 2.1 2.5 

6:2 FTOH 3.9 1.6 3.5 

8:2 FTA 4.7 2.2 3.5 

8:2 FTOH 13C 5.3 2.9 3.4 

8:2 FTOH 5.4 3.7 5.0 

10:2 FTA 5.7 3.6 5.3 

10:2 FTOH 13C 6.8 5.0 5.9 

10:2 FTOH 6.4 4.6 6.1 

12:2 FTOH 7.6 5.5 6.8 

EtFOSA D5 4.5 2.2 3.5 

EtFOSA 4.7 2.6 4.2 

MeFBSA 3.9 1.5 2.0 

MeFOSA D3 4.8 2.4 2.5 

MeFOSA 3.3 1.4 3.1 

MeFOSE D7 4.1 1.9 2.1 

MeFOSE 4.0 2.2 1.7 

EtFOSE D9 4.9 2.9 2.0 

MeFBSE 3.6 1.4 1.6 

EtFOSE 4.5 2.3 1.8 

PFOSA 5.7 4.3 3.5 
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Table S1-7: Analyte standard deviations of multi measurement of a 1 pg µL-1 standard solution. A: peak 

area. S.D.: standard deviation. 

 
S.D. A(analyte)            

(%) 

S.D. A(analyte)/A(TCB) 

(%) 

S.D. A(analyte)/A(HCB) 

(%) 

6:2 FTA 3.8 2.2 2.2 

4:2 FTOH 9.6 8.8 8.7 

6:2 FTOH 13C 16.6 16.4 17.6 

6:2 FTOH 13.5 12.3 12.6 

8:2 FTA 7.1 7.0 7.1 

8:2 FTOH 17.7 16.6 16.3 

10:2 FTA 9.7 8.0 7.5 

EtFOSA D5 4.5 3.8 4.0 

EtFOSA 6.0 4.8 5.1 

MeFBSA 5.3 4.9 5.1 

MeFOSA D3 6.6 5.7 5.8 

MeFOSA 5.3 4.2 4.3 

MeFOSE D7 8.5 8.1 7.7 

MeFOSE 20.2 22.1 22.5 

EtFOSE D9 11.4 10.2 10.1 

MeFBSE 11.9 13.1 13.4 

EtFOSE 10.7 11.4 10.9 
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Identification of Acetic Acid in Ethyl Acetate and Its Implications on the Recovery of 

FTOH 

The following experiments were performed to verify that acetic acid is concentrated when 

ethyl acetate was evaporated. Pure ethyl acetate SupraSolv, 50 mL ethyl acetate SupraSolv 

evaporated to 250 µL, and 250 µL ethyl acetate SupraSolv + acetic acid were measured in the 

Scan mode using a 30 m Supelcowax 10 capillary column. As shown in figure S1-1 to S1-3, 

acetic acid is not detectable in pure ethyl acetate, but in evaporated ethyl acetate and ethyl 

acetate + acetic acid. Figure S1-4 shows the impact of 1 µL acetic acid added to 250 µL of a 

FTOH standard solution. It is clearly shown, that recoveries of 8:2 FTOH and compounds 

eluting later are response enhanced. FASE and FASA were not determined in these 

measurements. 

 

Figure S1-1: Total ion chromatogram (a) and scan (b) of pure ethyl acetate SupraSolv measured on a 30 

m Supelcowax 10 capillary column. 

 

Figure S1-2: Total ion chromatogram (a) and scan (b) of evaporated ethyl acetate SupraSolv measured on 

a 30 m Supelcowax 10 capillary column. 
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Figure S1-3: Total ion chromatogram (a) and scan (b) of acetic acid added to pure pure ethyl acetate 

SupraSolv measured on a 30 m Supelcowax 10 capillary column. 

 

 

 
Figure S1-4: Recovery rates of certain PFC after in a standard solution based on ethyl acetate fortified 

with 1 µL acetic acid. 
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Break-Through Experiments 

Break-through experiments were performed to test the sampling efficiency of the industrially 

manufactured cartridges containing PUF/XAD-2/PUF (Orbo Tubes 6000, Supelco, Munich, 

Germany) which were applied for the first time in the determination of volatile and semi-

volatile polyfluorinated organic compounds using high volume air samplers. For this purpose, 

a cartridge was spiked with a solution containing 13C 6:2 FTOH, 13C 8:2 FTOH, 13C 

10:2 FTOH, D3 MeFOSA, D5 EtFOSA, D7 MeFOSE, and D9 MeFOSE (200 pg µL-1) prior 

sampling. Behind this cartridge, a second PUF/XAD-2/PUF cartridge was introduced to 

adsorb analytes that have not been retained by the first one during the sampling procedure. 

The duration of the sampling was 3 days (about 1500 m³). After sampling, columns were 

extracted with acetone:MTBE 1:1 (v:v). For the extraction, the solvent was allowed to soak 

for 1hour (first extraction) or ½ hour (second and third extraction). After each extraction step, 

remaining solvent in the cartridge was blown out using nitrogen. The solvent was evaporated 

to 150 µL using rotary evaporators and a gentle stream of nitrogen. Fifty µL containing 

TCB D3 and 13C HCB (500 pg µL-1) were added prior measurement at the GC-MS. The 

experiment was performed in parallel.  

As the break-through experiments show (figure S1-5), break-through of 5 % or more occurs 

only for the most volatile polyfluorinated analytes. Thus, their environmental concentrations 

will be underestimated. For the remaining substances, no or only very little break-through 

occurs. 

a b 
Figure S1-5: Break-through experiment of two parallel air samples (a, b). 
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Determination of the Number of Extraction Steps 

In this experiment the number of extraction steps to fully extract volatile and semi-volatile 

poly fluorinated compounds from a PUF/XAD-2/PUF cartridge was determined. One 

cartridge was spiked with 50 µL of a solution containing 4:2 FTOH, 6:2 FTOH, 8:2 FTOH, 

10:2 FTOH, 12:2 FTOH, 6:2 FTA, 8:2 FTA, 10:2 FTA, 7:1 FA, 9:1 FA, 11:1 FA, 13:1 FA, 

MeFOSE, EtFOSE, MeFOSA, EtFOSA, MeFBSA, MeFBSE, and Me2FOSA     

(c = 200 pg µL-1) and 50 µL of the internal standard solution containing 13C 6:2 FTOH, 
13C 8:2 FTOH, 13C 10:2 FTOH, D3 MeFOSA, D5 EtFOSA, D7 MeFOSE, and D9 MeFOSE 

(200 pg µL-1) to correct for analyte losses. Additionally, two real samples were taken using 

high volume air samplers. Cartridges were spiked with 50 µL of the internal standard solution 

prior to the sampling. After sampling columns were extracted with acetone:MTBE 1:1 (v:v) 

five times. For the extraction, the solvent was allowed to soak for 1hour (first and second 

extraction) or ½ hour (third to fifth extraction). After each extraction step, remaining solvent 

in the cartridge was blown out using high purity nitrogen. The five fractions were collected 

separately and evaporated to 150 µL using rotary evaporators and a gentle stream of nitrogen. 

Fifty µL containing 13C TCB and 13C HCB (500 pg µL-1) were added prior to the 

measurement at the GC-MS. 

As figure S1-6 shows, the highest proportion of polyfluorinated analytes elutes with the first 

extraction step. However, significant proportions for most analytes are also found in 

extraction 2 and especially for the perfluoroalkyl sulfonamides in extraction 3 as well. 

Generally, higher proportions of analytes in the second and third extraction step are found for 

real samples, emphasizing the use of real samples for these experiments. Overall, we decided 

on three extraction steps for the desorption of (semi-volatile) polyfluorinated organic 

compounds from the PUF/XAD-2/PUF sandwich. This involves the use of about 500 mL 

MTBE:acetone 1:1. 
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a 

    
b 

    
c 

Figure S1-6: Analyte Recoveries of five extraction steps. a: spiked cartridge. b: real sample 1. c: real 

sample 2. 4:2 FTOH was not detected in environmental samples. 
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Abstract 

Per- and polyfluorinated organic compounds (PFC) in air were determined in samples taken at 

two sites in the vicinity of Hamburg, Germany over a period of 14 months. PUF/XAD-2/PUF 

cartridges and glass fiber filters were applied for the collection of airborne PFC. A set of 

volatile, neutral PFC such as fluorotelomer alcohols (FTOH) or perfluorinated sulfonamides 

and ionic, non-volatile PFC like perfluorinated carboxylates (PFCA) and sulfonates (PFSA) 

were determined using GC-MS and HPLC-MS/MS. Backwards trajectory analysis was 

performed to elucidate the origin of the air mass parcels sampled. PFC were predominantly 

detected in the gas phase. A fluctuating baseline of north German background levels and 

singular events of high concentrations were characteristic for the time series of all analytes 

and both locations. The origin of sampled air was the driving parameter influencing the PFC 

levels. Elevated PFC concentrations occurred in air arriving from industrialized and populated 

regions west and southwest of Hamburg. Maximum individual PFC concentrations reached 

600 pg m-3 (8:2 FTOH) in the gas phase and 13 pg m-3 (perfluorooctane sulfonate, PFOS) in 

the particle phase. The class of FTOH clearly dominated the gas-phase substance spectrum. 

The compound that was detected in highest concentrations was 8:2 FTOH. Individual gas-

phase PFC concentrations were higher in summer than in winter. Temperature-dependent 

emissions of (semi-)volatile PFC from diffuse sources to the gas phase are presumed to be 

responsible for this observation.    

1. Introduction 

Long-chain perfluorinated carboxylates (PFCA) and -sulfonates (PFSA) such as 

perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) have been found to be 
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persistent, bioaccumulative, and entailing toxic properties (Beach et al., 2006; Giesy and 

Kannan, 2002; Haukas et al., 2007; Houde et al., 2006; Prevedouros et al., 2006). 

Furthermore, global distribution to remote regions caused by extensive industrial application 

and consumer use has been demonstrated for these compounds classes (Bossi et al., 2005; 

Giesy and Kannan, 2001; Prevedouros et al., 2006; Tao et al., 2006; Wei et al., 2007; Young 

et al., 2007). Although some main industrial producers committed to phase out the production 

of persistent and bioaccumulative long-chain PFCA and PFSA and legislative restrictions 

exist concerning manufacturing, marketing, and use of PFOS and its derivatives (European 

Community, 2006; US-EPA, 2002), less persistent polyfluorinated compounds such as 

fluorotelomer alcohols (FTOH), fluorotelomer acrylates (FTA), short chain acids or their 

derivatives are still being produced as substitutes or intermediates in large quantities. For 

example, the amount of globally produced telomere alcohols increased from 5-6.5 t a-1 in 

2000-2002 to 11-14 t a-1 which is perhaps related to the withdrawal by 3M of their POSF 

based products in 2000-2002 (Dinglasan-Panlilio and Mabury, 2006).  

Several studies revealed that perfluorinated acids can be transported over long distances 

within the water phase (Caliebe et al., 2004; McLachlan et al., 2007; Wei et al., 2007; 

Yamashita et al., 2008). Atmospheric transport of PFCA and PFSA as observed by some 

authors (Barber et al., 2007; Dreyer and Ebinghaus, 2009) appears to be of minor importance 

to explain contamination of remote regions due to efficient scavenging by wet and dry 

deposition (Hurley et al., 2004). In contrast to PFSA and PFCA, volatile and semi-volatile 

polyfluorinated compounds such as perfluorinated sulfonamides (FASA), perfluorinated 

sulfonamido ethanols (FASE), FTOH, or FTA undergo significant atmospheric long-range 

transport (Barber et al., 2007; Jahnke et al., 2007b; Piekarz et al., 2007; Primbs et al., 2008; 

Shoeib et al., 2006; Stock et al., 2007; Stock et al., 2004). Degradation of polyfluorinated 

volatile compounds to PFCA and PFSA during or after the transport reveal their contribution 

to the ubiquitous distribution of the persistent acids (D'Eon et al., 2006; Ellis et al., 2004; 

Martin et al., 2006; Sulbaek Andersen et al., 2005; Young et al., 2007). Studies describing the 

worldwide occurrence and distribution of (semi-)volatile polyfluorinated compounds in 

ambient air only display a snap-shot of PFC air concentrations - emission events, seasonality, 

or fluctuations in the highly dynamic atmospheric system are not accounted for. However, 

knowledge about concentration variations in dependence of distinct atmospheric conditions is 

of utmost importance in order to compare the results of different studies.   

Studies investigating temporal trends have been focused mainly on long term variations of 

PFCA and PFSA concentrations in biota (Bossi et al., 2005; Butt et al., 2007; Smithwick et 
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al., 2006). In contrast, studies investigating temporal concentration changes of volatile 

polyfluorinated compounds, especially on an annual basis are rare. For the period from 1998 

to 2005 FTOH concentrations in air were calculated to increase by at least one order of 

magnitude (Schenker et al., 2008). For the same period, PFOS-based volatile compounds 

were expected to decrease (Schenker et al., 2008). However, whereas field data support the 

FTOH estimates, decreasing concentrations of PFOS-based substances were not observed in 

field measurements. Stock et al. (2005) presented a poster showing gas and particle-phase 

concentrations of FTOH, FASA, and FASE collected every two weeks throughout 2002 and 

2003 in Toronto, Canada. They measured air concentrations of individual substances ranging 

from not detected to 650 pg m-3. On average, concentrations were higher in summer than in 

winter. Barber et al. (2008) investigated the seasonal variability of atmospheric PFC 

concentrations at an urban and a rural site in the UK in 2006. They found concentrations to be 

higher at the urban (ΣPFC 377 pg m-3) than at the rural (ΣPFC 183 pg m-3) site. Variability 

was higher at the rural site. Especially the more volatile compounds such as 6:2 FTOH 

occurred in higher concentrations in winter than in summer, possibly due to decreased 

atmospheric breakdown in winter. The same authors also observed that concentrations were 

highest when air masses were originating from Central Europe.  

The objective of this study was to elucidate temporal concentration changes of 

polyfluorinated compounds in ambient air at two sites close but at different distances to 

Hamburg. Therefore samples were taken continuously in intervals of three to four days within 

a period of 14 months from April 2007 to June 2008. FTOH, FTA, FASA, and FASE were 

determined in the gas and particle phase. PFCA, PFSA, and perfluorinated sulfinates were 

determined in the particle fraction only. Meteorological parameters, NOx and O3 were 

determined as well. These data as well as trajectory and statistical analyses were used to 

interpret the observed concentration variations. Specifically, the addressed questions were:       

1. Which amounts of polyfluorinated compounds can be observed in air samples of northern 

Germany? 2. How do concentrations of various polyfluorinated analytes vary over time and 

are there seasonal changes in concentrations? 3. How do meteorological conditions or 

atmospheric transport influence the observed concentration pattern? 4. Do both sites differ 

from each other in terms of PFC concentrations and pattern and what are reasons for potential 

differences?  
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2. Experimental 

2.1. Sampling & Sample Analysis 

To elucidate the site specific intra-annual concentration variations of PFC, sampling was 

conducted at two sites located in the vicinity of Hamburg, Germany from 2nd April 2007 to 1st 

June 2008 (figure 2-1). These sites were located in different distances and directions to the 

city of Hamburg and were also chosen to look for small-scale spatial variations close to a big 

city in a temperate region. The site Barsbüttel (BAR) is a monitoring site of the 

Environmental Agency (Staatliches Umweltamt Itzehoe) and is situated approximately 20 km 

east of Hamburg (1 770 000 inhabitants) at 53°34’14’’ N and 10°12’55’’ E. The GKSS site is 

located approximately 40 km southeast of the city centre of Hamburg close to the city of 

Geesthacht (30 000 inhabitants) at 53°24’26’’ N, 10°25’20’’ E. The sites have a semi-rural 

character and are characterized by winds coming predominantly from westerly directions. 

Generally, samples were taken continuously for three (Monday to Thursday) and four 

(Thursday to Monday) days using high volume air samplers. Exceptions were periods when 

the sites were not accessible and sampling times had to be extended up to 5 days and once to 

14 days (Christmas). For about one week in early November 2007 samples were taken daily at 

the GKSS site to cover the same intervals as a sampling campaign in the German Bight 

(Dreyer and Ebinghaus, 2009). In total 117 samples were taken at the BAR and 121 at the 

GKSS site with sampling volumes of 1200 to 1800 m³ for each sample and a flow rate of 

500 m³ d-1. In addition to the PFC sampling, meteorological parameters (air temperature, wind 

speed, wind direction, humidity, air pressure, and precipitation) were recorded at both sites. 

At Barsbüttel, NO, NO2, and O3 were measured as well.  

A sandwich of polyurethane foam (PUF) and Amberlite XAD-2 (Orbo PUF/XAD-2/PUF 

cartridges 2500) as well as glass fibre filters (GFF) were used to collect gaseous and particle-

bound polyfluorinated compounds separately. Prior to the sampling, 50 µL of a standard 

solution containing eight mass labelled volatile PFC (200 pg µL-1) were spiked directly onto 

the upper PUF disk of column to account for analyte losses during sampling and sample 

preparation. Filters were not spiked until the extraction, to assure that internal standards are 

not transferred to the column during sampling. After the sampling, samples were sealed air 

tight and stored at -20 °C. Gas-phase samples were analyzed within five months, particle 

samples within ten months after the sampling.  
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Figure 2-1: Location of the sampling sites. BAR: site at Barsbüttel, GKSS: site at the GKSS Research 

Center. 

 

Cartridges were extracted thrice with methyl-tert-butyl ether (MTBE):acetone 1:1. It seemed 

that neutral volatile particle-bound compounds were lost during long storage times since 

analytes were not detected in first extracts of these samples. Therefore only the most recent 

filters from April and May 2008 were extracted with MTBE:acetone 1:1 using fluidized bed 

extraction to determine neutral volatile PFC. The remaining filters from April 2007 until 

March 2008 were extracted for perfluorinated acids using fluidized bed extraction and 

methanol as extraction solvent. Detection of neutral polyfluorinated analytes in the gas and 

particle phase was performed by gas chromatography-mass spectrometry with positive 

chemical ionization (PCI) using the selected ion monitoring (SIM) mode. To confirm the 

detection of FASA, samples were also run in the negative chemical ionization (NCI) mode. 

Methanol-extracted polyfluorinated compounds were determined by high performance liquid 

chromatography - mass spectrometry (HPLC- MS/MS) using the electro spray ionization 
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(ESI) mode. Detailed descriptions of chemicals, sample preparations, and instrumental 

analyses are given elsewhere (Dreyer and Ebinghaus, 2009; Dreyer et al., 2008) and in the 

supporting information. 

Average recovery rates for analytes in the gas phase were between 25+/-17 % (13C 4:2 FTOH) 

and 60+/-19 % (EtFOSE D9). Since internal standards were spiked to the cartridges prior to 

the sampling process, losses during sampling are included in these recovery rates. Average 

recovery rates for particle-bound analytes were between 46+/-29 % (13C PFOA) and 95+/-

64 % (13C PFUnDA). Analytical performance of particle extraction strongly depended on the 

particle load and type of particles. For instance poor recoveries occurred for filters that were 

heavily loaded with pollen. Four GKSS and 1 Barsbüttel particle samples as well as 3 

Barsbüttel and 4 GKSS gas-phase samples were discarded due to high water or matrix 

content. The average uncertainty based on 1 day paired measurements (n=7) of gas-phase 

analytes was 45 % +/- 30 % (Dreyer and Ebinghaus, 2009) . Due to low recovery rates and/or 

elevated uncertainty of 4:2 FTOH and PFOSA, concentrations of these analytes should be 

treated qualitatively rather than quantitatively. The uncertainty of particle concentrations was 

not calculated due to the lack of a sufficient number of paired measurements. However, due to 

analytical problems described above and low PFC concentrations the uncertainty is expected 

to be larger.   

2.2. Blanks 

Laboratory blanks (solvent blanks for gaseous samples, filter blanks for particulate samples) 

were taken with each set of samples that was extracted. Almost all compounds were detected 

in solvent and filter blanks in very low concentrations (on average 0.2 pg m-3 and 0.7 pg m-3, 

respectively). Therefore, all concentrations reported were laboratory blank-corrected. To 

determine contamination of sampling, sampling transport, and storage field blanks were taken 

at both sites about once a month. Field blanks were treated the same way as samples and were 

usually in the range of solvent and filter blanks showing that contamination was not due to 

sampling or sample handling. Blank concentrations are reported in the supporting 

information. 

2.3. Trajectory Analysis 

Seven days air mass backward trajectories were calculated with the model Hysplit 4.8 using 

NCEP’s Global Data Assimilation System (GDAS) data with 1 degree latitude/longitude 
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resolution provided by NOAA-Air Resources Laboratory (Draxler and Rolph, 2003). 

Trajectories were calculated for intervals of six hours and an arrival height of 2 m (sampling 

height). The trajectories’ uncertainty is expected to be approximately 20 % of the travel 

distance. To obtain main air mass pathways, back trajectories were clustered. Cluster analysis 

of trajectories was performed with Hysplit 4.8. The final number of clusters was based on a 

20 % separation criterion of 96 hours back trajectories calculated for twelve hours intervals. 

Since samples were taken for three or more days, they were assigned to that cluster 

representing the most frequent trajectories. If one sample had exactly the same number of two 

clusters, it was assigned to both. Due to the resolution of GDAS data, GKSS and BAR cluster 

did not differ and only clusters for the Barsbüttel site are being discussed here to elucidate the 

air mass origin. 

2.4. Statistical Analysis 

Since particle-phase concentrations were close to the detection limit and therefore more 

uncertain, only the time series of gas-phase data are statistically evaluated. Gas-phase 

concentrations at both sites were tested for (log-)normal distribution using the Kolmogorov-

Smirnov test. Peak events were eliminated for seasonality considerations. Elimination was 

based on the interquartile range method (Sachs, 2002). Analyte concentrations grouped by 

sites or trajectory clusters were averaged and log-normal-distributed concentrations were 

compared using analysis of variance (ANOVA). PFC concentrations were correlated to each 

other and to meteorological parameters using Pearson correlation.   

3. Results & Discussion 

3.1. PFC Concentrations & Proportions  

Figure 2-2 gives an overview of the time series of gas-phase concentrations for four classes of 

polyfluorinated compounds analysed in this study. PFC were found predominantly in the gas 

phase. Total gas-phase concentrations ranged from 17 to 972 pg m-3. These gas-phase 

concentrations are comparable to those observed at similar (Jahnke et al., 2007a) or other 

urban sites such as Manchester (Barber et al., 2007) or Toronto (Martin et al., 2002; Shoeib et 

al., 2006; Stock et al., 2004; Stock et al., 2005) and are at least one order of magnitude higher 

than marine background concentrations in the northern hemisphere observed by Shoeib et al. 

(2006). Concentrations varied strongly. Due to the peak events, the compounds standard 
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deviations and inner-quartile ranges over the entire period sampled were usually 100 % or 

higher without a tendency concerning sites or substances. In general, concentrations were uni-

modal and right-skewed distributed. Except for 4:2 FTOH, Me2FOSA, and PFOSA which 

were detected only occasionally in air samples, substances detected in the gas phase were log-

normal distributed. This was statistically verified (p < 0.05) for 20 of 26 time series. With 

only 8 exceptions in the particulate fraction, per- and polyfluorinated compounds were 

detected in the gas and particle phase of all analysed air samples at both sites. 

 
a 

 
b 

Figure 2-2: Gas-phase concentrations of Σ FTOH, Σ FTA, Σ FASA, Σ FASE at the (a): Barsbüttel and (b): 

GKSS site. Note that if sample losses occurred symbols were not connected. 

 

For the majority of analytes, concentrations, arithmetic concentration means, and medians 

were slightly higher at the Barsbüttel site than at the GKSS site (figure 2-3a). These 

differences were most pronounced for 8:2 FTOH. An exception was 12:2 FTOH that was 

present in higher concentrations at the GKSS site. Concentration differences may not be 
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significant in light of method uncertainties. With proportions of more than 80 %, FTOH were 

the dominant class of compounds, followed by FASE, FTA and FASA. Among the FTOH, 

8:2 FTOH was observed in maximum proportions followed by 6:2 FTOH, 10:2 FTOH, and 

12:2 FTOH. This composition is typical for European air masses (Barber et al., 2007; Dreyer 

and Ebinghaus, 2009; Jahnke et al., 2007a). Average PFC compositions were similar between 

both locations. At Barsbüttel, the proportion of 8:2 FTOH was elevated whereas the 

proportion of 12:2 FTOH was reduced. 

Of neutral analytes in the particulate phase, MeFOSE and EtFOSE were often determined in 

low concentrations (figure 2-3 b). MeFOSA, MeFBSE, MeFBSA, EtFOSA, and PFOSA were 

only sporadically found. FTOH and FTA, even the most volatile ones, were occasionally 

detected in low concentrations. However, the detection of these compounds in field blank 

samples suggests that this was probably due to contamination. In contrast to these findings, 

other authors described gas to particle partitioning of (long-chain) FTOH, especially at colder 

temperatures (Jahnke et al., 2007a; Piekarz et al., 2007; Shoeib et al., 2006). Average PFC 

particle concentrations varied between not detected and 1.3 pg m-3 at Barsbüttel and between 

not detected and 0.6 pg m-3 at GKSS and appear to be higher at Barsbüttel. Although 

concentration differences between GKSS and Barsbüttel seem to be more pronounced in the 

particle phase than in the gas phase, the higher uncertainty of particle-phase concentrations 

should be considered carefully. Furthermore, sorption of gaseous PFCA to the glass fiber 

filters as demonstrated by Arp and Goss (2008) may have biased the particle-phase 

concentrations. PFHxS, PFDS, PFSi, PFHxDA, and PFOcDA were not detected in any 

particle sample, whereas PFOS, PFBA, PFHxA, PFOA, and PFNA were frequently and 

PFBS, PFPA, PFHpA, PFDA, PFUnDA, PFDoDA, PFTriDA, and PFTeDA less often 

detected in the particle phase. With 13.5 pg m-3 PFOS was the analyte detected in maximum 

concentrations in the particle phase. This study’s particle-phase concentrations are 

comparable to those observed by Kim and Kannan (2007) for an urban area in the US or by 

Harada et al. (2005) for rural regions of Japan. Particle-phase PFOS and/or PFOA 

concentrations determined at urban regions in the UK and Japan were up to two orders of 

magnitude higher which was attributed to traffic based emissions or emissions from 

production facilities (Barber et al., 2007; Harada et al., 2005; Sasaki et al., 2003). Unlike the 

findings of Barber et al. (2007) and Harada et al.(2005) who reported PFOA in maximum 

proportions in the particle fraction, in this study PFOS was the dominant compound, usually 

followed by PFBA, PFOA, and MeFOSE. Barsbüttel samples contained higher proportions of 

PFOS than the GKSS ones.  
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a 
 

 
b 
 

Figure 2-3: Average and median concentrations (pg m-3) of poly- and perfluorinated compounds in (a) the 

gas phase and (b) the particle phase. Note that FTOH detected in the particle phase are not included in the 

figure since data suggested contamination.  
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3.2. Air Mass Origin 

Figure 2-4 illustrates the results of air mass back trajectories cluster analyses for the 

Barsbüttel site. Clustering trajectories revealed eight main air mass origins (figure 4a) that are 

represented by eight average trajectories (figure 4b). The majority of trajectories were 

assigned to clusters 3 (27 %) and 6 (19 %). These clusters were characterized by short 

trajectories i.e. slow air masses that travelled close to ground and originated from surrounding 

and western directions. Clusters 5, 7, and 8 (below 10 % each) contained few but long, i.e. 

fast trajectories from northern and western directions. Clusters 1, 2, and 4 consisted of 

intermediately long trajectories from eastern, northern and western directions, respectively.  

a 

1 (10%)
3 (27%)

6 (19%)
7 (5%)

4 (11%)

8 (3%)

2 (17%)

5 (8%)
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3 (27%)

6 (19%)
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8 (3%)

2 (17%)

5 (8%)
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4 (11%)
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2 (17%)

5 (8%)

b 
Figure 2-4: Cluster analysis on trajectories calculated for the BAR site. (a) Ninty-six hours air mass back 

trajectories grouped into 8 clusters. Cluster specific trajectories are colour coded. (b) Mean cluster 

trajectories. Note: Only Barsbüttel trajectories were used since the GDAS data did not resolve small scale 

spatial differences between GKSS and BAR. Cluster numbers were assigned by Hysplit. 

 

Average PFC concentrations observed in this study were quite different among the clusters 

revealing that the air mass origin, i.e. the source region was a driving parameter for the air 

concentrations of polyfluorinated compounds. Peak event-corrected (see below) average gas-

phase concentrations of polyfluorinated analytes (table 2-1) were usually highest in samples 

assigned to clusters 3 and 6 suggesting source regions west of the sites. PFC concentrations in 

clusters 3 and 6, particularly those of 6:2 FTOH, 8:2 FTOH, and 10:2 FTOH, were strongly 

elevated compared to PFC levels observed in the remaining clusters. The lower the PFC 

concentrations the more uniformly they were distributed among the clusters. Air masses of 
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clusters 1, 2, 4, and 7 contained medium levels of PFC in the gas phase. Analyte 

concentrations were lowest in clusters 5 and 8. Concentrations of 10:2 FTOH and 12:2 FTOH 

in cluster 2 were in the same order than those of clusters 3 and 6. Since sampling was 

performed continuously for several days some of the samples grouped into cluster 2 also got a 

small quantity of air parcels arriving from more polluted regions (usually cluster 3). It was 

observed that in terms of air mass origin pure cluster 2 samples had much lower PFC 

concentrations than such mixed samples. Thus, although northern marine air masses are 

generally less polluted, elevated average concentrations were observed in cluster 2. Further 

information on this issue is presented in the Supporting Information Section.  
 

Table 2-1: Trajectory cluster averages of gas-phase concentrations (pg m-3) of poly- and perfluorinated 

compounds at Barsbüttel. Peak concentrations were not accounted for in the calculations. v.fast: very fast. 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 
trajectory 

character 
E, slow NW, fast stationary W, fast NW, v. fast SW, slow SW, v. fast W, v. fast 

trajectory 

number 
n=12 n=20 n=25 n=13 n=10 n=30 n=5 n=5 

4:2 FTOH 0.3 0.0 0.4 0.5 0.3 0.2 0.0 0.3 

6:2 FTOH 17 17 22 20 13 21 16 9.5 

8:2 FTOH 42 56 63 48 31 62 46 39 

10:2 FTOH 13 19 23 16 10 20 15 6.8 

12:2 FTOH 3.6 5.3 5.6 6.4 3.8 7.5 8.9 8.3 

ΣFTOH 76 98 114 91 58 111 87 64 

6:2 FTA 0.6 1.1 1.4 1.9 0.9 2.0 1.3 0.8 

8:2 FTA 2.5 2.3 2.8 3.2 2.2 2.8 2.9 1.3 

10:2 FTA 0.9 0.9 0.9 1.2 0.8 1.1 1.0 2.1 

ΣFTA 4.0 4.2 5 6.2 3.9 5.9 5.2 4.2 

MeFBSA 1.4 1.4 2.5 1.8 1.0 2.9 2.4 1.4 

MeFOSA 1.8 1.8 2.1 1.5 1.2 2.2 2.0 0.8 

Me2FOSA 0.1 0.1 0.2 0.3 0.2 0.2 0.1 0.1 

EtFOSA 0.5 1.0 1.3 1.3 0.8 1.4 1.4 0.7 

PFOSA 0.2 0.1 0.1 0.2 0.5 0.3 0.0 0.4 

ΣFASA 4.0 4 6.3 5.1 3.7 7 5.9 3.5 

MeFBSE 1.6 2.1 2.0 2.9 1.7 2.3 1.6 1.5 

MeFOSE 1.1 1.5 1.7 2.0 1.1 1.9 1.3 1.3 

EtFOSE 0.7 0.7 1.1 0.8 0.8 0.8 0.8 0.7 

ΣFASE 3.4 4.3 4.8 5.7 3.6 5.1 3.7 3.6 

total 87 111 130 108 69 129 101 75 
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Elevated PFC air concentrations in air masses arriving from central Europe were also 

observed by Barber et al. (2008). That concentrations of polyfluorinated compounds increased 

with air masses arriving from densely populated and industrialized areas was also shown by 

Primbs et al. (2008). They observed that gas-phase FTOH concentrations increased 

significantly with the time that the air mass parcel spent over California’s urban areas and that 

high concentrations were associated with frontal activity over urban areas of the US west 

coast. Dreyer and Ebinghaus (2009) did not observe concentrations differences between the 

port of Hamburg located in the city centre and Barsbüttel and GKSS in a set of samples taken 

at the same time. Taking the results of both studies into account the origins of airborne PFC 

appear to be located rather in highly populated and industrialized areas southwest and west of 

Hamburg than in the city itself. However, the exact role of Hamburg as PFC source cannot be 

satisfactorily resolved.  

3.3. Intra-Annual Variations 

Concentrations of polyfluorinated compounds in the gas phase strongly varied over time. The 

course is characterized by a fluctuating baseline that is interrupted by short singular events of 

high PFC concentrations. This is exemplarily shown for 8:2 FTOH, the analyte found in 

highest concentrations, and for MeFBSE, a polyfluorinated sulfonamido ethanol that is used 

as substitute for long-chain polyfluorinated compounds (figure 2-5). During peak events, 

concentrations of all analytes were abruptly changing for at least one order of magnitude, e.g. 

from 54 pg m-3 (average concentration without peak events) to 594 pg m-3 (maximum 

concentration) for 8:2 FTOH at Barsbüttel. High concentration events were unevenly 

distributed. Overall, they occurred when air masses were arriving from directions represented 

by cluster 3 and 6. Relationships of these high concentrations to locally observed parameters 

such as temperature, locally different wind direction, precipitation or concentrations of O3, 

NO, and NO2 were not observed. High concentrations were found more often in summer than 

in winter and did not necessarily occur at the same time at both sampling sites. These distinct, 

irregular, and highly elevated gas-phase concentrations without a compound-specific 

fingerprint may give evidence for different nearby point sources of (semi-)volatile 

polyfluorinated compounds with pulsing emission patterns.  

Reliable statements for particle-bound compounds are difficult since results were close to the 

detection limit. However, for a few particle-bound analytes such as PFBA, concentrations 

appear to increase towards the winter time.  
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a b 
Figure 2-5: Gas-phase concentrations (pg m-3) of 8:2 FTOH (a) and MeFBSE (b) at Barsbüttel (blue) and 

GKSS (orange) over the entire sampling period. 

 

To determine if gas-phase PFC concentrations depended on seasonal variations, data 

representing events of high concentrations were excluded for further analysis. 8:2 FTOH and 

10:2 FTOH belonged to the analytes that were least affected by the exclusion of high 

concentration events at the Barsbüttel site (only 4 eliminated events), 10:2 FTA (19 events) 

and 12:2 FTOH (18 events) belonged to the most affected ones. At the GKSS site, 12:2 FTOH 

(5 events) was the least affected analyte, 10:2 FTA (18 events) and PFOSA (20 events) were 

the most affected ones. Exclusion of these events resulted in a less interrupted concentration 

course over the year that, except for two main periods (27.08.2007-24.09.2007 and 

28.04.2007-02.06.2007), roughly followed the temperature course (figure 2-6, figure S2-8). 

Overall, the majority of polyfluorinated analytes were correlated significantly to temperature 

(p < 0.05). Correlation coefficients were below 0.5 revealing that concentrations of 

polyfluorinated analytes in air were not well described by temperature variation. The two 

periods of divergent PFC concentration and temperature courses are probably due to air 

masses arriving from less polluted areas, for the first period from northern and north-western 

marine regions (cluster 2, 4, 5), for the second period from eastern regions (cluster 1). 

Correlation analysis of temperature and PFC concentrations without these divergent data 

resulted in increased correlation coefficients. Density-corrected PFOS profiles in ice core 

samples (Young et al., 2007) suggest that the production of perfluorinated acids from 

atmospheric precursor oxidation and subsequent deposition, is seasonally dependent. This 

indicates that precursor air concentrations may vary over the seasons in remote locations as 
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well. Furthermore, seasonal concentration variations are rather anticipated for FASA, FASE, 

or particle-bound PFC than for gas-phase compounds.  

a b 
Figure 2-6: Local temperature (°C) and gas-phase concentrations (pg m-3) of 8:2 FTOH at Barsbüttel. a: 

Temperature and concentration course over the entire sampling period. b: Correlation of 8:2 FTOH and 

temperature. R=0.4. Note that high concentration events were excluded for these considerations.  

 

In this study, average individual PFC concentration decreased in the order of summer > 

spring, fall > winter and were most pronounced for the substances found in high 

concentrations. The lower planetary boundary layer height as well as reduced degradation by 

OH radicals in winter should lead to increased PFC concentrations during the winter season as 

it was observed by Barber et al. (2008). Since the majority of air masses were arriving from 

westerly located source regions in summer and in winter, the observed concentration 

differences may be explained by temperature dependent emissions of (semi-)volatile PFC 

from diffuse sources, for instance residual PFC present in products that are currently in use 

(Dinglasan-Panlilio and Mabury, 2006; Kaiser et al., 2004). Enhanced deposition due to 

increased PFC partitioning to particles may additionally explain the observed concentration 

differences for FASA or FASE but not for FTOH since these were not observed on particles. 

An influence of temperature (season) on recovery rates (e.g. increased losses of internal 

standards during spiking in the field at elevated temperatures) and thus PFC concentrations 

was not observed.   

3.4. Correlation Analyses  

Except for the coherence with temperature (see above), gas-phase concentrations of volatile 

and semi-volatile polyfluorinated compounds were not controlled by local meteorology or 

chemistry. Since a correlation to NOx was not observed it can be concluded that, as expected, 
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gas-phase PFC did not originate from nearby combustion related sources. Correlation of 

FTOH to combustion related PAH as observed by Primbs et al. (2008) should therefore be 

interpreted rather as spatially similar source regions than as qualitatively related sources for 

these groups of substances. Of those PFC detected frequently in the gas phase, 6:2 FTOH, 

8:2 FTOH, and 10:2 FTOH were usually significantly correlated (p < 0.05, r ≤ 0.75). 

Significant correlations (r ≤ 0.6) were also observed for 8:2 FTOH and 10:2 FTOH to 

EtFOSA, MeFOSA, MeFBSE, EtFOSE, and MeFOSE. The majority of individual FASA and 

FASE were correlated to each other as well (r ≤ 0.7). These results reveal similar source 

pattern for the majority of volatile PFC. Correlation analysis of those samples that were 

contained in trajectory cluster 3 or 6 yielded an increased number of analytes that were 

correlated significantly at partly higher correlation coefficients (r ≤ 0.85). This is another 

indication for diffuse sources west of Hamburg. Fingerprint ratios of 6:2 FTOH to 8:2 FTOH 

and 10:2 FTOH to 8:2 FTOH for impregnating agents (0.02, 0.6, respectively) and lubricants 

(> 0.9, 0.7-0.8, respectively) were suggested by Fiedler et al. (submitted). Ratios of 6:2 FTOH 

to 8:2 FTOH and 10:2 FTOH to 8:2 FTOH determined for average and cluster average PFC 

concentrations of this study were between 0.3 and 0.4 revealing contributions of more than 

only these sources. Permanent emissions from application, volatilisation, or distant 

manufacturing of volatile and semi-volatile polyfluorinated compounds which have been 

found in commercial and industrial fluoropolymers and surfactants (Dinglasan-Panlilio and 

Mabury, 2006; Fiedler et al., submitted; Jensen et al., 2008) contribute to the diffuse air 

contamination that have been detected in this study.  

This study demonstrates that measurements covering long periods are valuable tools to assess 

concentration variations although short time series may yield representative concentration 

estimates. Furthermore, these results raise new questions about distinct local sources or 

unknown driving forces.   
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Chemicals 

 
Table S2-1: Solvents and gases used for the analysis of PFC in air samples. 

substances abbreviation purity producer 

ethyl acetate - Picograde Promochem, Wesel, Germany 

acetone - Picograde Promochem, Wesel, Germany                   

methyl-tert-butylether MTBE Picograde Promochem, Wesel, Germany 

methanol MeOH Residue Analysis J.T. Baker, Griesheim, Germany 

nitrogen - 6.0 Air Liquide, Germany 

 

 
Table S2-2: Mass-labeled standard compounds used for the analysis of PFC in air samples. 

substances abbreviation 

purity 

(%) producer 

2-Perfluorohexyl-(13C2)-ethanol 13C 6:2 FTOH > 98 Wellington Laboratories, Guelph, Canada 

2-Perfluorooctyl-(13C2)-ethanol 13C 8:2 FTOH > 98 Wellington Laboratories, Guelph, Canada 

2-Perfluorodecyl-(13C2)-ethanol 13C 10:2 FTOH > 98 Wellington Laboratories, Guelph, Canada 

methyl-D3-perfluorooctane sulfonamide D3 MeFOSA > 98 Wellington Laboratories, Guelph, Canada 

ethyl-D5-perfluorooctane sulfonamide D5 EtFOSA > 98 Wellington Laboratories, Guelph, Canada 

methyl-D7-perfluorooctane sulfonamido ethanol D7 MeFOSE > 98 Wellington Laboratories, Guelph, Canada 

ethyl-D9-perfluorooctane sulfonamido ethanol D9 MeFOSE > 98 Wellington Laboratories, Guelph, Canada 

perfluoro-(13C4)-butanoic acid 13C PFBA >98 Wellington Laboratories, Guelph, Canada 

perfluoro-(13C4)-hexanoic acid 13C PFHxA >98 Wellington Laboratories, Guelph, Canada 

perfluoro-(13C4)-octanoic acid 13C PFOA >98 Wellington Laboratories, Guelph, Canada 

perfluoro-(13C4)-nonanoic acid 13C PFNA >98 Wellington Laboratories, Guelph, Canada 

perfluoro-(13C4)-decanoic acid 13C PFDA >98 Wellington Laboratories, Guelph, Canada 

perfluoro-(13C4)-undecanoic acid 13C PFUnDA >98 Wellington Laboratories, Guelph, Canada 

perfluoro-(13C4)-dodecanoic acid 13C PFDoA >98 Wellington Laboratories, Guelph, Canada 

sodium perfluoro-(18O2)-hexane sulfonate 18O2-PFHxS >99 Wellington Laboratories, Guelph, Canada 

sodium perfluoro-(13C4)-octane sulfonate 13C-PFOS >98 Wellington Laboratories, Guelph, Canada 

sodium perfluoro-(13C4)-octane sulfinate 13C-PFOSi ~90 Wellington Laboratories, Guelph, Canada 

hexachlorobenzene 13C6  13C HCB 97 Dr. Ehrenstorfer, Augsburg, Germany 

1,3,5-trichlorobenzene D3  TCB D3 98 Aldrich, Munich, Germany 

2,4-dichlorophenol 13C6 13C DCP >99 Dr. Ehrenstorfer, Augsburg, Germany 

perfluorooctane sulfonamido-D5-acetic acid  D5 EtFOSAA >98 Wellington Laboratories, Guelph, Canada 
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Table S2-3: Analyte standards used for the analysis of PFC in air samples. 

substances abbreviation 
purity 

(%) 
producer 

perfluorobutyl ethanol  4:2 FTOH 97 Aldrich, Munich, Germany 

perfluorohexyl ethanol  6:2 FTOH 97 Lancaster Synthesis, Frankfurt, Germany 

perfluorooctyl ethanol  8:2 FTOH 97 Lancaster Synthesis, Frankfurt, Germany 

perfluorodecyl ethanol  10:2 FTOH 97 Lancaster Synthesis, Frankfurt, Germany 

perfluorododecyl ethanol  12:2 FTOH - 
donated by Jones group, Lancaster 

University, UK 

perfluorohexyl ethylacylate  6:2 FTA 97 Aldrich, Munich, Germany 

perfluorooctyl ethylacylate 8:2 FTA 97 Fluorochem, Old Glossop, UK 

perfluorodecyl ethylacylate  10:2 FTA 97 Fluorochem, Old Glossop, UK 

n-methyl perfluorobutane sulfonamide  MeFBSA - donated by 3M, Germany 

n-methyl perfluorooctane sulfonamide  MeFOSA - donated by 3M, Germany 

n-ethyl perfluorooctane sulfonamide EtFOSA 95 ABCR, Karlsruhe, Germany 

perfluorooctane sulfonamide  PFOSA - donated by 3M, USA 

dimethylperfluoroocatane sulfonamide  Me2FOSA 98 Wellington Laboratories, Guelph, Canada 

n-methyl perfluorobutane sulfonamido ethanol  MeFBSE - donated by 3M, USA 

n-methyl perfluorooctane sulfonamidoethanol MeFOSE - donated by 3M, USA 

n-ethyl perfluorooctane sulfonamido ethanol EtFOSE - donated the Mabury group, Toronto 
University, Canada 

potassium perfluorobutane sulfonate PFBS-K 98 ABCR, Karlsruhe, Germany 

potassium perfluorohexane sulfonate PFHxS-K 98 Fluka, Buchs, Switzerland 

potassium perfluorooctane sulfonate PFOS-K 98 Fluka, Buchs, Switzerland 

potassium perfluorodecane sulfonate PFDS-K >98 Wellington Laboratories, Guelph, Canada 

perfluorobutanoic acid PFBA 99 ABCR, Karlsruhe, Germany 

perfluoropentanoic acid PFPA 98 Alfa Aesar, Karlsruhe, Germany 

perfluorohexanoic acid PFHxA 98 ABCR, Karlsruhe, Germany 

perfluoroheptanoic acid PFHpA 98 Lancaster Synthesis, Frankfurt, Germany 

perfluorooctanoic acid PFOA 95 Lancaster Synthesis, Frankfurt, Germany 

perfluorononanoic acid PFNA 98 Alfa Aesar, Karlsruhe, Germany 

perfluorodecanoic acid PFDA 98 ABCR, Karlsruhe, Germany 

perfluoroundecanoic acid PFUnDA 96 ABCR, Karlsruhe, Germany 

perfluorododecanoic acid PFDoDA 96 Alfa Aesar, Karlsruhe, Germany 

perfluorotridecanoic acid PFTrDA >98 Wellington Laboratories, Guelph, Canada 

perfluorotetradecanoic acid PFTeDA 96 Alfa Aesar, Karlsruhe, Germany 

perfluorohexadecanoic acid PFHxDA 95 Alfa Aesar, Karlsruhe, Germany 

perfluorooctadecanoic acid PFOcDA 97 Alfa Aesar, Karlsruhe, Germany 

sodium perfluorohexane sulfinate PFHxSi 98 Wellington Laboratories, Guelph, Canada 

sodium perfluorooctane sulfinate PFOSi 98 Wellington Laboratories, Guelph, Canada 

sodium perfluorodecane sulfinate PFDSi 98 Wellington Laboratories, Guelph, Canada 
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Recovery Rates 

 
Table S2-4: Minimum (min), maximum (max), and average recovery rates (R, %), absolute and relative 

standard deviation (S.D., %) of mass- labeled internal standards in the gas phase by GC-MS. Losses 

during the sampling process are included in these recovery rates since mass-labeled standards were added 

prior to the sampling. 

  R (average, %) S.D. (abs., %) S.D. (rel., %) R (min, %) R (max %) 

4:2 FTOH 13C 25 17 66 1 111 

6:2 FTOH 13C 42 22 53 0 148 

8:2 FTOH 13C 51 26 50 1 195 

10:2 FTOH 13C 46 33 71 0 191 

EtFOSA D5 46 19 42 0 99 

MeFOSA D3 39 19 47 8 135 

MeFOSE D7 60 24 40 18 196 

EtFOSE D9 60 19 31 13 134 

 

 
Table S2-5: Minimum (min), maximum (max), and average recovery rates (R, %), absolute and relative 

standard deviation (S.D., %) of mass-labeled internal standards in the particle phase by GC-MS. Losses 

during the sampling process are not included in these recovery rates. 

  R (average, %) S.D. (abs., %) S.D. (rel., %) R (min, %) R (max %) 

4:2 FTOH 13C 22 15 70 1 87 

6:2 FTOH 13C 26 15 59 1 70 

8:2 FTOH 13C 27 15 58 1 62 

10:2 FTOH 13C 31 19 59 1 94 

EtFOSA D5 42 21 51 2 124 

MeFOSA D3 35 18 50 2 92 

MeFOSE D7 60 32 54 5 161 

EtFOSE D9 50 22 44 7 117 
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Table S2-6: Minimum (min), maximum (max), and average recovery rates (R, %), absolute and relative 

standard deviation (S.D., %) of mass-labeled internal standards in the particle phase detected by HPLC-

MS/MS. MS. Losses during the sampling process are not included in these recovery rates. 

  R (average, %) S.D. (abs., %) S.D. (rel., %) R (min, %) R (max %) 
18O2-PFHxS 63 38 61 2 164 
13C-PFOS 67 41 60 2 232 
13C-PFOSi 66 43 66 2 214 
13C-PFBA 95 77 81 4 346 
13C-PFHxA 48 33 69 1 165 
13C-PFOA 46 29 63 1 120 
13C-PFNA 55 30 55 1 148 
13C-PFDA 74 44 60 2 257 
13C-PFUDA 94 64 68 4 285 
13C-PFDoA 95 64 67 2 287 

D3-MeFOSA 47 36 76 1 202 

D5-EtFOSA 55 39 72 1 209 

D7-MeFOSE 79 62 78 1 305 

D9-EtFOSE 69 50 73 1 259 
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Blanks 

 
Table S2-7: Concentrations (c) of solvent (gas phase, n = 51) and filter (particle phase, n=15) blanks 

observed during the analysis of PFC in air samples using GC-MS (pg m-3). Field concentrations reported 

in this study were corrected by blank values. 

  C (solvent blank, pg m-3) C (filter blank, pg m-3) 
  average max average max 
6:2 FTA 0.3 0.8 n.d. n.d. 
4:2 FTOH 0.2 0.6 n.d. n.d. 
6:2 FTOH 0.2 1.0 0.2 0.5 
8:2 FTA 0.2 0.5 n.d. n.d. 
8:2 FTOH 0.2 0.9 1.1 3.7 
Me2FOSA n.d. n.d. n.d. n.d. 
10:2 FTA 0.2 0.5 n.d. n.d. 
10:2 FTOH 0.1 0.7 0.6 2.7 
12:2 FTOH 0.1 0.8 0.6 2.5 
EtFOSA 0.1 0.3 0.8 2.6 
MeFBSA n.d. n.d. n.d. n.d. 
MeFOSA 0.2 0.4 0.1 0.3 
MeFOSE 0.1 0.7 0.3 1.1 
MeFBSE 0.2 0.3 2.3 2.4 
EtFOSE 0.1 0.8 0.3 1.2 
PFOSA n.d. n.d. n.d. n.d. 
 
Table S2-8: PFC concentrations (pg m-3) observed in field blanks during the analysis of PFC in gas 

(n=18)- and particle-phase (n=9) samples using GC-MS. Field blanks were taken about once a month at 

both sites and were treated the same way as samples, i.e. sampling media were placed into the high volume 

samplers, samplers were run for 5 minutes, sampling media were removed and stored until analysis. 

  C (field blank, gas phase, pg m-3) C (field blank, particle phase, pg m-3) 
  average max average max 

6:2 FTA 1.0 2.2 n.d. n.d. 
4:2 FTOH 1.4 2.1 n.d. n.d. 
6:2 FTOH 1.3 2.8 n.d. n.d. 
8:2 FTA 0.7 1.6 n.d. n.d. 
8:2 FTOH 0.8 1.8 n.d. n.d. 
Me2FOSA n.d. n.d. n.d. n.d. 
10:2 FTA 0.9 0.9 n.d. n.d. 
10:2 FTOH 1.0 3.0 0.4 0.5 
12:2 FTOH 1.0 2.3 0.3 0.3 
EtFOSA 0.2 0.4 n.d. n.d. 
MeFBSA 0.7 1.2 n.d. n.d. 
MeFOSA 0.6 1.1 0.0 0.1 
MeFOSE 0.7 1.5 0.1 0.3 
MeFBSE 0.9 0.9 n.d. n.d. 
EtFOSE 0.8 1.6 n.d. n.d. 
PFOSA n.d. n.d. n.d. n.d. 
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Table S2-9: PFC concentrations (pg m-3) observed in filter blanks (n=28) during the analysis of PFC in air 

samples using HPLC-MS/MS. Field concentrations reported in this study were corrected by blank values. 

  

C (average) 

pg m-3 

C (max) 

pg m-3   

C (average) 

pg m-3 

C (max) 

pg m-3 

PFBS 0.3 1.5  PFDA 0.2 0.8 

PFHxS 0.3 0.8  PFUnDA 0.3 0.9 

PFHpS 0.0 0.1  PFDoDA 0.2 0.8 

PFOS 1.2 3.5  PFTriDA 0.1 1.0 

PFDS 0.0 0.0  PFTeDA 0.1 0.7 

PFHxSi 0.0 0.7  PFHxDA 0.1 1.5 

PFOSi 0.2 0.8  PFOcDA 0.1 2.3 

PFDSi n.d. n.d.  FOSA 0.2 1.1 

PFBA 0.6 3.3  NMeFOSA n.d. n.d. 

PFPA 0.2 2.8  NEtFOSA 0.0 0.0 

PFHxA 0.2 0.5  NMeFOSE 1.8 3.4 

PFHpA 0.1 0.8  NEtFOSE 1.0 2.2 

PFOA 1.1 2.8  MeFBSA n.d. n.d. 

PFNA 0.2 1.1  MeFBSE n.d. n.d. 
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Analyte Concentrations 
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Figure S2-1: Gas-phase concentrations (pg m-3) of volatile and semi-volatile polyfluorinated compounds at 

the Barsbüttel site. 
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Figure S2-2: Gas-phase concentrations (pg m-3) of volatile and semi-volatile polyfluorinated compounds at 

the GKSS site. 
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Figure S2-3: Particle-phase concentrations (pg m-3) of detected per- and polyfluorinated compounds at the 

Barsbüttel site. 
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Figure S2-4: Particle-phase concentrations (pg m-3) of detected per- and polyfluorinated compounds at the 

GKSS site. 
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Average and Median PFC Concentrations in the Gas Phase 

 
Table S2-10: Average and median gas-phase concentrations (pg m-3) of poly- and perfluorinated 

compounds, standard deviations (S.D.), and skewness at the Barsbüttel and GKSS site. Individual 

concentrations were weighted according to the sampling duration, i.e. to each day one value per substance 

was assigned. 

  GKSS samples   BAR samples 

  median average S.D. scewness   median average S.D. scewness 

4:2 FTOH 0.0 0.1 0.6 5.6  0.0 0.3 1.2 4.9 

6:2 FTOH 15 23 24 3.0  17 22 22 5.7 

8:2 FTOH 40 50 41 2.9  48 62 66 5.1 

10:2 FTOH 13 21 37 6.0  14 21 23 4.4 

12:2 FTOH 5 16 52 6.3  5.8 13 25 5.8 

Σ FTOH 80 110 113 3.9   101 119 98 3.9 

6:2 FTA 1.0 1.6 1.9 2.4  1.2 1.9 3.3 4.8 

8:2 FTA 1.4 2.5 3.1 2.8  2.5 4.2 6.5 4.5 

10:2 FTA 0.9 2.6 7.5 7.6  1.0 2.5 4.2 3.7 

Σ FTA 4.3 6.7 9.3 5.3   5.9 8.6 10 3.2 

MeFBSA 1.8 3.6 4.2 1.9  1.7 3.0 3.8 3.1 

MeFOSA 2.1 2.9 3.0 2.6  1.9 2.6 2.5 2.2 

Me2FOSA 0.0 0.5 2.0 10.0  0.1 0.8 2.6 6.5 

EtFOSA 0.9 1.5 3.3 9.4  1.0 1.3 1.3 3.3 

PFOSA 0.0 0.8 2.0 4.6  0.0 1.0 2.5 4.5 

Σ FASA 7.0 9.3 9.0 2.7   6.5 9.2 8.2 2.8 

MeFBSE 1.3 1.7 1.4 1.7  2.0 2.7 2.8 3.9 

MeFOSE 1.3 2.0 2.2 3.2  1.6 2.2 2.3 3.5 

EtFOSE 0.6 1.0 1.1 2.9  0.7 1.0 0.9 1.8 

Σ FASE 3.6 4.7 4.0 2.4   4.3 5.9 5.4 3.5 

total 96 131 127 3.9   121 143 109 3.3 
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Average and median PFC concentrations in the Particle Phase 

 
Table S2-11: Average and median particle-phase concentrations of poly- and perfluorinated compounds 

(pg m-3), standard deviation (S.D.), and skewness at the Barsbüttel and GKSS site. Individual 

concentrations were weighted according to the sampling duration, i.e. to each day one value per substance 

was assigned. 

  BAR   GKSS 

  median average S.D. skewness   median average S.D. skewness 

4:2 FTOH ---- ---- ---- ----  ---- ---- ---- ---- 

6:2 FTOH 0.0 0.0 0.1 4.2  ---- ---- ---- ---- 

8:2 FTOH ---- ---- ---- ----  ---- ---- ---- ---- 

10:2 FTOH 0.0 0.1 0.3 1.9  0.0 0.1 0.3 2.1 

12:2 FTOH 0.0 0.1 0.2 1.9  0.0 0.1 0.3 2.0 

Σ FTOH 0.0 0.3 0.5 1.7   0.0 0.3 0.6 2.0 

6:2 FTA ---- ---- ---- ----  ---- ---- ---- ---- 

8:2 FTA 0.0 0.0 0.1 3.8  ---- ---- ---- ---- 

10:2 FTA 0.0 0.0 0.1 4.1  ---- ---- ---- ---- 

Σ FTA 0.0 0.1 0.2 3.9   ---- ---- ---- ---- 

MeFBSA ---- ---- ---- ----  ---- ---- ---- ---- 

NMeFOSA 0.0 0.0 0.0 8.4  0.0 0.0 0.0 4.8 

Me2FOSA ---- ---- ---- ----  ---- ---- ---- ---- 

NEtFOSA 0.0 0.0 0.0 11  0.0 0.0 0.0 6.5 

PFOSA 0.0 0.0 0.1 7.6  0.0 0.0 0.0 11 

Σ FASA 0.0 0.0 0.1 6.6   0.0 0.0 0.0 5.4 

MeFBSE 0.0 0.0 0.1 5.7  0.0 0.1 0.4 8.2 

NMeFOSE 0.2 0.3 0.6 7.9  0.1 0.2 0.2 2.1 

NEtFOSE 0.0 0.1 0.5 8.9  0.0 0.1 0.1 3.3 

Σ�FASE 0.3 0.5 1.2 8.6   0.2 0.3 0.5 4.2 

PFBS 0.0 0.2 0.9 8.0  0.0 0.1 0.3 5.1 

PFHxS ---- ---- ---- ----  ---- ---- ---- ---- 

PFHpS ---- ---- ---- ----  ---- ---- ---- ---- 

PFOS 0.3 1.3 2.5 3.2  0.1 0.6 1.9 5.7 

PFDS ---- ---- ---- ----  ---- ---- ---- ---- 

Σ PFSA 0.4 1.5 3.1 4.1   0.2 0.7 1.9 5.6 
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Table S2-11: cont.      

  BAR   GKSS 

  median average S.D. skewness   median average S.D. skewness 

PFHxSi ---- ---- ---- ----  ---- ---- ---- ---- 

PFOSi ---- ---- ---- ----  ---- ---- ---- ---- 

PFDSi ---- ---- ---- ----  ---- ---- ---- ---- 

Σ PFSi ---- ---- ---- ----   ---- ---- ---- ---- 

PFBA 0.1 0.3 0.4 1.5  0.1 0.3 0.4 2.4 

PFPA 0.0 0.0 0.1 5.4  0.0 0.0 0.1 9.2 

PFHxA 0.0 0.1 0.2 3.1  0.0 0.1 0.2 6.8 

PFHpA 0.0 0.0 0.1 3.5  0.0 0.0 0.1 3.1 

PFOA 0.2 0.3 0.4 2.5  0.1 0.2 0.4 3.1 

PFNA 0.0 0.1 0.2 4.7  0.0 0.1 0.1 1.9 

PFDA 0.0 0.1 0.2 6.1  0.0 0.1 0.2 6.8 

PFUnDA 0.0 0.1 0.2 5.6  0.0 0.0 0.1 7.4 

PFDoDA 0.0 0.0 0.2 5.4  0.0 0.0 0.1 6.6 

PFTriDA 0.0 0.0 0.0 11  0.0 0.0 0.0 6.1 

PFTeDA 0.0 0.0 0.1 6.4  0.0 0.0 0.1 8.3 

PFHxDA ---- ---- ---- ----  ---- ---- ---- ---- 

PFOcDA ---- ---- ---- ----  ---- ---- ---- ---- 

Σ PFCA 0.6 1.0 1.3 3.1   0.5 0.8 1.1 3.6 

total 1.3 3.1 5.7 22.3   0.9 1.8 3.5 18.7 
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Trajectory Analysis 

 
Cluster 1 (n=12) 

 
Cluster 2 (n=20) 

 
Cluster 3 (n=25) 

 
Cluster 4 (n=13) 

 
Cluster 5 (n=10) 

 
Cluster 6 (n=30) 

Figure S2-5: Results of the cluster analysis of twelve hours back trajectories using Hysplit 4.8. 
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Cluster 7 (n=5) 

 
Cluster 8 (n=5) 

Figure S2-5: cont. 

 

 

 
low concentrations 

a 

 
high concentrations 

b 
Figure S2-6: Twelve hours air mass back trajectories and altitudinal profiles of the air mass parcels for 

two Barsbüttel samples. If air masses from low concentration regions such as northern marine air masses 

(cluster 2) were sampled PFC concentrations were lower in pure samples i.e. air masses were arriving 

from regions of only one cluster (a) such as BAR 113 (16.05.2008) than of mixed samples i.e. air masses 

were partly arriving from regions of another cluster (b) such as BAR 51 (27.09.2007). The air parcel 

travelled within the planetary boundary layer in both cases. 
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Intra-Annual Concentration Variations 

Figure S2-7: Intra-annual concentration variations of several volatile and semi-volatile polyfluorinated 

substances in the gas phase. 
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Figure S2-7: cont.  
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PFC Concentrations & Temperature 

Figure S2-8 presents the local temperature and concentration course exemplarily for two 

analytes: 8:2 FTOH that was detected in gas-phase samples only and MeFBSE that was 

detected in gas and particle phase. Except for two main periods (27.08.2007-24.09.2007 and 

28.04.2007-02.06.2007), PFC concentrations roughly followed the temperature course. 

Although correlations between the analytes and temperature were significant (p < 0.05), 

correlation coefficients were below 0.5 revealing that concentrations of polyfluorinated 

analytes in air are not well described by temperature variation. 

a b 

c d 
Figure S2-8: Local temperature (°C) and gas-phase concentrations (pg m-3) of 8:2 FTOH (a, b) and 

MeFBSE (c, d) at Barsbüttel and GKSS over the entire sampling period. High concentration events were 

excluded for these considerations. 
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Polyfluorinated Compounds in Ambient Air from Ship- and Land-Based 

Measurements in Northern Germany 
 

 

Annekatrin Dreyer and Ralf Ebinghaus 

 

GKSS Research Centre Geesthacht, Max Planck Str. 1, 21502 Geesthacht, Germany 

 

 

Abstract 

Neutral volatile and semi-volatile polyfluorinated organic compounds (PFC) and ionic 

perfluorinated compounds were determined in air samples collected at two sites in the vicinity 

of Hamburg, Germany, and onboard the German research vessel Atair during a cruise in the 

German Bight, North Sea, in early November 2007. PUF/XAD-2/PUF cartridges and glass 

fiber filters as sampling media were applied to collect several fluorotelomer alcohols (FTOH), 

fluorotelomer acrylates (FTA), perfluoroalkyl sulfonamides (FASA), and perfluoroalkyl 

sulfonamido ethanols (FASE) in the gas and particle phase as well as a set of perfluorinated 

carboxylic acids (PFCA) and sulfonic acids (PFSA) in the particle phase. This study presents 

the distribution of PFC in ambient air of the German North Sea and in the vicinity of 

Hamburg for the first time. Average total PFC concentrations in and around Hamburg 

(180 pgm-3) were higher than those observed in the German Bight (80 pg m-3). In the German 

Bight, minimum-maximum gas-phase concentrations of 17 - 82 pg m-3 (ΣFTOH), 2.6 - 10 

pg m-3 (ΣFTA), 10 - 15 pg m-3 (ΣFASA), and 2 - 4.4 pg m-3 (ΣFASE) were determined. In the 

vicinity of Hamburg, minimum-maximum gas-phase concentrations of 32 - 204 pg m-3 for 

ΣFTOH, 3 -26 pg m-3 for ΣFTA, 3 - 18 pg m-3 for ΣFASA, and 2 - 15 pg m-3 for ΣFASE were 

detected. Concentrations of perfluorinated acids were in the range of 1 to 11 pg m-3. FTOH 

clearly dominated the substance spectrum; 8:2 FTOH occurred in maximum proportions. Air 

mass back trajectories, cluster, and correlation analyses revealed that the air mass origin and 

thus medium to long-range atmospheric transport was the governing parameter for the amount 

of PFC in ambient air. Southwesterly located source regions seemed to be responsible for 

elevated PFC concentrations, local sources appeared to be of minor importance.   
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1. Introduction 

In recent years, long-chain perfluorinated carboxylates (PFCA) and -sulfonic acids (PFSA) 

such as perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) have been found to 

be persistent, bioaccumulative, and entailing toxic properties (Beach et al., 2006; Giesy and 

Kannan, 2002; Haukas et al., 2007; Houde et al., 2006; Prevedouros et al., 2006). 

Furthermore, global distribution to remote regions caused by extensive industrial application 

and consumer use has been demonstrated for these classes of compounds (Bossi et al., 2005; 

Giesy and Kannan, 2001; Prevedouros et al., 2006; Smithwick et al., 2005; Taniyasu et al., 

2003; Tao et al., 2006; Young et al., 2007).  

The awareness of producers as well as political stakeholders for appropriate action concerning 

these compounds is reflected by voluntary commitments of the fluorochemical industry and 

regulation efforts of political institutions. Examples are the voluntary phase out of PFOS-

based compounds by its main producer 3M in 2002 or the commitment to reduce PFOA 

emissions by 95 % until 2010 as well as several restrictions concerning manufacturing, 

marketing, and use of PFOS by the United States Environmental Protection Agency or the 

European Community. There are still many unknowns concerning environmental fate, 

distribution, and sources, especially in the perspective various polyfluorinated compounds 

which are also being used as PFOS and PFOA substitutes. Therefore, there is an ongoing need 

of decision makers for further information to evaluate polyfluorinated compounds properly.  

The ubiquitous distribution of PFCA and PFSA pointed at two main transport pathways. 

Transport in the water phase, partly in relation to the global oceanic circulation system, has 

been demonstrated in various studies (Caliebe et al., 2004; McLachlan et al., 2007; So et al., 

2007; Yamashita et al., 2008). However, this transport pathway does not explain the entire 

PFC burden of pristine ecosystems, especially of those that are not effected by marine 

influences. Due to their low volatility and efficient scavenging by wet and dry deposition, 

PFCA and PFSA are unlikely to travel long distances in the atmosphere (Hurley et al., 2004). 

However, an atmospheric transport with subsequent degradation of volatile and semi-volatile 
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precursor compounds like fluorotelomer alcohols (FTOH), perfluorinated sulfonamides 

(FASA) and perfluorinated sulfonamido ethanols (FASE) to persistent PFCA and PFSA, was 

hypothesized to be a main transport mechanism (D'Eon et al., 2006; Ellis et al., 2004; Martin 

et al., 2006; Sulbaek Andersen et al., 2005). Because of their slow reaction with hydroxyl 

radicals, estimates of atmospheric lifetimes of more than 10-20 days for FTOH and more than 

20-50 days for FASA in smog chamber studies (Ellis et al., 2003; Martin et al., 2006) and 

atmospheric residence times of more than 50 days for FTOH in field studies (Piekarz et al., 

2007) indicate the possibility of regional and long-range atmospheric transport. PFCA and 

PFSA were also determined in snow samples of the high Arctic which experienced 

contamination solely from atmospheric sources confirming the indirect precursor-based 

atmospheric transport and deposition of these compounds (Young et al., 2007).  

Only few studies examined the spatial distribution of polyfluorinated compounds in air 

(Barber et al., 2007; Jahnke et al., 2007b; Shoeib et al., 2006). Barber et al. (2007) found that 

PFC concentrations in air samples from northwest Europe were declining up to two orders of 

magnitude with decreasing degree of urbanisation. Shoeib et al. (2006) determined FTOH and 

FASE in air masses of northern Canada and the North Atlantic and observed a widespread 

distribution and increasing concentrations of volatile PFC in air towards coastal areas of 

Europe and North America. Jahnke et al. (2007b) found decreasing concentrations of FTOH, 

FASA, and FASE towards the southern hemisphere along a north-south transect from 

Bremerhaven, Germany to Cape Town, South Africa. The same authors analysed volatile 

polyfluorinated compounds in urban and remote air in Germany and observed no significant 

differences of PFC concentrations between those locations (Jahnke et al., 2007a). 

Concentrations of (semi-)volatile polyfluorinated substances covering four orders of 

magnitude have been determined at some selected locations in North America and Japan 

(Martin et al., 2002; Oono et al., 2008; Piekarz et al., 2007; Stock et al., 2004).   

In this study, we present the spatial distribution of polyfluorinated compounds in air samples 

collected during a cruise in the German Bight (North Sea) on the research vessel Atair and at 

two permanent land-based sites in the vicinity of Hamburg, Germany. Samples were taken 

using high volume air samplers and analyzed for volatile and persistent PFC such as FTOH, 

FASA, FASE, PFCA, and PFSA. PFC concentrations were elucidated and the origin of PFC 

contamination was traced using air mass back trajectories, correlation-, and cluster analysis. 

Data presented in this study yield new information on the spatial atmospheric distribution of 

polyfluorinated compounds on a regional scale as well as the identification of source regions 

in the North Sea area.  
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2. Experimental 

2.1. Chemicals 

All chemicals, standard compounds, and gases were of high quality and purity. Details on 

chemicals concerning supplier and purity can be found in the supporting information. 

2.2. Sampling 

Daily air samples were taken onboard the German research vessel Atair during a cruise from 

Hamburg to the German Bight, North Sea from October 30th to November 06th 2007 (Atair 

155, figure 1). Samples were taken in parallel using two high volume air samplers (A and B) 

which were installed at the observation deck of the ship approximately 16 m above sea level. 

To ensure that ship exhaust were not sampled, samplers were controlled by a computer 

connected to the ship’s meteorological system avoiding that sampling and thus ship-borne 

contamination was occurring with relative winds arriving from the rear of the ship.  

Land-based sampling was conducted at two permanent sampling sites located in the vicinity 

of Hamburg with sampling durations varying between 1 and 4 days (figure 1). The site 

Barsbüttel (BAR) is situated approximately 20 km east of Hamburg (1 770 000 inhabitants) at 

53°34’14’’ N and 10°12’55’’ E. The GKSS site is located approximately 40 km southeast of 

the city centre of Hamburg close to the city Geesthacht (30000 inhabitants) at 53°24’26’’ N, 

10°25’20’’ E. Both sites have a semi-rural character. Local meteorological parameters such as 

temperature or wind direction were recorded at the ship as well as at the land-based sampling 

sites.  

In general, 350 m³ of air per day were sampled. Cartridges filled with a sandwich of 

polyurethane foam (PUF) and Amberlite XAD-2 (Orbo PUF/XAD-2/PUF cartridges 2500, 

Supelco, Munich, Germany) and glass fibre filters (GFF, Macherey & Nagel, Düren, 

Germany) were used to collect gaseous and particle-bound polyfluorinated compounds. Prior 

to the sampling, 50 µL of a standard solution containing 13C 4:2 FTOH, 13C 6:2 FTOH, 13C 

8:2 FTOH, 13C 10:2 FTOH, D3 MeFOSA, D5 EtFOSA, D7 MeFOSE, and D9 MeFOSE (200 

pg µL-1) were added to the cartridge to account for analyte losses during sampling and sample 

preparation. Samples were sealed air tight and stored at -20 °C until analysis in the laboratory. 

Gas-phase samples were analyzed within one month, particle samples within three months 

after the sampling. 
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Figure 3-1: Location of the two permanent sites Barsbüttel and GKSS and track of RV Atair during the 

cruise in the German Bight. Numbered dots mark the start point of each sample during the cruise. 

Samples were taken in between this and the following location. Sample 7 was taken while the ship was 

staying in the port of Hamburg situated in the city centre. 

2.3. Sample Preparation 

Gas-phase samples: All cartridges were extracted thrice with acetone:MTBE 1:1 (v:v). 

Solvent was filled into the cartridges until the entire sandwich was covered. For the 

extraction, the solvent was allowed to soak into the adsorption material for 1hour (extraction 

step 1 and 2) and ½ hour (extraction step 3). After each extraction step, the solvent was 

emptied into a flask using a glass stop cock, the remaining solvent in the cartridge was blown 

out with nitrogen. The combined solvent (approximately 500 mL) was evaporated with ethyl 

acetate as keeper to 150 µL using rotary evaporators (Buechi R200, Flawil, Switzerland, 

440 mbar, 30 °C) and a gentle stream of preheated (30°C) nitrogen (Optocontrol, Barkey, 

Leopoldshoehe, Germany). Fifty µL of the injection standard containing mass-labeled 

trichlorobenzene (D3 TCB) and hexachlorobenzene (13C HCB) (400 pg µL-1) were added prior 

to the measurement to correct for volume differences.  

Particle-phase samples: Prior to the extraction of particle-bound compounds filters were cut 

into two pieces. ¼ of each filter was used to determine the particle load of the filter and the 

aerosols’ content of particulate organic carbon (POC), ¾ were used for the PFC extraction. 

All filters were extracted by fluidized bed extraction (fexIKA vario control, IKA, Staufen, 
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Germany). Filters taken with sampler A during the Atair cruise were extracted with 150 mL 

acetone:MTBE 1:1 (v:v) to determine the particle concentrations of neutral volatile 

polyfluorinated compounds. Prior to the extraction, 50 µL of a standard solution containing 
13C 4:2 FTOH, 13C 6:2 FTOH, 13C 8:2 FTOH, 13C 10:2 FTOH, D3 MeFOSA, D5 EtFOSA, 

D7 MeFOSE, and D9 MeFOSE (200 pg µL-1) were added to each filter. Three extraction 

cycles of 30 minutes with a maximum temperature of 70 °C hold for 30 min were used. 

Between the cycles, the solvent was allowed to cool down to 30 °C. The extract volume was 

reduced to 150 µL as described above. Fifty µL of the injection standard containing D3 TCB 

and 13C HCB (400 pg µL-1) were added prior to the measurement. Filters taken at Barsbüttel 

and GKSS and those taken with sampler B during the Atair cruise were extracted with 150 

mL methanol to determine the concentrations of ionic perfluorinated carboxylic and sulfonic 

acids bound to atmospheric particles. Prior to the extraction, 100 µL of a standard solution 

containing 18O2 PFHxS, 13C PFOS, 13C PFOSi, 13C PFBA, 13C PFHxA, 13C PFOA, 13C 

PFNA, 13C PFDA, 13C PFUnDA and 13C PFDoA (100 pg µL-1) were added to each filter. 

Three extraction cycles of 25 min and a maximum temperature of 100 °C hold for 35 min 

were used. The extract volume was reduced to 150 µL using rotary evaporators (160 mbar, 

30 °C) and nitrogen. Fifty µL of the injection standard containing mass-labeled 

dichlorophenol (13C DCP) and n-ethyl perfluorooctanesulfonamidoacetate (D5 EtFOSAA) 

(400 pg µL-1) were added prior to the measurement. 

2.4. Instrumental Analysis & Quantification 

Detection of neutral polyfluorinated compounds extracted by MTBE:acetone (5 FTOH, 3 

fluorotelomer acrylates (FTA), 5 FASA, 4  FASE) was performed by gas chromatography-

mass spectrometry (6890 GC/5975 MS, Agilent Technologies, Waldbronn, Germany) with 

positive chemical ionization (PCI) using the selected ion monitoring (SIM) mode. To confirm 

the detection of FASA, samples were also run in the negative chemical ionization (NCI) 

mode. For analytes separation, a 60 m Supelcowax10 capillary column (Supelco, Munich, 

Germany) was used. Methanol-extracted polyfluorinated compounds (13 PFCA, 5 PFSA, 3 

perfluoro sulfinates (PFSI)) were determined by HPLC-ESI-MS/MS. Analytes were separated 

on a Synergi Hydro RP 80A column (Phenomenex, Torrence, Ca, USA; 150 x 2 mm, 4 

micron). Details on the instrumental specifications concerning GC-MS and HPLC-MS/MS 

measurements can be found in Dreyer et al. (2008) and Ahrens et al. (2007).  

Quantification was based on peak areas. Analyte concentrations were calculated with the 

internal standards method using a seven point calibration. Internal standards were used to 
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correct for analyte losses. Compounds were classified as not detected (n.d.) with signal to 

noise ratio (S/N) below 3 and not quantified (n.q.) with S/N below 10. Method quantification 

(MQL) and detection limits (MDL) as well as instrumental detection limits are shown in the 

supporting information. Based on the signal to noise ratio, MDLs were typically below 1 pg 

m-3. A high MQL of 23 pg m-3 was found for PFOSA as a result of highly variable GC-MS 

performance for this compound.   

2.5. Quality Assurance & Quality Control 

Sample preparation was performed in a clean lab (class 10.000). Perfluorinated materials or 

fluorinated polymers were avoided during sampling and sample preparation. Prior to the 

sampling, PUF/XAD-2/PUF cartridges were cleaned with MTBE:acetone and acetone for 24 

hours using Soxhlet extraction. Filters were heated at 300°C for at least 24 hours and 

equilibrated prior to the weighting according to US EPA guidelines (EPA, 2005). Silicon-

Teflon septa were used for GC/MS measurements (vials), however, pre-tests showed no 

contamination with (semi-)volatile polyfluorinated compounds. The glassware was machine-

washed, heated at 250 °C for twelve hours, and washed with the applied solvent before use. 

Mass-labeled injection standards and internal standards were used to correct for losses and 

irregularities during analysis and measurement. Average recoveries were between 22 +/- 7 % 

(13C 4:2 FTOH) and 73 % +/- 16 % (EtFOSE D9) in gas-phase samples and between 31+/- 2 

% (13C 8:2 FTOH) and 123 +/- 23% (PFUnDA) in particle samples. Concerning GC-MS 

measurements, one target ion (PCI) and one qualifier ion (PCI and/or NCI) were measured to 

identify compounds correctly. A seven point calibration was run with each set of samples 

measured. Calibration linearity was checked with each set of samples quantified.  

To determine possible contamination field blanks were taken during the sampling campaigns. 

Additionally, solvent blanks (for gaseous samples) and filter blanks (for particle samples) 

were taken with each set of samples that was extracted. Some compounds were detected in 

blank samples occasionally. These were 6:2 FTOH, 8:2 FTOH, 10:2 FTOH, 12:2 FTOH, 

MeFBSE, EtFOSE, MeFOSE in solvent blanks for gas-phase samples and EtFOSE, MeFOSE, 

MeFOSA, 6:2 FTA and 6:2 FTOH in filter blanks for particle samples. Various PFSA and 

PFCA were frequently determined in filter blanks, probably due to contamination of the filters 

themselves although they have been baked at high temperatures. Therefore, all concentrations 

reported are blank-corrected. PFCA and PFSA concentrations of particle samples associated 

with one high filter blank were not accounted for in statistical analyses. Field blanks were 
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usually in the range of solvent and filter blanks showing that contamination was not due to 

sampling or sample handling. Blanks are reported in the supplemental information. 

The uncertainty of the entire method (sampling, sample preparation, detection) was calculated 

according to ISO 20988 (2007). Based on paired measurements of volatile polyfluorinated 

compounds during the Atair campaign the standard uncertainty for the determination of 

gaseous compounds was within the range of 18 % (EtFOSA) to 160 % (PFOSA). Given the 

high standard uncertainty of PFOSA, analyses for this substance are rather qualitative than 

quantitative. For a complete report of uncertainties refer to the supplemental information. 

Since particle samples were analysed for different compound classes and thus with different 

methods, the uncertainty of the entire method for particle-bound compounds could not be 

calculated. 

2.6. Air Mass Trajectories 

Seven days air mass backward trajectories were calculated with the model Hysplit 4.8 using 

NCEP’s Global Data Assimilation System (GDAS) data with 1 degree latitude/longitude 

resolution provided by NOAA-Air Resources Laboratory (Draxler and Rolph, 2003). 

Trajectories were calculated for intervals of three and six hours and an arrival height of 16 m 

(sampling height). In order to verify the origin of air masses obtained by these computations, 

back trajectories were also calculated exemplarily for arrival heights of 100 and 500 m using 

GDAS data as well as for the sampling height using NCEP’s reanalysis data. The observed 

differences were in the range of the trajectories’ uncertainty of approximately 20 % of the 

travel distance. 

2.7. Statistical Analysis 

Statistical analyses were performed using Winstat (version 2007). Concentrations of poly- and 

perfluorinated compounds in the gas and particle phase were tested for normal distribution. 

Normal-distributed analytes concentrations in the gas phase and in the particle phase were 

tested for correlation using Pearson Correlation. Proportions of all analytes were calculated 

and used for cluster analysis applying the Ward agglomeration method.  
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3. Results 

3.1. PFC Concentrations 

Gas and particle-phase concentrations of volatile PFC determined during ship and land-based 

sampling campaigns are presented in table 1 and 2. Except for 4:2 FTOH, 6:2 FTA, 

Me2FOSA, PFOSA, and EtFOSE all analytes were detected in the gas phase of all samples. In 

the particle fraction, only MeFOSA, EtFOSA, MeFOSE, and EtFOSE were detected, their 

concentrations were slightly higher than those of corresponding analytes in the gaseous phase. 

Generally, gaseous concentrations of volatile PFC were higher in and around Hamburg than at 

sea. Highest gas-phase total concentrations of volatile PFC were observed for samples Atair 7 

(224 pg m-3) and GKSS 62a (240 pg m-3). Lowest PFC total concentrations were found in 

samples Atair 3 (39 pg m-3) and Atair 5 (35 pg m-3). In this study, low concentrations of 

particle-bound ionic compounds were observed (table 3). Of 21 analytes, only PFBS, PFOS, 

PFBA, PFPA, PFHxA, PFOA, PFNA, PFDA, PFUnDA, and PFDoDA were determined in 

some samples. Generally, maximum concentrations in Atair samples were reached for PFOA 

(6.1 pg m-3) followed by PFOS (2.3 pg m-3) and/or PFBA (1.6 pg m-3). PFOS (9.1 pg m-3) and 

PFBA (2.0 pg m-3) were determined in maximum concentrations in land-based samples. 

However, high concentrations of some PFCA and PFSA detected in a filter blank for one set 

of samples may have biased these findings. Total concentrations of PFCA and PFSA were in 

the range of 1-11 pg m-3. Slightly elevated concentrations were determined for sample Atair 2 

(11 pg m-3), Atair 7 (6.4 pg m-3) and BAR 60 (11 pg m-3). 

3.2. PFC Composition 

The contribution of single PFC to the total amount of PFC in the gas phase is presented in 

figure 2. In all gas-phase samples, FTOH were the dominating class of compounds accounting 

for 50 to 80 % followed by FASA (6-36 %), FASE (3-9 %), and FTA (6-11 %) in marine air 

samples and by FTA (5-15 %), FASA (4-9 %), and FASE (2-7 %) in land-based samples. In 

Atair particle samples, MeFOSA and EtFOSA were the dominating neutral compounds. For 

ionic compounds, PFCA were dominating the substance profile (up to 80 %), usually with 

main contributions of PFOA (40 %) and PFBA (35 %). Details on the proportions of ionic 

compounds can be found in the supporting information. 
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Table 3-1: Gas- and particle-phase concentrations (pg m-3) of volatile PFC in ambient air of the German 

Bight and Hamburg (Atair 7) determined during the sampling campaign on RV Atair. c(g): gas-phase 

concentration. c(p): particle-phase concentration. n.d.: not detected. n.q.: not quantified. a Due to the high 

water content of this sample analytes could not be detected. b The elevated particle-phase concentrations 

are probably due to a single contamination event that occurred during analysis in the lab. 

  Atair 1 Atair 2 Atair 3 Atair 4 Atair 5 Atair 6 Atair 7 
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 c(g) c(p) c(g) c(p) c(g) c(p) c(g) c(p)a c(g) c(p)b c(g) c(p) c(g) c(p) 

4:2 FTOH 1.4 n.d. n.d. n.d. n.d. n.d. 2.3 n.d. 1.8 n.d. 1.4 n.d. n.d. n.d. 

6:2 FTOH 5.0 n.q. 8.6 n.q. 5.8 n.q. 5.7 n.d. 3.3 n.q. 15 n.q. 13 n.q. 

8:2 FTOH 11 n.d. 56 n.d. 13 n.d. 16 n.d. 8.2 n.d. 28 n.q. 130 n.d. 

10:2 FTOH 2.8 n.d. 15 n.d. 3.5 n.d. 5.7 n.d. 2.1 n.d. 6.7 n.d. 29 n.d. 

12:2 FTOH 1.7 n.d. 3.1 n.d. 1.3 n.d. 1.3 n.d. 1.5 n.d. 2.3 n.d. 8.0 n.d. 

Σ FTOH 21 0.0 82 0.0 24 0.0 31 0.0 17 0.0 53 0.0 180 0.0 

6:2 FTA n.d. n.d. 5.7 n.d. n.d. n.q. n.d. n.d. n.q. n.d. n.d. n.d. 4.2 n.q. 

8:2 FTA 2.2 n.d. 3.2 n.d. 1.9 n.d. 1.7 n.d. 1.8 n.d. 3.6 n.q. 15 n.q. 

10:2 FTA 0.9 n.d. 1.3 n.d. 0.8 n.d. 1.2 n.d. 0.8 n.d. 1.2 n.d. 6.6 n.q. 

Σ FTA 3.1 0.0 10 0.0 2.8 0.0 2.9 0.0 2.6 0.0 4.8 0.0 26 0.0 

MeFBSA 7.1 n.d. 5.8 n.d. 3.1 n.d. 3.4 n.d. 6.0 n.d. 4.7 n.d. 3.4 n.d. 

MeFOSA 3.7 4.2 1.5 3.3 2.5 n.d. 3.3 n.d. 3.9 9.2 3.1 5.6 2.4 3.4 

Me2FOSA n.d. n.d. 0.5 n.d. n.d. n.d. 1.4 n.d. 0.5 n.d. 0.7 n.d. 0.5 n.d. 

EtFOSA 1.7 3.1 0.8 2.1 0.4 n.d. 1.4 n.d. 1.5 7.9 1.1 3.1 0.5 2.4 

PFOSA 2.5 n.d. 1.9 n.d. 3.4 n.d. 2.8 n.d. n.q. n.d. n.d. n.d. 7.3 n.d. 

Σ FASA 15 7.3 11 5.4 9.5 0.0 12 0.0 12 17 9.7 8.7 14 5.7 

MeFBSE 0.6 n.d. 1.4 n.d. 1.0 n.d. 1.3 n.d. 0.6 n.d. 1.0 n.d. 2.5 n.d. 

MeFOSE 1.3 n.d. 0.9 7.0 2.0 n.d. 2.5 n.d. 2.2 13 1.2 n.d. 1.4 9.0 

EtFOSE n.d. n.d. 0.1 5.5 n.d. 4.4 0.3 n.d. 0.3 15 n.d. 8.0 n.d. 6.9 

Σ FASE 1.9 0.0 2.4 12 3.0 4.4 4.2 0.0 3.2 28 2.2 8.0 3.9 16 

Total  41 7 105 18 39 4.4 50 0.0 35 45 70 17 224 22 

 

 



 

STUDY 3  RESULTS 

 

 145

 
 

 

 

Table 3-2: Gas-phase concentrations (pg m-3) of volatile PFC in ambient air determined at the land-based 

sites Barsbüttel (BAR) and GKSS. c(g): gas-phase concentration. n.d.: not detected. n.q.: not quantified. 
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c in pg/m³ c(g) c(g) c(g) c(g) c(g) c(g) c(g) c(g) 

4:2 FTOH n.d. n.d. n.d. n.d. 5.8 3.5 n.d. n.d. 

6:2 FTOH 38 13 17 26 31 22 7 54 

8:2 FTOH 127 52 30 56 91 47 17 96 

10:2 FTOH 34 13 14 15 26 16 6 32 

12:2 FTOH 5.5 2.5 4.7 4.8 4.2 5.5 1.8 10 

Σ FTOH 204 81 65 102 159 94 32 192 

6:2 FTA 5.4 0.4 1.2 4.0 5.1 2.8 1.0 7.2 

8:2 FTA 8.9 2.9 9.8 6.9 14 6.6 1.7 6.5 

10:2 FTA 4.2 1.4 3.4 2.9 4.6 2.5 0.7 2.9 

Σ FTA 18 5 14 14 23 12 3 17 

MeFBSA 4.9 1.4 1.7 2.9 10 1.6 1.3 2.6 

MeFOSA 2.1 1.8 1.3 2.6 2.6 4.2 1.0 4.8 

Me2FOSA 1.0 0.2 n.d. 1.7 1.4 n.d. n.d. 0.6 

EtFOSA 2.7 2.6 1.4 1.8 3.2 3.1 0.7 7.1 

PFOSA n.d. 0.6 1.6 n.d. n.d. n.d. n.d. 1.4 

Σ FASA 11 6.5 6.1 9.0 18 8.9 2.9 17 

MeFBSE 6.4 3.9 2.9 1.9 2.5 1.6 1.0 5.5 

MeFOSE 3.8 2.3 2.5 0.6 0.9 2.6 0.7 7.4 

EtFOSE 0.8 0.8 0.4 1.8 1.7 1.8 0.3 1.9 

Σ FASE 11 6.9 5.8 4.3 5.1 6.0 2.0 15 

Τotal 244 99 91 129 205 121 40 240 
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Table 3-3: Particle-phase concentrations (pg m-3) of ionic PFC determined in ambient air of the German 

Bight, Barsbüttel (BAR), and GKSS. n.d.: not detected. n.q.: not quantified. a Filter blank problems 

occurred in these samples leading the not quantified status for some analytes of the samples. 

  Atair 
1 

Atair 
2 

Atair 
3 

Atair 
4 

Atair 
5 

Atair 
6 

Atair 
7 

BAR 
60 

BAR 
61 a 

BAR 
62 a 

GKSS 
60b 

GKSS 
60c a 

GKSS 
61a a 

GKSS 
61b 

GKSS 
62a 
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c (pg/m³) c(p) c(p) c(p) c(p) c(p) c(p) c(p) c(g) c(g) c(g) c(g) c(g) c(g) c(g) c(g) 

PFBS 0.8 0.8 n.d. n.q. n.q. n.q. 0.7 2.3 1.2 0.4 0.7 5.1 1.5 n.q. n.d. 

PFHxS n.d. 0.2 n.d. 0.3 n.d. n.d. n.q. n.q. n.d. n.q. n.d. n.q. n.q. n.q. n.q. 

PFHpS n.d. n.d. n.d. n.d. 0.3 n.d. 0.4 n.d. n.d. n.q. n.d. n.d. n.d. n.d. n.d. 

PFOS 0.8 2.3 0.1 0.8 0.6 1.2 1.7 n.q. n.q. n.q. 0.6 n.q. n.q. n.q. 0.1 

PFDS n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.q. n.d. n.d. 

Σ PFSA 1.5 3.2 0.1 1.1 0.9 1.2 2.8 2.3 1.2 0.4 1.3 5.1 1.5 0.0 0.1 

PFHxSi n.d. n.d. n.d. n.d. n.d. n.q. n.q. n.q. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

PFOSi n.q. n.q. n.d. n.q. n.q. n.d. n.q. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.1 

PFDSi n.q. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Σ PFSi 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 

PFBA 1.6 0.3 1.0 0.3 0.7 0.9 n.q. 3.5 n.q. n.q. 1.4 n.q. n.q. n.q. 0.5 

PFPA 0.1 0.3 n.d. 0.1 0.1 n.d. 0.2 0.3 0.2 n.q. 0.0 n.d. n.d. 0.9 0.3 

PFHxA 0.1 0.2 0.2 0.0 0.2 0.2 0.2 0.7 0.1 n.q. 0.1 0.9 1.9 n.q. 0.2 

PFHpA n.q. n.q. n.q. n.q. n.q. n.q. n.q. 2.1 0.4 n.q. n.d. n.d. 2.3 n.q. 0.2 

PFOA 2.3 6.1 1.9 2.1 2.3 2.1 2.9 n.q. n.q. n.q. 0.2 2.4 6.1 n.q. 0.4 

PFNA 0.2 0.6 0.0 0.4 0.2 0.2 0.0 n.q. n.q. n.q. 0.2 n.q. 3.2 n.q. 0.1 

PFDA n.q. 0.2 n.q. n.q. n.q. n.q. n.q. 0.9 0.2 n.q. n.q. 1.5 1.6 0.1 0.2 

PFUnDA n.q. 0.1 n.q. n.q. n.q. n.d. 0.1 0.3 0.1 n.q. n.q. 1.9 2.2 n.q. 0.1 

PFDoDA n.q. n.q. n.q. n.q. n.q. n.q. 0.2 0.3 n.q. n.q. n.q. 1.0 1.2 n.q. n.q. 

PFTriDA n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.9 n.d. 0.4 n.q. 0.8 0.1 0.3 n.q. 

PFTeDA n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.q. n.d. 0.5 n.d. 0.2 n.d. 

PFHxDA n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

PFOcDA n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Σ PFCA 4.3 7.9 3.1 3.0 3.5 3.4 3.6 9.0 0.9 0.4 2.0 9.1 18.6 1.5 2.0 

Total 5.9 11 3.2 4.1 4.5 4.6 6.4 11 2 0.8 3.2 14 20 1.5 2.2 
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Figure 3-2: Proportions (%) of volatile PFC in gas-phase samples. 

 

Cluster analysis performed with the proportions of gas-phase analytes yielded two main 

clusters (figure 3). Cluster 1 consisted of samples Atair 1, 3, 4, and 5. The remaining samples 

were assigned to cluster 2. 

 
Figure 3-3: Result of cluster analysis of the PFC composition of air samples from the German Bight and 

the vicinity of Hamburg.  
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3.3. Correlation Analysis 

Concerning substance classes in Atair gas-phase samples, only ΣFTA and ΣFTOH were 

highly significantly (p < 0.05) positively correlated. No correlation to ΣFASA and ΣFASE 

was observed. In land-based samples, sum concentrations of all substance classes were 

significantly positively correlated except for the combination of ΣFTA and ΣFASE. All 

individual FTOH and FTA as well as MeFOSA and EtFOSA were highly positively 

correlated in most of the gas-phase samples. Significantly positive correlations were also 

observed between MeFBSE and MeFOSE, all FASA and 8:2 FTOH, 10:2 FTOH, 

12:2 FTOH, and to some extent FTA in land-based samples. In Atair samples, significant 

correlations were found between MeFOSE and EtFOSE, MeFBSA and EtFOSA, as well as 

MeFBSE and 8:2 FTOH, 10:2 FTOH, 12:2 FTOH. Significantly negative (FTOH, FTA) or no 

(FASA, FASE) correlations existed between gas-phase analytes and ambient temperatures. 

Particle-bound PFOS, PFPA, PFHxA and PFOA were significantly positively correlated. 

Significant correlations were also observed between PFNA and PFBS and between PFNA and 

PFOA. Detailed information about correlation analyses are presented in the supporting 

information. Particle-bound analytes did not correlate to the particle mass and the aerosols’ 

content of particulate organic carbon.  

4. Discussion 

Concentrations of gas-phase FTOH, FASA, and FASE were in about the same range as in 

other studies for comparable locations. However, it should be noted that analysed substances 

in those studies differed to some extent (Barber et al., 2007; Jahnke et al., 2007a; Jahnke et 

al., 2007b; Martin et al., 2002; Shoeib et al., 2006). In general, high PFC concentrations in 

samples Atair 7 (Hamburg), BAR 60, GKSS 60c, and GKSS 62a were consistent with 

concentrations determined in German and other European and American urban regions 

(Barber et al., 2007; Jahnke et al., 2007a; Martin et al., 2002; Shoeib et al., 2006; Stock et al., 

2004) but lower than those of urban and traffic-influenced areas in Japan (Oono et al., 2008). 

The low concentrations of volatile polyfluorinated compounds in this study were comparable 

to those determined for marine regions (Jahnke et al., 2007b; Shoeib et al., 2006).  

PFCA and PFSA concentrations in the particle phase determined in this study are in the same 

range as those observed by Kim and Kannan (2007) for an urban area in the US, by Harada et 

al. (2005) for rural regions of Japan, or by Jahnke et al. (2007b) for marine regions. 
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Concentrations of PFCA and PFSA were up to 2 orders of magnitude lower than those 

determined for British and Japanese urban regions (Barber et al., 2007; Harada et al., 2005; 

Sasaki et al., 2003). The fact that MeFOSA, EtFOSA, MeFOSE, and EtFOSE were the only 

neutral PFC detected in the particle phase is in contrast to some studies where, high molecular 

weight FTOH were rather constantly detected in the particulate phase in low concentrations 

(Jahnke et al., 2007a; Shoeib et al., 2006). However, revolatilisation of particle-bound 

substances and/or sorption of the compounds of interest to the glass fiber filter as it has been 

demonstrated for some PFCA by Arp and Goss (2008) may have biased the observed gas-

particle partitioning.  

As presented in other studies in Europe (Barber et al., 2007; Jahnke et al., 2007a; Jahnke et 

al., 2007b), FTOH were the dominating class of compounds in the gas phase with 8:2 FTOH 

in maximum concentrations. High concentrations and proportions of FASA and FASE as 

detected for some American sites (Martin et al., 2002; Piekarz et al., 2007; Shoeib et al., 

2004; Shoeib et al., 2005; Stock et al., 2004) were not observed in this study. Besides the 

influence of different usage patterns and individual point sources, these observations are 

likely be explained by the phase-out of PFOS-based chemistry and thus changing PFC pattern 

since the year 2000. In our study, the increase of neutral PFC concentrations in the gas phase 

was mainly due to increasing concentrations of FTOH; proportions of FASA, FASE, and FTA 

decreased in respective samples. PFC proportions in high concentration Atair samples (Atair 2 

and Atair 7) and those of the GKSS and Barsbüttel sites were quite similar suggesting a 

common origin of PFC contamination. This is also supported by the results of the cluster 

analysis which clearly separated the low gas-phase PFC concentration samples Atair 1, 3, 4, 

and 5 from the remaining high PFC concentrations samples of the Atair campaign, Barsbüttel, 

and the GKSS site which were characterized by higher FTOH proportions. Various significant 

correlations especially among FTOH, FTA, and to a lesser extent FASA, FASE, and ionic 

PFC seem to confirm common emission sources.  

Regional-scale spatial variations of the concentrations of volatile PFC in the gas phase were 

observed between the German Bight and adjacent coastal areas. PFC concentrations averaged 

for the same period of time were decreasing from the main land towards the open sea. 

However, changes in concentrations were rather due to the different regions sampled air was 

arriving from (and far away sources); point sources located close to the sites appear to be of 

rather minor importance (see below). 
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As the analysis of air mass backward trajectories reveals (figure 4), low PFC concentrations 

were observed when air masses of marine origin, i.e. northern and northwestern air masses, 

were sampled (samples Atair 1, 3-6, GKSS 61b). For these samples, differences in PFC air 

concentrations are probably due to the varying degree air masses have passed coastal and/or 

terrestrial areas. Lowest concentrations of volatile PFC were observed in sample Atair 5, 

where air masses originated completely from marine regions (figure 4b). Elevated 

concentrations in sample Atair 6 might be explained by local winds from southwesterly 

located coastal regions which were observed by onboard measurements and are not shown by 

the trajectories. Highest PFC concentrations in the German Bight region were observed in 

sample Atair 2. This coincided with strongly elevated PFC concentrations at the land-based 

stations at GKSS and Barsbüttel (GKSS 60c, BAR 60). As the back trajectories for these 

samples reveal (figure 4a), sampled air masses passed Southern UK, the Netherlands, and 

highly industrialized areas of Germany, regions that are known to be point sources for other 

inorganic and organic pollutants such as NOx, SOx, hydrofluorocarbons, non methane volatile 

organic compounds, or polycyclic aromatic hydrocarbons (PAH) (EEA, 2008).  

 a b 
Figure 3-4: Details of seven days air mass back trajectories calculated for six hours intervals and an 

arrival height of 16 m as generated by Hysplit 4.8 using GDAS data for (a) samples Atair 2, GKSS 60c, 

BAR 60 and (b) samples Atair 5, GKSS 61b, BAR 61. Asterisks mark the location of the sampling site or 

the ship’s positions, respectively. Trajectory colors code six hours time intervals of arrival times. 

Triangles, squares, and rhombs of individual trajectories show the position of the air parcel in twelve 

hours intervals for Atair, Barsbüttel, and GKSS samples, respectively. Additionally, a plot is provided 

showing the trajectory heights. 

 

Since concentrations of volatile PFC in air differed only slightly between the port of Hamburg 

(Atair 7) and the GKSS site (GKSS 62a) it can be assumed that airborne PFC samples at these 
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sites during the period of this study originated rather from diffusive sources and/or medium to 

long-distance atmospheric transport than from local sources. Industrial areas in the western 

and southwestern parts of Germany and eastern parts of the Netherlands may act as potential 

source regions for air masses in Hamburg and its surroundings. These results confirm findings 

of Jahnke et al. (2007a) who determined concentrations of airborne PFC in the city of 

Hamburg and at the remote sampling site at Waldhof located approximately 100 km southeast 

of Hamburg. Although samples in Hamburg and Waldhof were taken at different times and 

thus different air masses were sampled, significant concentration differences for the majority 

of PFC at both sites were generally not observed. However, this comparison should be 

considered carefully as PFC concentrations are fluctuating in dependence of air mass origin 

which may have differed between these studies. 

That pollution in the North Sea area is rather caused by long-distance transport than by local 

sources was also observed by other authors. Varying concentrations of organic 

micropollutants in dependence of air mass origin were determined by some authors for two 

sites close to the North Sea (Bjorseth et al., 1979; Lunde and Bjorseth, 1977). There, 

concentrations of benzo(a)pyrene and other PAH in high volume air samples were much 

higher in air from continental western Europe and Great Britain (southwestern and 

southeastern air) than in air from northern and northwestern directions. Preston and Merrett 

(1991) found that hydrocarbon contamination in air was highest when air masses originated 

from continental Europe and the UK. Air that arrived over the open sea showed lowest 

hydrocarbon concentrations.    

This study demonstrated the widespread distribution of particle-bound perfluorinated acids 

and their volatile precursors in ambient air of the German Bight and around Hamburg 

reflecting a continuous emission of these compounds to the atmosphere. The comparably high 

resolution of sampling of one day enabled the observation of fluctuating PFC concentrations 

in air and allowed the application of statistical and trajectory analysis to identify PFC source 

regions. This study demonstrated that the air mass origin is an important parameter governing 

the concentrations of PFC in ambient air of the German Bight and northern Germany. The 

city of Hamburg with its industrialized areas around the port appeared to be a rather minor 

source for airborne PFC during our study. However, in order to elucidate the impact of a city 

such as Hamburg on the PFC air concentration, examinations of longer time series, e.g. one 

year are necessary. Our results give further support to the hypothesis that volatile 

polyfluorinated compounds are transported from source regions over long distances and thus 

representing a transportation pathway of perfluorinated compounds to pristine regions.   
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Chemicals 

 

Table S3-1: Solvents and gases used for the analysis of PFC in air samples. 

substances abbreviation purity producer 

ethyl acetate - Picograde Promochem, Wesel, Germany 

acetone - Picograde Promochem, Wesel, Germany                          

methyl-tert-butylether MTBE Picograde Promochem, Wesel, Germany 

methanol MeOH Residue Analysis J.T. Baker, Griesheim, Germany 

nitrogen - 6.0 Air Liquide, Germany 

 

Table S3-2: Mass-labeled standard compounds used for the analysis of PFC in air samples. 

substances abbreviation 

purity 

(%) producer 

2-Perfluorohexyl-(13C2)-ethanol 13C 6:2 FTOH > 98 Wellington Laboratories, Guelph, Canada 

2-Perfluorooctyl-(13C2)-ethanol 13C 8:2 FTOH > 98 Wellington Laboratories, Guelph, Canada 

2-Perfluorodecyl-(13C2)-ethanol 13C 10:2 FTOH > 98 Wellington Laboratories, Guelph, Canada 

methyl-D3-perfluorooctane sulfonamide D3 MeFOSA > 98 Wellington Laboratories, Guelph, Canada 

ethyl-D5-perfluorooctane sulfonamide D5 EtFOSA > 98 Wellington Laboratories, Guelph, Canada 

methyl-D7-perfluorooctane sulfonamido ethanol D7 MeFOSE > 98 Wellington Laboratories, Guelph, Canada 

ethyl-D9-perfluorooctane sulfonamido ethanol D9 MeFOSE > 98 Wellington Laboratories, Guelph, Canada 

perfluoro-(13C4)-butanoic acid 13C PFBA >98 Wellington Laboratories, Guelph, Canada 

perfluoro-(13C4)-hexanoic acid 13C PFHxA >98 Wellington Laboratories, Guelph, Canada 

perfluoro-(13C4)-octanoic acid 13C PFOA >98 Wellington Laboratories, Guelph, Canada 

perfluoro-(13C4)-nonanoic acid 13C PFNA >98 Wellington Laboratories, Guelph, Canada 

perfluoro-(13C4)-decanoic acid 13C PFDA >98 Wellington Laboratories, Guelph, Canada 

perfluoro-(13C4)-undecanoic acid 13C PFUnDA >98 Wellington Laboratories, Guelph, Canada 

perfluoro-(13C4)-dodecanoic acid 13C PFDoA >98 Wellington Laboratories, Guelph, Canada 

sodium perfluoro-(18O2)-hexane sulfonate 18O2-PFHxS >99 Wellington Laboratories, Guelph, Canada 

sodium perfluoro-(13C4)-octane sulfonate 13C-PFOS >98 Wellington Laboratories, Guelph, Canada 

sodium perfluoro-(13C4)-octane sulfinate 13C-PFOSi ~90 Wellington Laboratories, Guelph, Canada 

hexachlorobenzene 13C6  13C HCB 97 Dr. Ehrenstorfer, Augsburg, Germany 

1,3,5-trichlorobenzene D3  TCB D3 98 Aldrich, Munich, Germany 

2,4-dichlorophenol 13C6 13C DCP >99 Dr. Ehrenstorfer, Augsburg, Germany 

perfluorooctane sulfonamido-D5-acetic acid  D5 EtFOSAA >98 Wellington Laboratories, Guelph, Canada 
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Table S3-3: Analyte standards used for the analysis of PFC in air samples. 

substances abbreviation 
purity 

(%) 
producer 

perfluorobutyl ethanol  4:2 FTOH 97 Aldrich, Munich, Germany 

perfluorohexyl ethanol  6:2 FTOH 97 Lancaster Synthesis, Frankfurt, Germany 

perfluorooctyl ethanol  8:2 FTOH 97 Lancaster Synthesis, Frankfurt, Germany 

perfluorodecyl ethanol  10:2 FTOH 97 Lancaster Synthesis, Frankfurt, Germany 

perfluorododecyl ethanol  12:2 FTOH - 
donated by Jones group, Lancaster 

University, UK 

perfluorohexyl ethylacylate  6:2 FTA 97 Aldrich, Munich, Germany 

perfluorooctyl ethylacylate 8:2 FTA 97 Fluorochem, Old Glossop, UK 

perfluorodecyl ethylacylate  10:2 FTA 97 Fluorochem, Old Glossop, UK 

n-methyl perfluorobutane sulfonamide  MeFBSA - donated by 3M, Germany 

n-methyl perfluorooctane sulfonamide  MeFOSA - donated by 3M, Germany 

n-ethyl perfluorooctane sulfonamide EtFOSA 95 ABCR, Karlsruhe, Germany 

perfluorooctane sulfonamide  PFOSA - donated by 3M, USA 

dimethylperfluoroocatane sulfonamide  Me2FOSA 98 Wellington Laboratories, Guelph, Canada 

n-methyl perfluorobutane sulfonamido ethanol  MeFBSE - donated by 3M, USA 

n-methyl perfluorooctane sulfonamidoethanol MeFOSE - donated by 3M, USA 

n-ethyl perfluorooctane sulfonamido ethanol EtFOSE - 
donated the Mabury group, Toronto 

University, Canada 

potassium perfluorobutane sulfonate PFBS-K 98 ABCR, Karlsruhe, Germany 

potassium perfluorohexane sulfonate PFHxS-K 98 Fluka, Buchs, Switzerland 

potassium perfluorooctane sulfonate PFOS-K 98 Fluka, Buchs, Switzerland 

potassium perfluorodecane sulfonate PFDS-K >98 Wellington Laboratories, Guelph, Canada 

perfluorobutanoic acid PFBA 99 ABCR, Karlsruhe, Germany 

perfluoropentanoic acid PFPA 98 Alfa Aesar, Karlsruhe, Germany 

perfluorohexanoic acid PFHxA 98 ABCR, Karlsruhe, Germany 

perfluoroheptanoic acid PFHpA 98 Lancaster Synthesis, Frankfurt, Germany 

perfluorooctanoic acid PFOA 95 Lancaster Synthesis, Frankfurt, Germany 

perfluorononanoic acid PFNA 98 Alfa Aesar, Karlsruhe, Germany 

perfluorodecanoic acid PFDA 98 ABCR, Karlsruhe, Germany 

perfluoroundecanoic acid PFUnDA 96 ABCR, Karlsruhe, Germany 

perfluorododecanoic acid PFDoDA 96 Alfa Aesar, Karlsruhe, Germany 

perfluorotridecanoic acid PFTrDA >98 Wellington Laboratories, Guelph, Canada 

perfluorotetradecanoic acid PFTeDA 96 Alfa Aesar, Karlsruhe, Germany 

perfluorohexadecanoic acid PFHxDA 95 Alfa Aesar, Karlsruhe, Germany 

perfluorooctadecanoic acid PFOcDA 97 Alfa Aesar, Karlsruhe, Germany 

sodium perfluorohexane sulfinate PFHxSi 98 Wellington Laboratories, Guelph, Canada 

sodium perfluorooctane sulfinate PFOSi 98 Wellington Laboratories, Guelph, Canada 

sodium perfluorodecane sulfinate PFDSi 98 Wellington Laboratories, Guelph, Canada 
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Detection & Quantification Limits 

 
Table S3-4: Instrumental detection limits (LOD), instrumental quantification limits (LOQ), method 

quantification limits (MQL), and method detection limits (MDL) for neutral volatile and semi-volatile 

polyfluorinated compounds determined in the gas phase (g) and particle phase (p) based on signal to noise 

ratios. 

 MQL(g) MDL(g) MQL(p) MDL(p) LOQ  LOD  LOQ  LOD  

 pg m-3 pg m-3 pg m-3 pg m-3 pg µL-1 pg µL-1 pg abs. pg abs. 

4:2 FTOH <1.2 0.5 n.d. n.d. 1.1 0.8 2.1 1.7 

6:2 FTOH <0.9 <0.9 n.q. n.q. 1.1 0.9 2.2 1.8 

8:2 FTOH <1.8 <1.8 n.q. n.q. 1.0 0.8 2.0 1.6 

10:2 FTOH <0.7 <0.7 n.q. n.q. 1.0 0.8 2.0 1.6 

12:2 FTOH 0.4 0.4 n.q. n.q. 1.0 0.8 2.0 1.6 

6:2 FTA 0.5 0.5 n.d. n.d. 0.2 0.1 0.4 0.2 

8:2 FTA 0.1 0.1 n.d. n.d. 0.2 0.1 0.4 0.2 

10:2 FTA <0.1 <0.1 n.d. n.d. 0.2 0.1 0.4 0.2 

MeFBSA <0.3 <0.3 n.d. n.d. 0.2 0.1 0.4 0.2 

MeFOSA <0.4 <0.4 0.1 <0.1 0.2 0.1 0.4 0.2 

Me2FOSA 0.5 <0.1 n.d. n.d. 0.1 0.0 0.2 0.0 

EtFOSA 0.1 <0.1 0.2 <0.2 0.2 0.1 0.4 0.2 

PFOSA 0.5 <0.5 <23 <23 8.2 4.1 16.4 8.2 

MeFBSE 0.1 <0.1 1.6 <1.5 0.2 0.1 0.4 0.2 

MeFOSE 0.4 0.2 0.1 <0.1 0.2 0.1 0.4 0.2 

EtFOSE 0.1 <0.1 0.3 <0.3 0.4 0.2 0.9 0.4 
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Table S3-5: Instrumental detection limits (LOD), instrumental quantification limits (LOQ), method 

quantification limits (MQL), and method detection limits (MDL) for ionic polyfluorinated compounds 

determined in the particle phase (p) based on signal to noise ratios. 

 MQL(p) MDL(p) LOQ  LOD  LOQ  LOD  

 pg m-3 pg m-3 pg µL-1 pg µL-1 pg abs. pg abs. 

PFBS 0.3 0.1 0.05 0.02 0.5 0.2 

PFHxS 0.2 0.1 0.05 0.02 0.5 0.2 

PFHpS 0.3 <0.3 0.05 0.02 0.5 0.2 

PFOS 0.1 <0.05 0.1 0.05 1.0 0.5 

PFDS 0.4 n.d. 0.05 0.02 0.5 0.2 

PFHxSi 0.5 n.d. 0.1 0.05 1.0 0.5 

PFOSi n.q. n.q. 0.05 0.02 0.5 0.2 

PFDSi 0.5 n.d. 0.1 0.05 1.0 0.5 

PFBA 0.1 <0.1 0.2 0.2 2.0 2.0 

PFPA 0.4 <0.05 0.1 0.05 1.0 0.5 

PFHxA <0.05 <0.05 0.1 0.05 1.0 0.5 

PFHpA 0.1 <0.1 0.1 0.05 1.0 0.5 

PFOA <<1.8 <<1.8 0.1 0.05 1.0 0.5 

PFNA <0.05 <0.05 0.1 0.05 1.0 0.5 

PFDA 0.1 0.05 0.1 0.05 1.0 0.5 

PFUnDA <0.1 <0.1 0.2 0.1 2.0 1.0 

PFDoDA <0.2 <0.2 0.1 0.05 1.0 0.5 

PFTriDA 0.2 <0.2 0.1 0.05 1.0 0.5 

PFTeDA 0.2 <0.2 0.2 0.10 2.0 1.0 

PFHxDA n.d. n.d. 0.2 0.10 2.0 1.0 

PFOcDA n.d. n.d. 0.2 0.10 2.0 1.0 

 

 

 

 



 

SUPPORTING INFORMATION  STUDY 3 

 

 162

Blanks 

 
Table S3-6: Solvent blank (SB) and field blank (FldB) concentrations for gas-phase analytes (pg m-3). 

 
Atair 
SB 1 

Atair 
SB 2 

Atair 
SB 3 

Atair 
FldB1 

Atair 
FldB2 

GKSS-
BAR SB25 

GKSS-
BAR SB26 

GKSS-
BAR SB27 

GKSS 
FldB Nov 

BAR  
FldB Nov

6:2 FTA 0.1 1.8 1.2 0.2 1.8 n.d. n.d. n.d. 0.5 1.6 
4:2 FTOH n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 1.2 
6:2 FTOH 1.2 1.9 1.3 1.4 2.0 0.2 n.d. n.d. 1.0 1.2 
8:2 FTA n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.4 1.0 
8:2 FTOH 1.3 1.7 1.3 n.d. 2.0 0.3 0.2 n.d. 0.7 0.5 
Me2FOSA n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 
10:2 FTA n.d. n.d. n.d. 0.9 n.d. n.d. n.d. n.d. n.d. n.d. 
10:2 FTOH 0.7 1.5 1.0 1.9 1.7 0.2 0.1 n.d. 0.7 0.1 
12:2 FTOH n.d. n.d. n.d. n.d. 1.9 0.4 n.d. n.d. 1.3 n.d. 
EtFOSA n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.2 n.d. 
MeFBSA n.d. n.d. n.d. 1.3 2.2 n.d. n.d. n.d. n.d. n.d. 
MeFOSA n.d. n.d. n.d. 1.6 2.9 n.d. n.d. n.d. n.d. n.d. 
MeFOSE 0.4 2.5 0.9 23.1 2.8 n.d. n.d. n.d. 0.5 n.d. 
MeFBSE 1.0 1.8 1.7 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 
EtFOSE n.d. 2.5 0.7 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 
PFOSA n.d. n.d. n.d. n.d. 7.2 n.d. n.d. n.d. n.d. n.d. 
 

Table S3-7: Filter blank (FB) and field blank concentration (FldB) for particle-phase analytes (pg m-3). 

 Atair SB 1 Atair SB 2 Atair FB2 
GKSS-

BAR FB17 
GKSS-

BAR FB18
GKSS-

BAR FB19 
GKSS 

FldB Nov 
BAR FldB 

Nov 
PFBS n.d. 0.5 1.3 0.0 0.4 0.0 n.q. n.q. 
PFHxS 0.2 0.5 0.3 0.0 1.9 0.0 n.q. n.q. 
PFHpS n.d. n.d. n.d. 0.0 0.5 0.0 n.d. n.d. 
PFOS 0.6 0.4 0.1 0.0 75.3 0.0 n.q. n.q. 
PFDS n.d. n.d. n.d. 0.0 0.0 0.0 n.d. n.d. 
PFHxSi n.d. n.d. n.d. 0.0 0.0 0.0 n.d. n.d. 
PFOSi n.d. 0.3 n.d. 0.1 0.0 0.0 n.q. n.d. 
PFDSi n.d. n.d. n.d. 0.0 0.0 0.0 n.d. n.d. 
PFBA 1.6 2.3 1.7 0.1 6.4 0.0 n.q. n.q. 
PFPA n.d. n.d. 0.0 0.0 0.1 0.0 n.q. n.q. 
PFHxA 0.3 0.1 0.3 0.0 0.2 0.0 0.1 0.1 
PFHpA 0.4 n.d. 0.2 0.0 0.4 0.0 n.q. n.q. 
PFOA 1.3 0.6 1.1 0.1 9.5 0.1 n.q. 0.1 
PFNA n.d. 0.4 0.2 0.0 1.7 0.0 n.q. n.q. 
PFDA n.d. 0.6 0.3 0.1 0.2 0.0 n.q. n.q. 
PFUnDA 0.2 0.1 0.1 0.1 0.8 0.0 n.q. n.q. 
PFDoDA 0.2 0.4 0.2 0.1 0.8 0.0 n.d. n.q. 
PFTriDA 0.0 0.1 n.d. 0.1 0.2 0.0 n.d. n.d. 
PFTeDA n.d. n.d. n.d. 0.1 0.0 0.0 n.d. n.d. 
PFHxDA 0.2 n.d. n.d. 0.3 0.0 0.0 n.d. n.d. 
PFOcDA n.d. n.d. n.d. 0.4 0.0 0.0 n.d. n.d. 
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Recovery Rates 

 
Table S3-8: Minimum (min), maximum (max) and average recovery rates (R) for gas-phase extractions 

(%). SD: standard deviation. RSD: relative standard deviation. 

 R(min) (%)  R(max) (%) R(average) (%) SD (%) RSD (%) 

4:2 FTOH 13C 13 41 22 7 34 

6:2 FTOH 13C 29 86 49 14 28 

8:2 FTOH 13C 31 94 53 15 28 

10:2 FTOH 13C 33 79 58 13 23 

EtFOSA D5 18 88 49 21 42 

MeFOSA D3 16 85 49 22 45 

MeFOSE D7 52 96 73 14 19 

EtFOSE D9 51 98 73 16 21 

 

Table S3-9: Minimum (min), maximum (max) and average recovery rates (R) for particle-phase 

extractions (%). SD: standard deviation. RSD: relative standard deviation. 

 R(min) (%)  R(max) (%) R(average) (%) SD (%) RSD (%) 

4:2 FTOH 13C 27 36 32 3 10 

6:2 FTOH 13C 30 40 35 3 9 

8:2 FTOH 13C 29 34 31 2 6 

10:2 FTOH 13C 36 50 45 5 11 

EtFOSA D5 63 79 72 6 9 

MeFOSA D3 45 64 52 6 12 

MeFOSE D7 49 73 64 9 14 

EtFOSE D9 42 78 61 15 25 
18O2-PFHxS 48 90 66 15 23 
13C-PFOS 62 81 70 7 10 
13C-PFOSi 55 74 67 7 10 
13C-PFBA 43 98 62 20 31 
13C-PFHxA 41 74 60 12 20 
13C-PFOA 27 48 39 8 20 
13C-PFNA 36 57 49 9 18 
13C-PFDA 47 96 72 16 22 
13C-PFUDA 91 159 123 23 18 
13C-PFDoA 71 134 96 23 23 
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Uncertainty of the Method 

 
Table S3-10: Relative standard and expanded uncertainties for gas-phase samples (%) calculated 

according to ISO 20988 based on paired measurements of volatile polyfluorinated compounds during the 

Atair campaign. Uncertainties were being referred to average concentration levels. 

 standard uncertainty expanded uncertainty 

6:2 FTA 66 153 

4:2 FTOH 36 83 

6:2 FTOH 38 88 

8:2 FTA 140 323 

8:2 FTOH 27 62 

Me2FOSA 55 128 

10:2 FTA 19 45 

10:2 FTOH 31 71 

12:2 FTOH 42 97 

EtFOSA 18 41 

MeFBSA 46 107 

MeFOSA 58 134 

MeFOSE 60 139 

MeFBSE 27 61 

EtFOSE 21 49 

PFOSA 159 368 
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Particle-Phase PFCA Composition  

 

Figure S3-1: Composition of ionic PFC in the particle phase. Note that filter blank problems occurred in 

some BAR and GKSS samples resulting in the absence of samples BAR Pa62 and GKSS Pa 61b and some 

analytes such as PFOS and PFOA.  
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Correlation Coefficients 

 
Table S3-11: Correlation coefficients for the correlation of neutral volatile analytes in the gas phase of 

Atair samples. a significant at 0.05 level. b significant at 0.1 level. 
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FT
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Σ 
FA
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6:2 FTOH -0.4                    

8:2 FTOH -0.2 0.6b                   

10:2 FTOH 0.2 0.6 b 1 a                  

12:2 FTOH -0.8 0.6 b 1 a 1 a                 

6:2 FTA 0 -1 a -1 a -1 a -1 a                

8:2 FTA -0.7 0.6 b 1 a 0.9 a 1 a -1 a               

10:2 FTA 0.3 0.5 1 a 0.9 a 1 a -1 a 1 a              

MeFBSA -0.7 -0.3 -0.3 -0.3 -0.3 1 a -0.3 -0.4             

MeFOSA -0.2 -0.4 -0.6 -0.6 -0.5 -1 a -0.4 -0.3 0.3            

Me2FOSA 0.8 -0.2 -0.4 -0.4 -0.4 -1 a -0.3 -0.3 -0.6 0.4           

EtFOSA 0.1 -0.5 -0.6 -0.6 -0.5 1 a -0.5 -0.5 0.6 b 0.8 a 0.5          

PFOSA 1 a 0.8 0.8 a 0.8 0.9 a -1 a 0.9 a 1 a -0.5 -0.1 -0.3 -0.5         

MeFBSE 0.7 0.6 0.9 a 1 a 0.9 a -1 a 0.9 a 0.9 a -0.6 -0.6 -0.1 -0.7 0.8 a        

MeFOSE 0.9 a -0.6 -0.4 -0.4 -0.4 -1 a -0.3 -0.2 -0.4 0.5 0.7 0.3 0.0 -0.2       

EtFOSE 1 a -0.9 -1 -1.0 -1 a 0 -1 a -0.6 -0.5 1.0 0.5 1.0 1 a -0.6 1      

Σ FTOH -0.2 0.7 1 a 1 a 1 a -1 a 1 a 0.9 a -0.3 -0.6 -0.4 -0.6 0.8 a 0.9 a -0.4 -1     

Σ FTA -0.5 0.6 1 a 1 a 1 a -1 a 1 a 1 a -0.3 -0.5 -0.4 -0.6 0.9 a 0.9 a -0.4 -1a 1 a    

Σ FASA 0.0 -0.2 0.3 0.3 0.4 -1 a 0.4 0.4 0.3 0.4 0.1 0.4 0.4 0.2 0.0 1 0.3 0.4   

Σ FASE 1 a -0.1 0.3 0.4 0.3 -1 a 0.4 0.5 -0.7a 0.0 0.5 -0.2 0.5 0.6 0.7 a 0.8 0.3 0.4 0.1  

T (°C) 0.8 -0.5 -0.9a -0.8a -0.9a 1a -0.9a -0.9a 0 0.1 0.3 0.1 -0.8 -0.7a 0.4 1 a -0.9a -0.9a -0.6 -0.3 
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Table S3-12: Correlation coefficients for the correlation of neutral volatile analytes in the gas phase of 

Barsbüttel and GKSS samples. a significant at 0.05 level. b significant at 0.1 level. 
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6:2 FTOH 1a                    

8:2 FTOH 1 a 0.8 a                   

10:2 FTOH 1 a 0.9 a 1 a                  

12:2 FTOH -1 a 0.9 a 0.5 0.7 a                 

6:2 FTA 1 a 1 a 0.8 a 0.9 a 0.8 a                

8:2 FTA 1 a 0.4 0.5 0.6 0.3 0.5               

10:2 FTA 1 a 0.6 0.7 a 0.7 a 0.4 0.6 a 0.9 a              

MeFBSA 1 a 0.4 0.6 b 0.5 b 0.0 0.5 b 0.8 a 0.8 a             

MeFOSA -1 a 0.7 a 0.4 0.5 b 0.8 a 0.7 a 0.2 0.2 0.1            

Me2FOSA 0 0.1 0.1 0.0 -0.1 0.3 0.6 0.6 0.5 -0.1           

EtFOSA 1 a 0.9 a 0.6 b 0.7 a 0.9 a 0.8 a 0.2 0.3 0.2 0.9 a -0.4          

PFOSA 0 0.4 0.0 0.4 0.6 0.4 0.9 1 a 0.6 0.2 1 a 0.2         

MeFBSE 1 a 0.7 a 0.8 a 0.8 a 0.6 b 0.6 b 0.2 0.4 0.1 0.2 -0.5 0.6 b 0.0        

MeFOSE -1 a 0.8 a 0.5 0.7 a 0.9 a 0.6 b 0.0 0.2 -0.2 0.6 a -0.6 0.9 a 0.4 0.8 a       

EtFOSE -1 a 0.6 0.4 0.4 0.6 b 0.7 a 0.3 0.3 0.3 0.9 a 0.5 0.6 a 0.1 0 0.2      

Σ FTOH 1 a 0.9 a 1 a 1 a 0.7 a 0.9 a 0.5 0.7 a 0.6 0.5 0.1 0.7 a 0.2 0.8 a 0.6 b 0.5     

Σ FTA 1 a 0.7 a 0.7 a 0.8 a 0.5 b 0.8 a 0.9 a 1 a 0.8 a 0.4 0.6 0.4 0.9 0.4 0.2 0.5 0.8 a    

Σ FASA 1 a 0.8 a 0.8 a 0.8 a 0.7 a 0.9 a 0.7 a 0.7 a 0.7 a 0.7 a 0.2 0.8 a 0.3 0.4 0.5 0.7 a 0.8 a 0.8 a   

Σ FASE -1 a 0.9 a 0.7 a 0.8 a 0.8 a 0.7 a 0.1 0.4 0.0 0.6 -0.5 0.9 a 0.2 0.9 a 1 a 0.3 0.8 a 0.4 0.6 b  

T (°C) -1 a -0.2 0.0 -0.1 -0.3 -0.2 0.0 -0.1 0.2 0.2 -0.2 -0.1 -1 a -0.2 -0.2 0.1 0.0 -0.1 0.0 -0.2 
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Table S3-13: Correlation coefficients for the correlation of neutral volatile analytes in the gas phase of 

Barsbüttel and GKSS samples.  a significant at 0.05 level. b significant at 0.1 level. 
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6:2 FTOH 0.9a                    

8:2 FTOH 0.9 a 0.7 a                   

10:2 FTOH 1 a 0.8 a 1 a                  

12:2 FTOH 0.7 b 0.8 a 0.8 a 0.9 a                 

6:2 FTA 1 a 0.7 a 0.7 a 0.8 a 0.6 a                

8:2 FTA 1 a 0.5 a 0.8 a 0.8 a 0.7 a 0.3               

10:2 FTA 1 a 0.5 a 0.9 a 0.8 a 0.7 a 0.4 1.0 a              

MeFBSA 0.4 0 0.1 0.1 -0.2 0.6 a 0.2 0.1             

MeFOSA -0.5 0.3 0 0 0.3 0.5 b -0.1 -0.1 0.2            

Me2FOSA 0.6 0.2 0 0 -0.1 0.2 0.2 0.2 0.2 0.1           

EtFOSA 0.9 a 0.9 a 0.4 0.6 a 0.7 a 0.5 b 0.2 0.2 0 0.6 a 0.0          

PFOSA 1 a -0.3 0.5 0.3 0.2 0.2 0.6 b 0.7 a 0.2 0.0 0.1 -0.5         

MeFBSE 1 a 0.8 a 0.8 a 0.8 a 0.7 a 0.4 0.4 0.5 a -0.1 0.0 -0.1 0.7 a -0.3        

MeFOSE -0.2 0.7 a 0.3 0.5 a 0.6 a 0.4 0 0.1 -0.3 0.5 a -0.2 0.8 a -0.3 0.7 a       

EtFOSE 0.8 b 0.7 a 0.5 b 0.6 a 0.7 a 0.4 0.6 a 0.6 a 0.1 0.6 a 0.4 0.7 a -0.4 0.3 0.3      

Σ FTOH 0.9 a 0.8 a 1.0 a 1 a 0.9 a 0.8 a 0.8 a 0.8 a 0.1 0.1 0 0.6 a 0.3 0.8 a 0.5 a 0.6 a     

Σ FTA 1 a 0.6 a 0.9 a 0.9 a 0.8 a 0.6 a 1 a 1 a 0.2 -0.1 0.2 0.3 0.5 0.6 a 0.2 0.6 a 0.9 a    

Σ FASA 0.5 0.4 0.4 0.4 0.4 0.8 a 0.4 0.4 0.7 a 0.6 a 0.2 0.5 a 0.4 0.2 0.3 0.5 b 0.4 b 0.4 b   

Σ FASE 0.8 a 0.9 a 0.6 a 0.7 a 0.7 a 0.5 b 0.3 0.4 -0.2 0.3 -0.1 0.9 a -0.4 0.9 a 0.9 a 0.5 b 0.7 a 0.5 a 0.3  

T (°C) -0.5 -0.5a -0.5a -0.6a -0.7a 0 -0.6a -0.6a 0.3 0.2 -0.1 -0.3 -0.1 -0.5a -0.2 -0.3 -0.6a -0.6a 0 -0.4 

 

 
 

Table S3-14: Correlation coefficients for the correlation of ionic analytes in the particle phase of Atair 

samples.  a significant at 0.05 level. b significant at 0.1 level. 

 PFBS PFOS PFBA PFPA PFHxA PFOA 

PFOS 0.5      

PFBA -1 -0.5     

PFPA 0.8 0.9 a -0.3    

PFHxA 0.4 0.6 b -0.1 0.8 a   

PFOA 0.8 0.8 a -0.4 1.0 a 0.6 b  

PFNA 1a 0.5 -0.7 b 0.5 -0.1 0.6 b 
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Back Trajectories 

 

Figure S3-2: Details of air mass back 

trajectories calculated for 3 hours intervals of 

arrival times as generated by Hysplit 4.8 using 

GDAS data. Asterisks mark the position of the 

ship. Triangles mark the positions of the air 

parcels in 12 hours intervals. 
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Figure S3-3: Details of air mass back 

trajectories calculated for 6 hours intervals of 

arrival times as generated by Hysplit 4.8 using 

GDAS data. Asterisks mark the location of the 

sampling site or the ship’s positions. Triangles, 

squares, and rhombs mark the positions of the 

air parcels in 12 hours intervals for Atair, 

Barsbüttel, and GKSS samples. 
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Polyfluorinated Compounds in the Atmosphere of the Atlantic and 

Southern Ocean: Evidence for a Global Distribution 
 

 

Annekatrin Dreyer1, Ingo Weinberg1,2, Christian Temme1, and Ralf Ebinghaus1 

 

1 GKSS Research Centre, Institute for Coastal Research, Max Planck Str. 1, 21502 

Geesthacht, Germany 

2 Leuphana University Lüneburg, Institute for Ecology and Environmental Chemistry, 

Scharnhorststr. 1, 21335 Lüneburg, Germany 

 

 

Abstract 

Air samples taken onboard several research vessels in the Atlantic Ocean, the Southern 

Ocean, and the Baltic Sea as well as at one land-based site close to Hamburg, Germany in 

2007 and 2008 were analysed for per- and polyfluorinated organic compounds (PFC). A set of 

neutral, volatile PFC such as fluorotelomer alcohols (FTOH) or perfluoroalkyl sulfonamides 

and ionic non-volatile PFC like perfluorinated carboxylates (PFCA) and sulfonates (PFSA) 

were collected on PUF/XAD-2/PUF cartridges and glass fiber filters and determined using 

GC-MS and HPLC-MS/MS. PFC were detected in all air samples, even in Antarctic regions 

and occurred predominantly in the gas phase. Total gas-phase concentrations of ship-based 

samples ranged from 4.5 pg m-3 in the Southern Ocean to 335 pg m-3 in European source 

regions. Concentrations of 8:2 FTOH, the analyte that was usually observed in highest 

concentrations, were between 1.8 and 130 pg m-3. PFC concentrations decreased from 

continental towards marine regions and from Central Europe towards the Arctic and 

Antarctica. Southern hemispheric concentrations of individual PFC were significantly lower 

than those of the northern hemisphere. Based on this data set, marine background PFC 

concentrations and atmospheric residence times were calculated. This study gives further 

evidence that volatile PFC undergo atmospheric long-range transport to remote regions and 

may contribute to their contamination of persistent PFCA and PFSA.  
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1. Introduction 

Since persistent, bioaccumulative, and toxicologically relevant polyfluorinated compounds 

(PFC) such as perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) (Conder et 

al., 2008; Lau et al., 2007) have been detected in humans (Calafat et al., 2007) as well as in 

polar fauna (Smithwick et al., 2006; Tao et al., 2006), there is an ongoing interest concerning 

their environmental fate and transport. One key question to resolve is, how and to which 

extent these perfluorinated carboxylates (PFCA) and sulfonates (PFSA), starting from their 

point of emission, reach remote locations where they are being accumulated.  

PFCA and PFSA, especially those of chain lengths less than ten carbon atoms, have been 

detected globally in rivers and oceans and are considered to be transported significantly via 

that pathway (McLachlan et al., 2007; Wei et al., 2007; Yamashita et al., 2008). It is estimated 

that the majority of these compounds is emitted directly to the water phase during 

manufacturing and use (Paul et al., 2009; Prevedouros et al., 2006). Perfluorooctanoate that 

reaches the Arctic via oceanic transport is calculated to be between 2 and 23 t a-1 (Armitage et 

al., 2006; Prevedouros et al., 2006; Wania, 2007). Being dissolved in the water phase or 

enriched at the water surface these ionic PFC may also be transported into the air as marine 

aerosols (Prevedouros et al., 2006). However, atmospheric removal by wet and dry deposition 

is expected to occur in the order of a few days (Hurley et al., 2004). Atmospheric transport 

and degradation of PFCA and PFSA precursors is considered as another main transport 

mechanism but, its importance is discussed controversially. Basically, PFCA and PFSA 

precursors like fluorotelomer alcohols (FTOH) and acrylates (FTA) or perfluoroalkyl 

sulfonamides (FASA) and sulfonamido ethanols (FASE) are thought to be emitted to the 

atmosphere during their manufacturing or the production of fluoropolymers (Paul et al., 2009; 

Prevedouros et al., 2006) and more important by diffuse sources during use and disposal 

(Barber et al., 2007; Dinglasan-Panlilio and Mabury, 2006; Paul et al., 2009; Sinclair et al., 

2007). Precursors are more volatile than PFCA and PFSA and therefore are more likely to 

undergo atmospheric long-range transport. Being in the atmosphere, these volatile compounds 

are degraded to PFCA and PFSA by OH radical initiated oxidation (D'Eon et al., 2006; Ellis 

et al., 2004; Ellis et al., 2003; Martin et al., 2006). Precursors were determined in a number of 

field studies in North America, Europe, Asia, and the Atlantic Ocean (Barber et al., 2007; 

Dreyer et al., 2009; Jahnke et al., 2007b; Oono et al., 2008; Shoeib et al., 2006; Stock et al., 

2004) and modelling results reveal the ubiquitous atmospheric distribution of FTOH and its 

degradation products (Wallington et al., 2006). The actual extent to which the atmospheric 



 

STUDY 4  INTRODUCTION 

 

 175

transport and degradation of precursors contribute to the PFCA and PFSA contamination of 

remote regions is still unclear. Some studies estimated that this pathway is less important than 

oceanic transport, mainly due to the low PFCA and PFSA yield of the degradation reactions 

and too low historic precursor emissions (Prevedouros et al., 2006; Wania, 2007). Several 

recent studies estimated the Arctic deposition of perfluorooctanoate from FTOH oxidation to 

be between 50 and 500 kg a-1 (Schenker et al., 2008; Wallington et al., 2006; Wania, 2007; 

Yarwood et al., 2007) whereas an earlier estimate by Ellis et al. (2004) assumed an 

approximate flux of 0.1-10 t a-1 of PFCA to the Arctic. Nevertheless, the presence of PFCA 

and PFSA in glacial ice caps that received their contamination solely from the atmosphere 

(Young et al., 2007), their existence in air and lake water of remote mountains (Loewen et al., 

2008), or the occurrence of precursor degradation intermediates in precipitation (Loewen et 

al., 2005; Scott et al., 2006), Arctic sediments and air particles (Stock et al., 2007) reveal that 

the atmospheric transport and degradation is an important contamination mechanism in 

remote locations.  

The objective of this study was to determine concentrations of a variety of airborne PFC on a 

global scale with one method and short sampling intervals. Specifically, spatial gradients of 

PFC concentrations should be evaluated. The PFC contamination of Arctic and for the first 

time of Antarctic Air should be assessed and hemispheric (background) levels be defined. 

Therefore, air samples with one to three days resolution were taken onboard research vessels 

during several sampling campaigns along north-south transects in the Atlantic Ocean covering 

regions from Svalbard, Norway (78°N) to Antarctica (70°S) as well two east-west transects 

from the Canary Islands, Spain (28°N, 16°W) to Newfoundland, Canada (47°N, 53°W) and 

from Recife, Brazil (8°S, 35°W) to Dakar, Senegal (15°N, 17°W). Data obtained in this study 

are also valuable to validate and improve existing models.   

2. Experimental 

Chemicals 

All chemicals, standard compounds, and gases were of high quality and purity. Details on 

chemicals concerning chemicals’ abbreviations, supplier and purity can be found in the 

supplemental information.  
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Sampling 

High volume air samples were taken at the observation deck of different research vessels (RV 

Polarstern, RV Maria S. Merian, RV L’Atalante, RV Atair) during several sampling 

campaigns along north-south and east-west transects as well as in coastal areas in the Baltic 

Sea, the Atlantic and Southern Ocean (Atair 155, German Bight, North Sea, 09/2007; 

MSM05/1, Las Palmas, Spain - St. John’s, Canada, 04/2007; MSM05/6, Longyearbyen, 

Norway - Kiel, Germany, 08/2007; MSM08/3, Rostock, Germany - Tallinn, Estonia - Kiel, 

Germany, 06/2008; AntXXIV-1 and AntXXV-1, Bremerhaven, Germany - Cape Town, South 

Africa, 11/2007, 11/2008; AntXXV-2, Cape Town, South Africa - Neumayer Station, 

Antarctica - Cape Town, South Africa, 12/2008; L’Atalante leg 2 MARSÜD, Recife, Brazil - 

Dakar, Senegal, 01/2008; figure 4-1). Sampling height varied between 16 and 20 m. Samples 

were taken continuously for one to three days. Parallel one day samples were taken during the 

Atair 155 campaign since spatially highly resolved samples were needed in the area covered 

by the sampling and PFC concentrations were expected to be high (Dreyer and Ebinghaus, 

2009). To reach a compromise between a high spatial resolution and a sensitive analysis of 

airborne PFC in northern hemispheric remote regions one and three day samples were taken 

in parallel during the campaigns MSM05/1, MSM05/6, MSM08/3, and AntXXIV-1. Two day 

samples were taken at the campaigns in the equatorial and southern Atlantic. Since PFC 

concentrations were expected to be close to the limit of detection, samples were taken in 

parallel during the cruise AntXXV-1. To minimize ship-borne contamination air samplers 

were controlled by a computer connected to the ship’s meteorological system assuring that the 

sampling was interrupted when relative winds were arriving from the rear of the ship. For the 

determination of continental PFC air concentrations, a permanent land-based sampling site 

was established at Barsbüttel (BAR; 53°34’14’’ N and 10°12’55’’ E) in the vicinity of 

Hamburg (1 770 000 inhabitants)(Dreyer et al., 2009). In general, sampling durations varied 

between 1 and 4 days at that site. The average sampling rate for land- and ship-based samples 

was about 450 m³ d-1. 

Airborne PFC were enriched on glass fiber filters and cartridges filled with a sandwich of 

polyurethane foam (PUF) and Amberlite XAD-2. Prior to the sampling, 50 µL of an internal 

standard solution containing mass-labeled PFC were added to the cartridge to account for 

analyte losses in the gas phase during sampling and sample preparation. Samples were sealed 

air tight and stored at -20 °C until analysis in the laboratory. 
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Figure 4-1: Overview about the cruise tracks. Black dots mark the start point of each sample during the 

cruises. Samples were taken in between this and the following location. 
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Sample Preparation & Instrumental Analysis 

Detailed descriptions of sample preparations, and instrumental analyses are given elsewhere 

(Dreyer and Ebinghaus, 2009; Dreyer et al., 2008). Briefly, gas-phase samples were extracted 

three times using methyl-tert-butyl ether (MTBE):acetone 1:1. Particle-phase samples were 

extracted with MTBE:acetone 1:1 or methanol to determine neutral volatile PFC or ionic 

PFC, respectively. Mass-labeled internal and injection standards were applied. Detection of 

MTBE:acetone extracted PFC was performed by GC-MS using positive chemical ionization. 

Methanol-extracted PFC were determined by HPLC-MS/MS. Quantification was based on 

peak areas. Compounds were classified as not detected (n.d.) with signal to noise ratio (S/N) 

below 3 and not quantified (n.q.) with S/N below 10. Analyte concentrations were calculated 

with the internal standards method using a seven point calibration. Internal standards were 

used to correct for analyte losses. Average recovery rates of gas-phase analytes ranged from 

21+/-27 % (13C 4:2 FTOH, n=127) to 68+/-32 % (MeFOSE D7, n=173) for ship-based 

samples and between 21+/-13 % (13C 4:2 FTOH, n=45) and 60+/-27 % (EtFOSE D9, n=118) 

for land-based samples. Average recovery rates for particle-bound analytes were between 

41+/-15 % (13C 4:2 FTOH, n=117) and 123+/-76 % (13C PFUnDA, n=43) for ship-based 

samples and between 24+/-31 % (13C 4:2 FTOH, n=47) and 106 +/-48 % (13C PFDoDA, 

n=103) for BAR samples. Analytical performance of particle extraction strongly depended on 

the particle load and kind of particles and was worst with much pollen (land-based samples) 

or sea salt (ship-based samples) on filters. See SI for further information. 

The uncertainty of the analysis of gas-phase analytes including sampling based on paired 

measurements (ISO-20988, 2007) (n=30) was 0.2 (Me2FOSA) and 2.7 pg m-3 (8:2 FTOH). 

The combined uncertainty ranged between 0.3 and 5.3 pg m-3. The uncertainty of the 

measurement relative to average ship-based concentrations ranged between 13 % (8:2 FTOH) 

and 163 % (PFOSA). Given the high uncertainty, results for analytes such as PFOSA are 

rather qualitative than quantitative. The measurement uncertainties for analytes determined in 

the particle phase were not calculated due to the lack of a sufficient number of paired 

measurements. However, because of low concentrations and low particle loads it was 

expected to be larger. Additional details are presented in the supporting information.  

Blanks 

Solvent blanks (for gaseous samples) and filter blanks (for particle samples) were taken with 

each set of samples that was extracted. Most of the compounds were detected in solvent and 
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filter blanks at very low concentrations (on average 0.2 pg m-3 and 0.7 pg m-3, respectively). 

Therefore, all concentrations reported were blank-corrected. Except for FTOH in the particle 

phase, field blanks were usually in the range of solvent and filter blanks revealing that 

contamination was most likely not due to sampling or sample handling.  

Trajectory Analysis 

Seven days air mass backward trajectories were calculated with the model Hysplit 4.8 using 

NCEP’s Global Data Assimilation System data with 1 degree latitude/longitude resolution 

provided by NOAA-Air Resources Laboratory (Draxler and Rolph, 2003). Trajectories were 

calculated for intervals of three and six hours with the sampling height as arrival height.  

Statistical Analysis 

Because particle-phase concentrations were often close to the detection limit only gas-phase 

data were statistically evaluated. Concentrations of poly- and perfluorinated compounds were 

tested for normal distribution. The differences between hemispheric average concentrations 

were evaluated using the t-test. Normal-distributed analytes concentrations in the gas phase 

were tested for correlation using Pearson Correlation.  

Atmospheric Residence Times 

An important parameter that influences the transport of a substance in the atmosphere is the 

substance’s atmospheric life or residence time. Using the spatial and temporal variability of 

mixing ratios of atmospheric trace gases, Junge (1974) developed the empirical relation 

τ x σ = 0.14 years to estimate the atmospheric residence time of a compound (τ) with σ being 

the relative standard deviation of the mixing ratio. It was already applied to obtain 

atmospheric residence times of several compounds such as methyl bromide (Colman et al., 

1998), mercury (Slemr et al., 1981), PCB (Anderson and Hites, 1996; Manchester-Neesvig 

and Andren, 1989; Panshin and Hites, 1994), or recently FTOH (Piekarz et al., 2007). The 

Junge relation assumes one uniformly distributed sink. The compounds of interest are 

supposed to be measured at several locations for at least 1 year and the error of measurement 

should be smaller than the mixing ratio variance in space and time. FTOH, FTA, FASA, and 

FASE are primarily removed by OH radicals. Partitioning to the ocean or the particle phase is 

negligible for FTOH and FTA, however, it might play a minor role for FASA and FASE. In 

this study, the data base consists of one data set covering a large area with single (ship-based) 
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measurements and another that comprises a 14 months time series at one (land-based) 

location. We calculated the atmospheric residence time for both data sets separately, i.e. using 

a temporal and a spatial approach. Since Colman et al. (1998) suggested to use only samples 

remote from sources to decouple the empirical variability from individual source strengths, 

we excluded ship-based samples that were taken close to or directly influenced by air masses 

arriving from potential source regions. For both data sets, the measurement uncertainty was 

lower than the standard deviations of the data sets used. 

An alternative method estimating of the residence time of gases that partition to the particle 

phase was suggested by Manchester-Neesvig and Andren (1989). Given a residence time of 

particles in the northern hemisphere of 6 days (Manchester-Neesvig and Andren, 1989), the 

residence time of the gas would be 6/φ with φ being the fraction of the gas in a given volume 

that is associated with particles. Residence times of MeFOSA, EtFOSA, MeFBSE, MeFOSE 

and EtFOSE were calculated with this method. For the remaining analytes, partition to the 

particle was not relevant or the data base was not sufficient enough.  

3. Results & Discussion 

PFC Concentrations 

Neutral volatile and semi volatile PFC were detected almost exclusively in the gas phase. 

Only MeFBSA, MeFOSA, EtFOSA, MeFBSE, MeFOSE, and EtFOSE were observed on 

particles. On average, the particle-phase contribution of these compounds did not exceed 

20 %. PFC gas-phase concentrations are presented in table S4-21. PFC, although to a different 

degree, were detected in all, even in Antarctic air samples in concentrations above laboratory 

and/or field blanks demonstrating the atmospheric long-range transport of these compounds as 

well as their global distribution. Total gas-phase concentrations of ship-based samples ranged 

from 4.5 pg m-3 in the Southern Ocean to 335 pg m-3 in source regions. Concentrations of 

8:2 FTOH, the analyte that was usually observed in highest concentrations, were between 1.8 

and 130 pg m-3. Overall, gas-phase PFC concentrations of this study are in the same range as 

in studies covering similar locations (Barber et al., 2007; Jahnke et al., 2007b; Shoeib et al., 

2006). Concentrations of individual particle-bound precursors were usually below 1 pg m-3. 

Maximum particle-phase concentrations were reached for MeFOSE in the port of Hamburg 

(9 pg m-3). MeFOSA and MeFOSE were the compounds that were most frequently observed. 

FASE were observed in higher concentrations than FASA.  
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Of ionic PFC, only PFBS, PFHxS, PFOS, PFBA, PFPA, PFHxA, PFOA, PFNA, PFDA, 

PFUnDA, PFDoDA, and PFTriDA were detected in the particle fraction (table 4-S22). Most 

frequently, PFOS, PFBA, PFHxA, PFOA, PFNA, and PFDA were quantified. The average 

concentrations of individual PFSA (< 0.3 pg m-3) were lower than those of PFCA (<1 pg m-3). 

Maximum concentrations were observed for PFOS (2 pg m-3) and PFOA (6 pg m-3) in 

samples taken in the German Bight. Concentrations of ionic PFC in the particle phase were 

quite similar to those observed by Jahnke et al. (2007b) during a campaign from Bremerhaven 

to Cape Town. The average PFOS concentration of ship-based samples was lower than that of 

land-based samples whereas the concentration averages of PFOA and other PFCA were 

higher in samples taken onboard the ships. Since PFCA are ubiquitously distributed in ocean 

waters (Wei et al., 2007; Yamashita et al., 2008) this may indicate that sea spray contains and 

transports PFCA. However, sorption of gaseous PFCA to the glass fiber filters was described 

by Arp and Goss (2008) and particle-phase concentrations may therefore be biased.  

PFC Composition 

The mean PFC gas-phase composition of the entire set of ship-based samples was quite 

similar to the annual average PFC composition at the land-based site in Germany (table 4-1). 

In all of the gas-phase samples, FTOH were the dominant class of compounds, followed by 

FASA, FASE, and FTA. With a contribution of more than 40 % on average, 8:2 FTOH was 

the main individual gas-phase PFC in all but four 1-day samples and the parallel 3-day sample 

(sample ID 2-6, 114). In these samples 6:2 FTOH was occurring in highest proportions. The 

gas-phase PFC compositions corroborate results of other studies in Europe and the Atlantic 

Ocean (Barber et al., 2007; Jahnke et al., 2007b; Shoeib et al., 2006). PFC compositions 

changed to some extend in specific source regions (see below). For example, samples close to 

the Canadian Coast (sample ID 95, 98) contained elevated proportions of ΣFASA and ΣFASE 

(18 % and 11 %, respectively). A sample taken in the shipyard of Las Palmas (ID 84) was 

characterized by strongly elevated EtFOSA proportions (20 %). In a sample taken close to 

Cape Town (ID 36) an increased proportion of MeFOSA (7 %) was observed. Neutral 

particle-phase analytes were on average dominated by the class of FASE with MeFOSE in 

highest proportions. This was more pronounced at the land-based site. PFCA occurred in 

higher proportions in ship-based than in land-based samples where similar proportions of 

PFSA and PFCA were observed.  
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Table 4-1: Gas- and particle-phase PFC composition (%) of ship-based and land-based air samples. 

Particle-phase neutral and ionic PFC were evaluated separately.  

 gas-phase proportion (%) particle-phase proportion (neutral and ionic analytes; %) 

compound 

ship 

average 

BAR 

average 

ship 

average 

BAR 

average compound 

ship 

average 

BAR 

average 

4:2 FTOH 0 0 0 0 PFBS 1 0 

6:2 FTOH 13 14 0 0 PFHxS 2 0 

8:2 FTOH 42 40 0 0 PFHpS 0 1 

10:2 FTOH 14 11 0 0 PFOS 5 54 

12:2 FTOH 6 5 0 0 PFDS 0 0 

Σ FTOH 76 84 0 0 Σ PFSA 8 56 

6:2 FTA 3 1 0 0 PFBA 29 14 

8:2 FTA 2 2 0 0 PFPA 1 1 

10:2 FTA 0 1 0 0 PFHxA 7 3 

Σ FTA 5 5 0 0 PFHpA 6 1 

MeFBSA 3 1 0 0 PFOA 14 13 

MeFOSA 4 2 27 1 PFNA 7 3 

Me2FOSA 0 0 0 0 PFDA 22 3 

EtFOSA 2 1 9 1 PFUnDA 2 2 

PFOSA 1 0 0 6 PFDoDA 3 1 

Σ FASA 11 5 37 7 PFTriDA 1 0 

MeFBSE 2 2 8 4 PFTeDA 0 1 

MeFOSE 6 1 37 58 PFHxDA 0 0 

EtFOSE 1 1 18 30 PFOcDA 0 0 

Σ FASE 9 4 63 93 Σ PFCA 92 44 

 

Composition of FTOH was also expressed as concentration ratios of 6:2 FTOH to 8:2 FTOH 

to 10:2 FTOH relative to the FTOH of lowest concentration as suggested by Piekarz et al 

(2007). The average FTOH ratio of ship-based samples was the same as that of the 14 months 

average land-based samples (1.1 to 3.0 to1.0). Average FTOH ratios varied between the North 

Atlantic >60°N (9.7 to 4.8 to 1.0), temperate Atlantic (1.2 to 3.2 to 1.0), tropical Atlantic (1.0 

to 3.2 to 1.7), and Southern Ocean (1.0 to 11.7 to 5.0). Based on these regional average ratios, 

there was an overall decrease of 6:2 FTOH contributions and an increase of 10:2 FTOH from 

the north towards the south; 8:2 FTOH contribution increased from its potential source region 

in temperate regions towards the north and the south. As observed by Piekarz et al. (2007) 

there was an overall enrichment of 8:2 FTOH relative to indoor air studies (Barber et al., 

2007; Shoeib et al., 2008) assuming far more (diffuse) sources, as indicated by several studies 
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(Dinglasan-Panlilio and Mabury, 2006; Fiedler et al., submitted; Jensen et al., 2008; Paul et 

al., 2009; Sinclair et al., 2007).  

Correlation Analyses 

Correlation analyses revealed that almost all volatile PFC were significantly correlated, 

although to different degrees (table S4-23). Correlations were particularly high between 

8:2 FTOH, 10:2 FTOH, 12:2 FTOH, 8:2 FTA, and 10:2 FTA. Fluorotelomer alcohols are 

used as precursors to produce FTA for fluorotelomer-based polymers (Prevedouros et al., 

2006). Overall, results of the correlation analysis indicate that volatile PFC in the lower 

troposphere of the Atlantic Ocean have similar sources and are principally transported by the 

same process. Partitioning of FASA and FASE to the particles may have resulted in lower 

correlation coefficients to FTOH and FTA.  

Spatial Distribution 

In figure 4-2, the geographical distribution of PFC gas-phase concentrations is exemplarily 

presented for 8:2 FTOH. Spatial distribution as well as the order of magnitude appear to be 

well represented by modeling results of Wallington et al. (2006). The spatial trend observed 

for 8:2 FTOH is, independently of the actual contamination level, similar for all gas-phase 

analytes. Gas-phase PFC concentrations between continental (land-based site) and marine air 

masses differed up to two orders of magnitude. The 14 months average ΣPFC gas-phase 

concentration at the land-based site was about 140 pg m-3. The maximum concentration at this 

site was above 900 pg m-3 (Dreyer et al., 2009). The 14 months average concentration of 8:2 

FTOH was 60 pg m-3. At maximum, almost 600 pg m-3 were reached. These concentrations 

are comparable to those observed at similar (Jahnke et al., 2007a) or other urban sites such as 

Manchester (Barber et al., 2007) or Toronto (Martin et al., 2002; Shoeib et al., 2006; Stock et 

al., 2004) and are being discussed in detail by Dreyer et al. (2009). PFC concentrations 

decreased from coastal areas towards the open sea. However, the actual concentrations 

strongly depended on the air mass history: whenever air masses recently arrived from 

populated and/or industrial areas, PFC concentrations in coastal areas increased up to one 

order of magnitude. This is exemplarily presented for selected samples in figure 4-3 and is 

discussed in detail for the German Bight region in Dreyer and Ebinghaus (2009).  
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Figure 4-2: Spatial distribution of 8:2 FTOH gas-phase concentrations determined during several cruises 

in the Baltic Sea, the Atlantic and Southern Ocean. Note that the close-up of the Baltic Sea region is not to 

scale.  
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Sample ID 67: ΣPFC 80 pg m-3 

 
Sample ID 13: ΣPFC 125 pg m-3

 
Sample ID 95: ΣPFC 62 pg m-3

 
Sample ID 64: ΣPFC 34 pg m-3 

 
Sample ID 12: ΣPFC 62 pg m-3 

 
Sample ID 93: ΣPFC 15 pg m-3 

 
Figure 4-3: Total gas-phase PFC concentrations as a function of air mass history that is expressed as back 

trajectories of selected samples for three different regions (Baltic Sea, Northwest Africa, Northeast 

America). Upper graphs reveal the high-concentration conditions, lower graphs the low-concentration 

conditions of respective regions. Asterisks mark the ship’s positions, respectively. Triangles show the 

position of the air parcel in twelve hours intervals for. Additionally, plots are provided presenting the 

trajectory heights. 

 

Lowest PFC concentrations in the northern hemisphere were determined in marine air masses 

that were sampled in the middle of the North Atlantic Ocean. There, ΣFTOH concentrations 

were around 15 pg m-3. ΣFASA+FASE concentrations were below 5 pg m-3, and ΣFTA 

concentrations were below 1 pg m-3. Shoeib et al. (2006) analyzed three FTOH, MeFOSE, 

and EtFOSE in the North Atlantic (at about 60 °N) and the Canadian Archipelago in 2005 and 

observed average concentrations of 16.3, 8.3, and 1.9 pg m-3, respectively. The average 

concentrations of Atlantic samples only were 11, 6, and 1 pg m-3. In contrast to our findings, 

Shoeib et al (2006) observed significant amounts of FTOH attached to particles. Compared to 

the marine air masses discussed above, arctic air sampled close to Svalbard, Norway, was 

characterized by around twice as high PFC concentrations. These elevated concentrations may 

reveal the more concentrated human activity in that region compared to the open ocean.  

Concentrations of PFC sampled in air of the tropical Atlantic Ocean were generally 

comparable to those of the North Atlantic. Elevated concentrations of MeFBSE were probably 

due to contamination that may have occurred by painting works on a deck below the 

samplers. Lowest concentrations in the southern hemisphere were observed in the Southern 
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Ocean. There, 6:2 FTOH, 8:2 FTOH, and 10:2 FTOH were detected in concentrations up to 

4 pg m-3. These concentrations were in the same order of magnitude as those of individual 

PCBs and organochlorine pesticides determined in similar latitudes by passive and active air 

sampling (Choi et al., 2008; Montone et al., 2005). Concentrations of FASA and FASE 

determined for that region were close to the field blanks and are therefore not further 

discussed.  

Gas-phase PFC concentrations as function of latitude are presented exemplarily for 8:2 FTOH 

in figure 4-4 because concentration gradients were most obvious for analytes of highest 

concentration. Roughly, PFC concentrations decreased from the northern hemispheric mid 

latitudes (Central Europe) towards the north and the south. Strongly elevated 8:2 FTOH 

concentrations at about 30°N are from source region related samples at or close to the Canary 

Islands before being sampled. This is consistent with findings for persistent organic pollutants 

such as PCB, PBDE or organochlorine pesticides (Jaward et al., 2004a; Jaward et al., 2004b; 

Luek et al., 2008) and for some FTOH and FASA during a cruise from Bremerhaven to Cape 

Town (Jahnke et al., 2007b). Except for samples taken in subtropical regions of the northern 

hemisphere, actual concentration values of volatile PFC sampled in 2007/8 (this study) and 

2005 (Jahnke et al., 2007b) were quite similar. In northern hemispheric subtropical regions, 

this study’s samples were characterized by higher precursor concentration than those of 2005, 

which is most likely a result of air mass origin. 

 
Figure 4-4: 8:2 FTOH gas-phase concentrations (pg m-3) as function of latitude. The very high 

concentration observed at about 30°N is most properly due to the urban influence of the Canary Islands.  
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On average, southern hemispheric overall and marine background concentrations of 

precursors in the gas and particle-phase were lower than those of the northern hemisphere 

(table 4-2). Hemispheric concentrations were significantly different for most of the gas phase 

FTOH and selected FASA and FASE.  

 
Table 4- 2: Average gas and particle-phase concentrations (cg; cp) of volatile PFC in the northern (NH) 

and southern (SH) hemisphere and average marine background concentrations in the northern (BG-NH) 

and southern (BG-SH) hemisphere (pg m-3). a Average concentrations are significantly different at the 

p<0.05 level. b concentrations are significantly different at the p<0.1 level. Note, that the assignment of 

samples to the north or south hemisphere was dependent on the position of the Intertropical Convergence 

Zone (ITCZ). For calculation of the marine background concentrations only those samples were chosen 

that were not influenced by land-derived air masses. Background average concentrations for the particle 

phase were not calculated. 

  

cg (NH)  

(all samples) 

pg m-3, n=66 

cg (SH)  

 (all samples) 

pg m-3, n=39 

cg (BG – NH) 

 (BG samples)

pg m-3, n=16 

cg (BG – SH) 

 (BG samples)

pg m-3, n=28 

cp (NH)  

 (all samples) 

pg m-3, n=63 

cp (SH)  

 (all samples) 

pg m-3, n=34 

4:2FTOH 0.1 0.0 0.1 0.0 0.0 0.0 

6:2FTOH 9.0 1.7 5.2 a 1.2 a 0.2 0.0 

8:2FTOH 27 a 7.8 a 9.1 a 6.0 a 0.5 0.1 

10:2FTOH 8.1 a 3.6 a 2.7 2.7 0.1 0.1 

12:2FTOH 4.1 a 1.5 a 2.0 a 1.0 a 0.5 0.0 

Σ FTOH 47 a 16 a 19 a 11 a 1.3 0.3 

6:2FTA 1.6 1.3 0.9 1.0 0.0 0.0 

8:2 FTA 1.5 a 0.4 a 0.4 0.2 0.0 0.0 

10:2FTA 0.6 a 0.1 a 0.1 0.0 0.0 0.0 

Σ FTA 3.6 a 1.8 a 1.4 a 1.2 a 0.0 0.0 

MeFBSA 2.0 a 0.3 a 1.0 a 0.2 a 0.0 0.0 

MeFOSA 2.3 a 0.8 a 1.0 b 0.6 b 0.5 0.0 

Me2FOSA 0.3  0.0  0.1 0.0 0.0 0.0 

EtFOSA 2.2 b 0.4 b 0.4 0.3 0.3 0.0 

PFOSA 0.8 0.0 0.2 a 0.0 a 0.0 0.0 

Σ FASA 7.6 a 1.5 a 2.8 a 1.1 a 0.7 0.0 

MeFBSE 1.2 a 0.3 a 0.6 0.3 0.1 0.1 

MeFOSE 2.0 2.2 1.4 1.6 0.5 0.2 

EtFOSE 0.7 0.6 0.4 0.5 0.5 0.3 

�Σ FASE 3.8 3.0 2.2 2.2 1.1 0.6 

Total 62 a 21 a 26 a 16 a 4.3 0.8 
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Atmospheric Residence Times 

Atmospheric residence times calculated by the Junge method (1974) and the partitioning ratio 

(Manchester-Neesvig and Andren, 1989) are presented in table 4-3.  

 

Table 4-3: Atmospheric residence times (τ) in days based on the Junge relation and the partitioning ratio 

of a gaseous substance to particles. n.c.: not calculated, due to lack of data. 

  τ (Junge relation; d) τ (partition ratio; d) 

  ship samples BAR samples ship samples BAR samples 

4:2 FTOH n.c. n.c. n.c. n.c. 

6:2 FTOH 39 52 n.c. n.c. 

8:2 FTOH 56 48 n.c. n.c. 

10:2 FTOH 66 46 n.c. n.c. 

12:2 FTOH 48 26 n.c. n.c. 

6:2 FTA 33 30 n.c. n.c. 

8:2 FTA 33 33 n.c. n.c. 

10:2 FTA 23 30 n.c. n.c. 

MeFBSA 39 40 n.c. n.c. 

MeFOSA 46 53 36 n.c. 

Me2FOSA n.c. n.c. n.c. n.c. 

EtFOSA 27 55 57 n.c. 

PFOSA n.c. n.c. n.c. n.c. 

MeFBSE 42 50 66 n.c. 

MeFOSE 46 49 30 35 

EtFOSE 38 53 15 n.c. 

 

Residence times varied between the different approaches up to a factor of 2, in case of 

EtFOSE by a factor of 3.5. Residence times calculated for FTOH were between those 

estimated by Piekarz (2007) using the Junge method (50 d, 80 d, and 70d, for 6:2 FTOH, 

8:2 FTOH, and 10:2 FTOH, respectively) and atmospheric lifetimes of 20 days determined in 

smog chamber studies (Ellis et al., 2003). Except for MeFBSE, atmospheric residence times 

of FASA and FASE were in the same range as lifetimes determined in smog chamber studies 

(D'Eon et al., 2006; Martin et al., 2006). The study of D’eon et al. (2006) revealed a MeFBSE 

lifetime of 2 days, which is one order of magnitude below the atmospheric residence time 

estimated here. Similar differences of atmospheric residence times determined here and those 

observed in the lab were observed for FTA (Butt et al., 2009). However, limitations of the 

indirect methods to estimate the atmospheric residence times should be taken into account. 



 

STUDY 4  REFERENCES 

 

 189

Samples that were collected at different locations do not reflect potential seasonal changes. In 

ship-based samples FASA and FASE were often observed in concentrations close to the 

detection limit. Furthermore, the analytical method of trace amounts of PFC might not be as 

precise as required to get accurate residence times. Considering these limitations, atmospheric 

residence times determined here are in good agreement to those observed in other studies. 

These results give further evidence that volatile polyfluorinated precursor compounds are 

subject to atmospheric long-range transport and therefore may contribute signficantly to the 

contamination of remote regions with  persistent PFCA and PFSA.  
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Chemicals 

 
Table S4-1: Solvents and gases used for the analysis of PFC in air samples. 

substances abbreviation purity producer 

ethyl acetate - Picograde Promochem, Wesel, Germany 

acetone - Picograde Promochem, Wesel, Germany                          

methyl-tert-butylether MTBE Picograde Promochem, Wesel, Germany 

methanol MeOH Residue Analysis J.T. Baker, Griesheim, Germany 

nitrogen - 6.0 Air Liquide, Germany 

 
Table S4-2: Mass-labeled standard compounds used for the analysis of PFC in air samples. 

substances abbreviation 

purity 

(%) producer 

2-Perfluorohexyl-(13C2)-ethanol 13C 6:2 FTOH > 98 Wellington Laboratories, Guelph, Canada 

2-Perfluorooctyl-(13C2)-ethanol 13C 8:2 FTOH > 98 Wellington Laboratories, Guelph, Canada 

2-Perfluorodecyl-(13C2)-ethanol 13C 10:2 FTOH > 98 Wellington Laboratories, Guelph, Canada 

methyl-D3-perfluorooctane sulfonamide D3 MeFOSA > 98 Wellington Laboratories, Guelph, Canada 

ethyl-D5-perfluorooctane sulfonamide D5 EtFOSA > 98 Wellington Laboratories, Guelph, Canada 

methyl-D7-perfluorooctane sulfonamido ethanol D7 MeFOSE > 98 Wellington Laboratories, Guelph, Canada 

ethyl-D9-perfluorooctane sulfonamido ethanol D9 MeFOSE > 98 Wellington Laboratories, Guelph, Canada 

perfluoro-(13C4)-butanoic acid 13C PFBA >98 Wellington Laboratories, Guelph, Canada 

perfluoro-(13C4)-hexanoic acid 13C PFHxA >98 Wellington Laboratories, Guelph, Canada 

perfluoro-(13C4)-octanoic acid 13C PFOA >98 Wellington Laboratories, Guelph, Canada 

perfluoro-(13C4)-nonanoic acid 13C PFNA >98 Wellington Laboratories, Guelph, Canada 

perfluoro-(13C4)-decanoic acid 13C PFDA >98 Wellington Laboratories, Guelph, Canada 

perfluoro-(13C4)-undecanoic acid 13C PFUnDA >98 Wellington Laboratories, Guelph, Canada 

perfluoro-(13C4)-dodecanoic acid 13C PFDoA >98 Wellington Laboratories, Guelph, Canada 

sodium perfluoro-(18O2)-hexane sulfonate 18O2-PFHxS >99 Wellington Laboratories, Guelph, Canada 

sodium perfluoro-(13C4)-octane sulfonate 13C-PFOS >98 Wellington Laboratories, Guelph, Canada 

sodium perfluoro-(13C4)-octane sulfinate 13C-PFOSi ~90 Wellington Laboratories, Guelph, Canada 

hexachlorobenzene 13C6  13C HCB 97 Dr. Ehrenstorfer, Augsburg, Germany 

1,3,5-trichlorobenzene D3  TCB D3 98 Aldrich, Munich, Germany 

2,4-dichlorophenol 13C6 13C DCP >99 Dr. Ehrenstorfer, Augsburg, Germany 

perfluorooctane sulfonamido-D5-acetic acid  D5 EtFOSAA >98 Wellington Laboratories, Guelph, Canada 
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Table S4-3: Analyte standards used for the analysis of PFC in air samples. 

substances abbreviation 
purity 

(%) 
producer 

perfluorobutyl ethanol  4:2 FTOH 97 Aldrich, Munich, Germany 

perfluorohexyl ethanol  6:2 FTOH 97 Lancaster Synthesis, Frankfurt, Germany 

perfluorooctyl ethanol  8:2 FTOH 97 Lancaster Synthesis, Frankfurt, Germany 

perfluorodecyl ethanol  10:2 FTOH 97 Lancaster Synthesis, Frankfurt, Germany 

perfluorododecyl ethanol  12:2 FTOH - 
donated by Jones group, Lancaster 

University, UK 

perfluorohexyl ethylacylate  6:2 FTA 97 Aldrich, Munich, Germany 

perfluorooctyl ethylacylate 8:2 FTA 97 Fluorochem, Old Glossop, UK 

perfluorodecyl ethylacylate  10:2 FTA 97 Fluorochem, Old Glossop, UK 

n-methyl perfluorobutane sulfonamide  MeFBSA - donated by 3M, Germany 

n-methyl perfluorooctane sulfonamide  MeFOSA - donated by 3M, Germany 

n-ethyl perfluorooctane sulfonamide EtFOSA 95 ABCR, Karlsruhe, Germany 

perfluorooctane sulfonamide  PFOSA - donated by 3M, USA 

dimethylperfluoroocatane sulfonamide  Me2FOSA 98 Wellington Laboratories, Guelph, Canada 

n-methyl perfluorobutane sulfonamido ethanol  MeFBSE - donated by 3M, USA 

n-methyl perfluorooctane sulfonamidoethanol MeFOSE - donated by 3M, USA 

n-ethyl perfluorooctane sulfonamido ethanol EtFOSE - 
donated the Mabury group, Toronto 

University, Canada 

potassium perfluorobutane sulfonate PFBS-K 98 ABCR, Karlsruhe, Germany 

potassium perfluorohexane sulfonate PFHxS-K 98 Fluka, Buchs, Switzerland 

potassium perfluorooctane sulfonate PFOS-K 98 Fluka, Buchs, Switzerland 

potassium perfluorodecane sulfonate PFDS-K >98 Wellington Laboratories, Guelph, Canada 

perfluorobutanoic acid PFBA 99 ABCR, Karlsruhe, Germany 

perfluoropentanoic acid PFPA 98 Alfa Aesar, Karlsruhe, Germany 

perfluorohexanoic acid PFHxA 98 ABCR, Karlsruhe, Germany 

perfluoroheptanoic acid PFHpA 98 Lancaster Synthesis, Frankfurt, Germany 

perfluorooctanoic acid PFOA 95 Lancaster Synthesis, Frankfurt, Germany 

perfluorononanoic acid PFNA 98 Alfa Aesar, Karlsruhe, Germany 

perfluorodecanoic acid PFDA 98 ABCR, Karlsruhe, Germany 

perfluoroundecanoic acid PFUnDA 96 ABCR, Karlsruhe, Germany 

perfluorododecanoic acid PFDoDA 96 Alfa Aesar, Karlsruhe, Germany 

perfluorotridecanoic acid PFTrDA >98 Wellington Laboratories, Guelph, Canada 

perfluorotetradecanoic acid PFTeDA 96 Alfa Aesar, Karlsruhe, Germany 

perfluorohexadecanoic acid PFHxDA 95 Alfa Aesar, Karlsruhe, Germany 

perfluorooctadecanoic acid PFOcDA 97 Alfa Aesar, Karlsruhe, Germany 

sodium perfluorohexane sulfinate PFHxSi 98 Wellington Laboratories, Guelph, Canada 

sodium perfluorooctane sulfinate PFOSi 98 Wellington Laboratories, Guelph, Canada 

sodium perfluorodecane sulfinate PFDSi 98 Wellington Laboratories, Guelph, Canada 
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Detection & Quantification Limits 

 
Table S4-4: Instrumental detection limits (LOD), instrumental quantification limits (LOQ), method 

quantification limits (MQL), and method detection limits (MDL) for neutral volatile and semi-volatile 

polyfluorinated compounds determined in the gas phase (g) and particle phase (p) based on signal to noise 

ratios. 

 MQL(g) MDL(g) MQL(p) MDL(p) LOQ  LOD  LOQ  LOD  

 pg m-3 pg m-3 pg m-3 pg m-3 pg µL-1 pg µL-1 pg abs. pg abs. 

4:2 FTOH <1.2 0.5 n.d. n.d. 1.1 0.8 2.1 1.7 

6:2 FTOH <0.9 <0.9 n.q. n.q. 1.1 0.9 2.2 1.8 

8:2 FTOH <1.8 <1.8 n.q. n.q. 1.0 0.8 2.0 1.6 

10:2 FTOH <0.7 <0.7 n.q. n.q. 1.0 0.8 2.0 1.6 

12:2 FTOH 0.4 0.4 n.q. n.q. 1.0 0.8 2.0 1.6 

6:2 FTA 0.5 0.5 n.d. n.d. 0.2 0.1 0.4 0.2 

8:2 FTA 0.1 0.1 n.d. n.d. 0.2 0.1 0.4 0.2 

10:2 FTA <0.1 <0.1 n.d. n.d. 0.2 0.1 0.4 0.2 

MeFBSA <0.3 <0.3 n.d. n.d. 0.2 0.1 0.4 0.2 

MeFOSA <0.4 <0.4 0.1 <0.1 0.2 0.1 0.4 0.2 

Me2FOSA 0.5 <0.1 n.d. n.d. 0.1 0.0 0.2 0.0 

EtFOSA 0.1 <0.1 0.2 <0.2 0.2 0.1 0.4 0.2 

PFOSA 0.5 <0.5 <23 <23 8.2 4.1 16.4 8.2 

MeFBSE 0.1 <0.1 1.6 <1.5 0.2 0.1 0.4 0.2 

MeFOSE 0.4 0.2 0.1 <0.1 0.2 0.1 0.4 0.2 

EtFOSE 0.1 <0.1 0.3 <0.3 0.4 0.2 0.9 0.4 
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Table S4-5: Instrumental detection limits (LOD), instrumental quantification limits (LOQ), method 

quantification limits (MQL), and method detection limits (MDL) for ionic polyfluorinated compounds 

determined in the particle phase based on signal to noise ratios. 

 MQL MDL LOQ  LOD  LOQ  LOD  

 pg m-3 pg m-3 pg µL-1 pg µL-1 pg abs. pg abs. 

PFBS 0.3 0.1 0.05 0.02 0.5 0.2 

PFHxS 0.2 0.1 0.05 0.02 0.5 0.2 

PFHpS 0.3 <0.3 0.05 0.02 0.5 0.2 

PFOS 0.1 <0.05 0.1 0.05 1.0 0.5 

PFDS 0.4 n.d. 0.05 0.02 0.5 0.2 

PFHxSi 0.5 n.d. 0.1 0.05 1.0 0.5 

PFOSi n.q. n.q. 0.05 0.02 0.5 0.2 

PFDSi 0.5 n.d. 0.1 0.05 1.0 0.5 

PFBA 0.1 <0.1 0.2 0.2 2.0 2.0 

PFPA 0.4 <0.05 0.1 0.05 1.0 0.5 

PFHxA <0.05 <0.05 0.1 0.05 1.0 0.5 

PFHpA 0.1 <0.1 0.1 0.05 1.0 0.5 

PFOA <<1.8 <<1.8 0.1 0.05 1.0 0.5 

PFNA <0.05 <0.05 0.1 0.05 1.0 0.5 

PFDA 0.1 0.05 0.1 0.05 1.0 0.5 

PFUnDA <0.1 <0.1 0.2 0.1 2.0 1.0 

PFDoDA <0.2 <0.2 0.1 0.05 1.0 0.5 

PFTriDA 0.2 <0.2 0.1 0.05 1.0 0.5 

PFTeDA 0.2 <0.2 0.2 0.10 2.0 1.0 

PFHxDA n.d. n.d. 0.2 0.10 2.0 1.0 

PFOcDA n.d. n.d. 0.2 0.10 2.0 1.0 
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Recovery Rates 

 
Table S4-6: Recovery rates (R, %) of mass-labeled PFC in the gas phase of ship-based samples. S.D.: 

Standard deviation (%). 

  n Raverage (%) Rmin (%) Rmax (%) S.D. (%) 

4:2 FTOH 13C 127 21 1 172 27 

6:2 FTOH 13C 173 46 2 201 29 

8:2 FTOH 13C 173 50 2 242 26 

10:2 FTOH 13C 171 58 2 200 37 

EtFOSA D5 173 61 11 298 33 

MeFOSA D3 173 49 10 200 22 

MeFOSE D7 173 68 19 351 32 

EtFOSE D9 166 66 14 161 27 

 
Table S4-7: Recovery rates (%) of mass-labeled PFC in the particle phase of ship-based samples. S.D.: 

Standard deviation. 

  n Raverage (%) Rmin (%) Rmax (%) S.D. (%) 

4:2 FTOH 13C 117 41 8 102 15 

6:2 FTOH 13C 118 46 1 108 18 

8:2 FTOH 13C 116 49 9 259 25 

10:2 FTOH 13C 119 73 5 492 67 

EtFOSA D5 119 53 17 118 16 

MeFOSA D3 119 49 18 119 14 

MeFOSE D7 119 58 13 122 17 

EtFOSE D9 119 61 16 130 20 
18O2-PFHxS 43 71 27 172 36 
13C-PFOS 43 92 29 258 51 
13C-PFOSi 43 82 26 241 49 
13C-PFBA 43 64 9 177 36 
13C-PFHxA 43 61 26 162 29 
13C-PFOA 43 67 19 197 43 
13C-PFNA 43 74 22 276 48 
13C-PFDA 43 108 37 313 68 
13C-PFUDA 43 123 20 421 76 
13C-PFDoA 43 106 8 344 59 
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Table S4-8: Recovery rates (%) of mass-labeled PFC in the gas phase of land-based samples. S.D.: 

Standard deviation. 

  n Raverage (%) Rmin (%) Rmax (%) S.D. (%) 

4:2 FTOH 13C 45 21 1 58 13 

6:2 FTOH 13C 109 39 0 128 20 

8:2 FTOH 13C 118 49 1 133 23 

10:2 FTOH 13C 118 45 0 170 32 

EtFOSA D5 118 45 9 99 19 

MeFOSA D3 118 41 8 135 19 

MeFOSE D7 118 60 20 196 27 

EtFOSE D9 115 59 15 134 21 

 
Table S4-9: Recovery rates (%) of mass-labeled PFC in the particle phase of land-based samples. S.D.: 

Standard deviation. 

  n Raverage (%) Rmin (%) Rmax (%) S.D. (%) 

4:2 FTOH 13C 47 25 1 87 31 

6:2 FTOH 13C 48 29 1 70 26 

8:2 FTOH 13C 48 27 1 62 15 

10:2 FTOH 13C 47 31 2 94 20 

EtFOSA D5 46 58 2 124 68 

MeFOSA D3 45 52 2 92 71 

MeFOSE D7 47 84 5 161 111 

EtFOSE D9 46 69 7 117 91 
18O2-PFHxS 112 64 2 155 38 
13C-PFOS 112 72 2 232 42 
13C-PFOSi 112 70 2 199 45 
13C-PFBA 105 102 4 302 83 
13C-PFHxA 112 50 1 150 33 
13C-PFOA 112 46 1 120 29 
13C-PFNA 111 58 2 140 31 
13C-PFDA 112 81 3 243 48 
13C-PFUDA 103 104 5 326 76 
13C-PFDoA 102 106 3 303 75 
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Blanks 

 
Table S4-10: Solvent (gas-phase) and filter (particle-phase) blank concentrations of neutral PFC (pg m-3) 

observed during the analysis of ship-based air samples using GC-MS. Field concentrations reported in 

this study were corrected by blank values. 

  Solvent Blanks (n=33, pg m-3) Filter Blanks (n=19, pg m-3) 

  average max average max 

6:2 FTA 0.2 3.2 0.2 1.1 

4:2 FTOH 0.0 0.1 n.d. n.d. 

6:2 FTOH 0.2 1.9 0.3 1.2 

8:2 FTA n.d. n.d. 0.0 0.1 

8:2 FTOH 0.2 1.7 1.1 2.9 

Me2FOSA n.d. n.d. 0.0 0.0 

10:2 FTA n.d. n.d. n.d. n.d. 

10:2 FTOH 0.1 1.5 1.1 2.1 

12:2 FTOH 0.0 0.4 1.1 2.2 

EtFOSA 0.0 1.4 0.1 1.4 

MeFBSA n.d. n.d. n.d. n.d. 

MeFOSA 0.0 0.9 0.1 1.7 

MeFOSE 0.2 2.5 0.9 3.0 

MeFBSE 0.2 1.8 0.0 0.7 

EtFOSE 0.1 2.5 0.5 2.0 

PFOSA n.d. n.d. n.d. n.d. 

 
Table S4-11: Filter (particle-phase) blank concentrations of ionic PFC (pg m-3) observed during the 

analysis of ship-based air samples using LC-MS/MS. Field concentrations reported in this study were 

corrected by blank values. 

 Filter Blanks (n=6, pg m-3)   Filter Blanks (n=6, pg m-3) 

  average max    average max 

PFBS 0.3 1.1  PFHpA 0.2 0.8 

PFHxS 0.1 0.2  PFOA 0.7 1.3 

PFHpS 0.0 0.0  PFNA 0.0 0.2 

PFOS 0.5 0.9  PFDA 0.1 0.4 

PFDS 0.0 0.0  PFUnDA 0.2 0.4 

PFHxSi 0.0 0.0  PFDoDA 0.2 0.4 

PFOSi 0.0 0.2  PFTriDA 0.1 0.2 

PFDSi 0.0 0.0  PFTeDA 0.0 0.2 

PFBA 0.2 0.6  PFHxDA 0.1 0.4 

PFPA 0.2 0.6  PFOcDA 0.0 0.0 

PFHxA 0.1 0.2     
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Table S4-12: Gas- and particle-phase field blank concentrations (FldB) of neutral PFC (pg m-3) observed 

during the analysis of ship-based air samples using GC-MS.  

  FldB gas phase (n=14, pg m-3) FldB particle phase (n=6, pg m-3) 

  average max average max 

6:2 FTA 0.6 3.3 0.0 0.0 

4:2 FTOH 0.0 0.6 n.d. n.d. 

6:2 FTOH 0.2 4.0 0.8 4.4 

8:2 FTA 0.0 0.3 0.0 0.0 

8:2 FTOH 0.2 3.5 0.3 1.6 

Me2FOSA n.d. n.d. n.d. n.d. 

10:2 FTA 0.0 0.9 n.d. n.d. 

10:2 FTOH 0.1 2.2 0.2 0.9 

12:2 FTOH 0.0 7.2 0.3 1.4 

EtFOSA 0.0 0.1 0.2 1.3 

MeFBSA 0.0 2.2 n.d. n.d. 

MeFOSA 0.0 2.9 0.6 3.5 

MeFOSE 0.2 23.1 0.0 0.0 

MeFBSE 0.2 0.7 n.d. n.d. 

EtFOSE 0.1 0.5 n.d. n.d. 

PFOSA 0.0 7.2 n.d. n.d. 

 
 

Table S4-13: Particle-phase field blanks (FldB) of ionic PFC (pg m-3) observed during the analysis of ship-

based air samples using LC-MS/MS.  

 FldB particle phase (n=7, pg m-3)   FldB particle phase (n=7, pg m-3)

  average max    average max 

PFBS 0.0 0.1  PFHpA 0.3 0.8 

PFHxS n.d. n.d.  PFOA 0.3 1.4 

PFHpS n.d. n.d.  PFNA 0.2 0.6 

PFOS 0.0 0.1  PFDA 0.1 0.5 

PFDS n.d. n.d.  PFUnDA 0.1 0.6 

PFHxSi n.d. n.d.  PFDoDA 0.1 0.5 

PFOSi 0.0 0.2  PFTriDA 0.0 0.1 

PFDSi n.d. n.d.  PFTeDA n.d. n.d. 

PFBA 0.6 1.4  PFHxDA n.d. n.d. 

PFPA 0.3 1.6  PFOcDA 0.1 0.4 

PFHxA 0.2 1.2        
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Table S4-14: Solvent (gas-phase) and filter (particle-phase) blank concentrations of neutral PFC (pg m-3) 

observed during the analysis of land-based air samples using GC-MS. Field concentrations reported in 

this study were corrected by blank values. 

  Solvent Blanks (n=51, pg m-3) Filter Blanks (n=15, pg m-3) 

  average max average max 

6:2 FTA 0.3 0.8 n.d. n.d. 

4:2 FTOH 0.2 0.6 n.d. n.d. 

6:2 FTOH 0.2 1 0.2 0.5 

8:2 FTA 0.2 0.5 n.d. n.d. 

8:2 FTOH 0.2 0.9 1.1 3.7 

Me2FOSA n.d. n.d. n.d. n.d. 

10:2 FTA 0.2 0.5 n.d. n.d. 

10:2 FTOH 0.1 0.7 0.6 2.7 

12:2 FTOH 0.1 0.8 0.6 2.5 

EtFOSA 0.1 0.3 0.8 2.6 

MeFBSA n.d. n.d. n.d. n.d. 

MeFOSA 0.2 0.4 0.1 0.3 

MeFOSE 0.1 0.7 0.3 1.1 

MeFBSE 0.2 0.3 2.3 2.4 

EtFOSE 0.1 0.8 0.3 1.2 

PFOSA n.d. n.d. n.d. n.d. 

 
Table S4-15: Filter (particle-phase) blank concentrations of ionic PFC (pg m-3) observed during the 

analysis of land-based air samples using LC-MS/MS. Field concentrations reported in this study were 

corrected by blank values. 

  Filter Blanks (n=28, pg m-3)    Filter Blanks (n=28, pg m-3) 

  average max    average max 

PFBS 0.3 1.5  PFHpA 0.1 0.8 

PFHxS 0.3 0.8  PFOA 1.1 2.8 

PFHpS 0 0.1  PFNA 0.2 1.1 

PFOS 1.2 3.5  PFDA 0.2 0.8 

PFDS 0 0  PFUnDA 0.3 0.9 

PFHxSi 0 0.7  PFDoDA 0.2 0.8 

PFOSi 0.2 0.8  PFTriDA 0.1 1 

PFDSi n.d. n.d.  PFTeDA 0.1 0.7 

PFBA 0.6 3.3  PFHxDA 0.1 1.5 

PFPA 0.2 2.8  PFOcDA 0.1 2.3 

PFHxA 0.2 0.5        
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Table S4-16: Gas- and particle-phase field blank concentrations (FldB) of neutral PFC (pg m-3) observed 

during the analysis of land-based air samples using GC-MS.  

  FldB gas phase (n=18, pg m-3) FldB particle phase (n=9, pg m-3) 

  average max average max 

6:2 FTA 1 2.2 n.d. n.d. 

4:2 FTOH 1.4 2.1 n.d. n.d. 

6:2 FTOH 1.3 2.8 n.d. n.d. 

8:2 FTA 0.7 1.6 n.d. n.d. 

8:2 FTOH 0.8 1.8 n.d. n.d. 

Me2FOSA n.d. n.d. n.d. n.d. 

10:2 FTA 0.9 0.9 n.d. n.d. 

10:2 FTOH 1 3 0.4 0.5 

12:2 FTOH 1 2.3 0.3 0.3 

EtFOSA 0.2 0.4 n.d. n.d. 

MeFBSA 0.7 1.2 n.d. n.d. 

MeFOSA 0.6 1.1 0 0.1 

MeFOSE 0.7 1.5 0.1 0.3 

MeFBSE 0.9 0.9 n.d. n.d. 

EtFOSE 0.8 1.6 n.d. n.d. 

PFOSA n.d. n.d. n.d. n.d. 

 
 

Table S4-17: Particle-phase field blank concentrations (FldB) of ionic PFC (pg m-3) observed during the 

analysis of land-based air samples using LC-MS/MS.  

  FldB particle phase (n=12, pg m-3)   FldB particle phase (n=12, pg m-3) 

  average max    average max 

PFBS 0.0 0.0  PFHpA 0.0 0.1 

PFHxS 0.0 0.0  PFOA 0.0 0.0 

PFHpS n.d. n.d.  PFNA 0.0 0.0 

PFOS n.q. 0.0  PFDA 0.0 0.0 

PFDS n.d. 0.0  PFUnDA 0.0 0.0 

PFHxSi n.d. 0.0  PFDoDA 0.0 0.0 

PFOSi 0.0 0.0  PFTriDA 0.0 0.0 

PFDSi n.d. n.d.  PFTeDA n.d. n.d. 

PFBA 0.1 0.1  PFHxDA n.d. n.d. 

PFPA 0.0 0.0  PFOcDA n.d. n.d. 

PFHxA 0.0 0.1        
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Uncertainty of the Method 

 
Table S4-18: Standard uncertainty and combined uncertainty (pg m-3) of the entire method (sampling, 

sample preparation, detection) based on paired measurements (n=30). The uncertainty was calculated 

according to ISO 20988. Parallel samples as well as 1-day samples averaged for three days and 3-day 

samples were used. 

  
standard uncertainty 

(pg m-3) 
combined uncertainty 

(pg m-3) 
4:2 FTOH 0.1 0.1 
6:2 FTOH 1.7 3.3 
8:2 FTOH 2.7 5.3 
10:2 FTOH 1.5 2.9 
12:2 FTOH 1.3 2.5 
6:2 FTA 1.0 2.0 
8:2 FTA 0.6 1.2 
10:2 FTA 0.8 1.5 
MeFBSA 0.8 1.6 
MeFOSA 1.0 1.9 
Me2FOSA 0.2 0.3 
EtFOSA 0.8 1.6 
PFOSA 0.7 1.4 
MeFBSE 0.5 0.9 
MeFOSE 1.3 2.5 
EtFOSE 0.4 0.9 

 

Table S4-19: Standard uncertainty and combined uncertainty (%) of the method relative to average ship 

and land based samples. 

  standard uncertainty (%) combined uncertainty (%) 
  ship-based samples land-based samples ship-based samples land-based samples 
4:2 FTOH 156 22 305 42 
6:2 FTOH 26 8 50 15 
8:2 FTOH 13 4 26 8 
10:2 FTOH 23 7 45 14 
12:2 FTOH 35 10 68 20 
6:2 FTA 99 53 193 105 
8:2 FTA 66 14 129 28 
10:2 FTA 147 30 289 60 
MeFBSA 44 28 87 54 
MeFOSA 46 36 91 71 
Me2FOSA 86 21 168 41 
EtFOSA 52 60 103 118 
PFOSA 163 70 320 137 
MeFBSE 49 17 97 33 
MeFOSE 81 57 158 111 
EtFOSE 90 45 176 88 
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Sample Information  

 
Figure S4-1: Overview about the cruise tracks. Black dots mark the start point of each sample during the 

cruises. Samples were taken in between this and the following location. Also see table S4-20.  
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Table S4-20: Sample information. LAT: latitude, LON: longitude, V: standardized air volume (m³) (ISO-

2533, 1975), T: temperature (°C). *: average volume/temperature. 
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1 BAR 02.04.2007 53.571 10.215 01.06.2008 53.571 10.215 1670* 10.0* 
2 MSM056-1 11.08.2007 78.156 14.015 13.08.2007 71.991 5.251 432 5.8 
3 MSM056-3 13.08.2007 71.991 5.251 14.08.2007 68.050 2.100 305 9.0 
4 MSM056-4 14.08.2007 68.050 2.100 15.08.2007 64.423 0.565 374 11.7 
5 MSM056-6 15.08.2007 64.423 0.565 16.08.2007 60.816 3.858 425 12.7 
6 MSM056-7 16.08.2007 60.816 3.858 17.08.2007 57.890 7.156 369 13.1 
7 MSM056-9 17.08.2007 57.890 7.156 18.08.2007 57.411 11.440 359 14.5 
8 MSM056-10 18.08.2007 57.411 11.440 19.08.2007 54.317 10.136 450 16.6 
9 AntXXIV1-1 28.10.2007 50.040 -2.503 29.10.2007 46.784 -6.388 337 14.1 
10 AntXXIV1-3 29.10.2007 46.784 -6.388 30.10.2007 45.848 -6.638 649 14.8 
11 AntXXIV1-4 30.10.2007 45.848 -6.638 31.10.2007 42.174 -10.629 421 15.3 
12 AntXXIV1-6 31.10.2007 42.174 -10.629 02.11.2007 34.209 -13.335 362 17.6 
13 AntXXIV1-7 02.11.2007 34.209 -13.335 03.11.2007 30.531 -14.353 426 20.1 
14 AntXXIV1-8 03.11.2007 30.531 -14.353 04.11.2007 28.139 -15.348 325 20.9 
15 AntXXIV1-10 04.11.2007 28.139 -15.348 05.11.2007 25.398 -19.459 438 21.1 
16 AntXXIV1-11 05.11.2007 25.398 -19.459 06.11.2007 22.168 -20.870 408 22.1 
17 AntXXIV1-12 06.11.2007 22.168 -20.870 07.11.2007 16.729 -21.146 212 24.2 
18 AntXXIV1-14 07.11.2007 16.729 -21.146 08.11.2007 11.676 -20.417 548 27.7 
19 AntXXIV1-15 08.11.2007 11.676 -20.417 09.11.2007 9.701 -19.929 429 28.2 
20 AntXXIV1-16 09.11.2007 9.701 -19.929 10.11.2007 6.317 -17.346 396 27.8 
21 AntXXIV1-18 10.11.2007 6.317 -17.346 11.11.2007 3.451 -14.954 408 27.0 
22 AntXXIV1-19 11.11.2007 3.451 -14.954 12.11.2007 2.086 -13.114 403 26.4 
23 AntXXIV1-20 12.11.2007 2.086 -13.114 13.11.2007 -0.311 -9.918 447 25.3 
24 AntXXIV1-22 13.11.2007 -0.311 -9.918 14.11.2007 -3.143 -7.383 444 24.8 
25 AntXXIV1-23 14.11.2007 -3.143 -7.383 15.11.2007 -6.642 -4.733 475 23.8 
26 AntXXIV1-24 15.11.2007 -6.642 -4.733 16.11.2007 -9.906 -2.223 405 22.1 
27 AntXXIV1-26 16.11.2007 -9.906 -2.223 17.11.2007 -13.197 0.393 415 20.5 
28 AntXXIV1-27 17.11.2007 -13.197 0.393 18.11.2007 15.228 1.907 373 19.6 
29 AntXXV1-1 22.11.2008 -3.416 -9.182 23.11.2008 -6.074 -6.937 454 24.5 
30 AntXXV1-2 23.11.2008 -6.074 -6.937 25.11.2008 -12.021 -1.847 814 22.0 
31 AntXXV1-3 25.11.2008 -12.021 -1.847 26.11.2008 -15.253 0.950 401 20.1 
32 AntXXV1-4 26.11.2008 -15.253 0.950 27.11.2008 -17.799 3.190 509 19.3 
33 AntXXV1-5 27.11.2008 -17.799 3.190 28.11.2008 -21.267 6.295 488 18.9 
34 AntXXV1-6 28.11.2008 -21.267 6.295 29.11.2008 -23.713 8.525 419 18.5 
35 AntXXV1-7 29.11.2008 -23.713 8.525 01.12.2008 -34.027 18.165 834 17.7 
36 AntXXV2-1 06.12.2008 -34.027 18.165 08.12.2008 -41.302 9.635 894 17.6 
37 AntXXV2-2 08.12.2008 -41.302 9.635 10.12.2008 -49.091 2.813 730 8.3 
38 AntXXV2-3 10.12.2008 -49.091 2.813 12.12.2008 -58.708 0.193 846 -0.3 
39 AntXXV2-4 12.12.2008 -58.708 0.193 14.12.2008 -64.673 0.022 891 -3.0 
40 AntXXV2-5 14.12.2008 -64.673 0.022 16.12.2008 -69.406 -5.536 862 -3.2 
41 AntXXV2-6 16.12.2008 -69.406 -5.536 20.12.2008 -69.894 -5.538 1776 -7.0 
42 AntXXV2-7 20.12.2008 -69.894 -5.538 22.12.2008 -64.997 -0.344 1094 -3.6 
43 AntXXV2-8 22.12.2008 -64.997 -0.344 24.12.2008 -65.000 6.000 946 -3.1 
44 AntXXV2-9 24.12.2008 -65.000 6.000 26.12.2008 -61.812 10.846 946 -1.7 
45 AntXXV2-10 26.12.2008 -61.812 10.846 28.12.2008 -55.747 12.864 722 0.2 
46 AntXXV2-11 28.12.2008 -55.747 12.864 30.12.2008 -50.553 14.336 850 0.8 
47 AntXXV2-12 30.12.2008 -50.553 14.336 01.01.2009 -45.540 15.262 858 3.6 
48 AntXXV2-13 01.01.2009 -45.540 15.262 03.01.2009 -39.516 16.502 813 13.6 
49 AntXXV2-14 03.01.2009 -39.516 16.502 04.01.2009 -37.188 17.215 378 18.2 
50 MSM083-A1 17.06.2008 54.173 12.909 18.06.2008 54.711 12.775 448 17.9 
51 MSM083-A2 18.06.2008 54.711 12.775 19.06.2008 55.251 15.983 410 16.8 
52 MSM083-A3 19.06.2008 55.251 15.983 20.06.2008 55.253 15.743 387 15.6 
53 MSM083-A4 20.06.2008 55.253 15.743 21.06.2008 55.439 15.229 326 15.0 
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Table S4-20 cont. 
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54 MSM083-A5 21.06.2008 55.439 15.229 22.06.2008 54.879 19.269 356 15.8 
55 MSM083-A6 22.06.2008 54.879 19.269 23.06.2008 56.995 19.846 411 16.2 
56 MSM083-A7 23.06.2008 56.995 19.846 24.06.2008 57.306 20.078 453 13.5 
57 MSM083-A8 24.06.2008 57.306 20.078 25.06.2008 57.305 20.078 410 13.4 
58 MSM083-A9 25.06.2008 57.305 20.078 26.06.2008 57.307 20.077 494 13.5 
59 MSM083-A10 26.06.2008 57.307 20.077 27.06.2008 57.584 19.989 431 14.4 
60 MSM083-A11 27.06.2008 57.584 19.989 28.06.2008 60.193 19.118 283 13.6 
61 MSM083-A12 28.06.2008 60.193 19.118 29.06.2008 63.804 21.365 435 12.7 
62 MSM083-A13 29.06.2008 63.804 21.365 30.06.2008 64.708 22.053 437 13.9 
63 MSM083-A14 30.06.2008 64.708 22.053 01.07.2008 63.106 19.893 469 14.3 
64 MSM083-A15 01.07.2008 63.106 19.893 02.07.2008 62.584 19.984 402 14.4 
65 MSM083-A16 02.07.2008 62.584 19.984 03.07.2008 59.391 22.810 482 15.0 
66 MSM083-A17 03.07.2008 59.391 22.810 04.07.2008 59.783 26.584 371 17.0 
67 MSM083-A18 04.07.2008 59.783 26.584 06.07.2008 59.449 24.771 209 17.2 
68 MSM083-A19 06.07.2008 59.449 24.771 07.07.2008 59.366 23.523 340 13.8 
69 MSM083-A20 07.07.2008 59.366 23.523 08.07.2008 58.583 18.233 413 13.9 
70 MSM083-A21 08.07.2008 58.583 18.233 09.07.2008 58.583 18.234 407 14.5 
71 MSM083-A22 09.07.2008 58.583 18.234 10.07.2008 57.223 17.581 441 15.8 
72 MSM083-A23 10.07.2008 57.223 17.581 11.07.2008 55.746 16.586 451 16.7 
73 MSM083-A24 11.07.2008 55.746 16.586 12.07.2008 56.363 12.226 410 17.7 
74 MSM083-A25 12.07.2008 56.363 12.226 13.07.2008 57.993 10.871 427 16.1 
75 MSM083-A26 13.07.2008 57.993 10.871 14.07.2008 58.146 10.275 419 15.9 
76 MSM083-A27 14.07.2008 58.146 10.275 15.07.2008 58.146 10.275 305 16.0 
77 Atair 1 30.10.2007 53.594 9.606 31.10.2007 54.218 8.351 359 11.7 
78 Atair 2 31.10.2007 54.218 8.351 01.11.2007 54.666 7.518 428 13.1 
79 Atair 3 01.11.2007 54.666 7.518 02.11.2007 55.769 4.257 359 12.9 
80 Atair 4 02.11.2007 55.769 4.257 03.11.2007 54.999 8.251 330 13.3 
81 Atair 5 03.11.2007 54.999 8.251 04.11.2007 54.243 6.140 391 11.6 
82 Atair 6 04.11.2007 54.243 6.140 05.11.2007 53.542 9.952 300 9.7 
83 Atair 7 05.11.2007 53.542 9.952 06.11.2007 53.535 10.021 451 8.1 
84 MSM051-1 12.04.2007 28.152 -15.411 13.04.2007 28.152 -15.411 451 18.1 
85 MSM051-3 13.04.2007 28.152 -15.411 14.04.2007 28.894 -15.938 369 17.9 
86 MSM051-4 14.04.2007 28.894 -15.938 15.04.2007 32.920 -19.809 356 18.0 
87 MSM051-6 15.04.2007 32.920 -19.809 16.04.2007 36.609 -23.508 229 17.0 
88 MSM051-8 16.04.2007 36.609 -23.508 18.04.2007 44.710 -29.147 42 15.4 
89 MSM051-9 18.04.2007 44.710 -29.147 19.04.2007 47.368 -31.508 348 13.5 
90 MSM051-11 19.04.2007 47.368 -31.508 20.04.2007 45.117 -34.083 364 14.4 
91 MSM051-12 20.04.2007 45.117 -34.083 21.04.2007 44.092 -37.724 485 15.9 
92 MSM051-13 21.04.2007 44.092 -37.724 23.04.2007 42.309 -44.103 449 11.3 
93 MSM051-15 23.04.2007 42.309 -44.103 24.04.2007 42.655 -47.327 477 8.6 
94 MSM051-16 24.04.2007 42.655 -47.327 25.04.2007 43.341 -49.513 476 9.8 
95 MSM051-18 25.04.2007 43.341 -49.513 27.04.2007 47.192 -46.456 345 1.4 
96 MSM051-19 27.04.2007 47.192 -46.456 28.04.2007 46.926 -43.190 461 1.8 
97 MSM051-21 28.04.2007 46.926 -43.190 30.04.2007 47.047 -42.337 378 6.3 
98 MSM051-22 30.04.2007 47.047 -42.337 01.05.2007 47.340 -48.167 391 6.3 
99 MSM051-24 01.05.2007 47.340 -48.167 02.05.2007 47.549 -52.392 271 1.6 

100 Atalante 2 07.01.2008 -8.057 -34.870 09.01.2008 -7.090 -28.014 260 28.2 
101 Atalante 3 09.01.2008 -7.090 -28.014 11.01.2008 -6.121 -21.176 857 26.6 
102 Atalante 4 11.01.2008 -6.121 -21.176 13.01.2008 -5.055 -14.081 874 26.2 
103 Atalante 5 13.01.2008 -5.055 -14.081 15.01.2008 -4.810 -12.374 845 26.2 
104 Atalante 6 15.01.2008 -4.810 -12.374 17.01.2008 -5.183 -11.692 919 26.0 
105 Atalante 7 17.01.2008 -5.183 -11.692 19.01.2008 -5.097 -11.671 909 26.0 
106 Atalante 9 19.01.2008 -5.097 -11.671 21.01.2008 -4.810 -12.373 806 25.9 
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107 Atalante 10 21.01.2008 -4.810 -12.373 23.01.2008 -5.101 -11.685 435 26.2 
108 Atalante 11 23.01.2008 -5.101 -11.685 25.01.2008 -4.800 -12.371  -  26.3 
109 Atalante 12 25.01.2008 -4.800 -12.371 27.01.2008 1.820 -14.057 616 26.5 
110 Atalante 13 27.01.2008 1.820 -14.057 28.01.2008 5.284 -15.312 400 28.8 
111 Atalante 15 28.01.2008 5.284 -15.312 29.01.2008 9.350 -16.808 164 28.1 
112 Atalante 16 29.01.2008 9.350 -16.808 30.01.2008 12.246 -17.534 308 25.9 
113 MSM056-2 11.08.2007 78.156 14.015 14.08.2007 68.050 2.100 979 7.1 
114 MSM056-5 14.08.2007 68.050 2.100 16.08.2007 60.816 3.858 753 12.2 
115 MSM056-8 16.08.2007 60.816 3.858 18.08.2007 57.411 11.440 879 13.8 
116 MSM056-11 18.08.2007 57.411 11.440 19.08.2007 54.317 10.136 426 16.6 
117 AntXXIV1-2 28.10.2007 50.040 -2.503 30.10.2007 45.848 -6.638 806 14.6 
118 AntXXIV1-5 30.10.2007 45.848 -6.638 03.11.2007 30.531 -14.353 1268 17.7 
119 AntXXIV1-9 03.11.2007 30.531 -14.353 06.11.2007 22.168 -20.870 1217 21.3 
120 AntXXIV1-13 06.11.2007 22.168 -20.870 09.11.2007 9.701 -19.929 1171 26.7 
121 AntXXIV1-17 09.11.2007 9.701 -19.929 12.11.2007 2.086 -13.114 800 27.1 
122 AntXXIV1-21 12.11.2007 2.086 -13.114 15.11.2007 -6.642 -4.733 1265 24.6 
123 AntXXIV1-25 15.11.2007 -6.642 -4.733 18.11.2007 15.228 1.907 1167 22.2 
124 MSM083_GaB1 17.06.2008 54.173 12.909 18.06.2008 54.711 12.775 398 17.9 
125 MSM083_GaB2 18.06.2008 54.711 12.775 21.06.2008 55.439 15.229 1069 15.8 
126 MSM083_GaB3 21.06.2008 55.439 15.229 24.06.2008 57.306 20.078 1000 15.0 
127 MSM083_GaB4 24.06.2008 57.306 20.078 27.06.2008 57.584 19.989 727 13.8 
128 MSM083_GaB5 27.06.2008 57.584 19.989 30.06.2008 64.708 22.053 936 13.4 
129 MSM083_GaB6 30.06.2008 64.708 22.053 03.07.2008 59.391 22.810 931 14.4 
130 MSM083_GaB7 03.07.2008 59.391 22.810 06.07.2008 59.449 24.771 785 16.5 
131 MSM083_GaB8 06.07.2008 59.449 24.771 09.07.2008 58.583 18.234 1005 14.1 
132 MSM083_GaB9 09.07.2008 58.583 18.234 12.07.2008 56.363 12.226 1323 16.8 
133 MSM083_GaB10 12.07.2008 56.363 12.226 15.07.2008 58.146 10.275 1178 16.0 
134 MSM051-2 12.04.2007 28.152 -15.411 14.04.2007 28.894 -15.938 882 18.0 
135 MSM051-5 14.04.2007 28.894 -15.938 15.04.2007 32.946 -19.834 367 18.0 
136 MSM051-7 15.04.2007 32.946 -19.834 18.04.2007 44.710 -29.147 288 16.3 
137 MSM051-10 18.04.2007 44.710 -29.147 21.04.2007 44.092 -37.724 1131 14.6 
138 MSM051-14 21.04.2007 44.092 -37.724 24.04.2007 42.655 -47.327 1475 10.5 
139 MSM051-17 24.04.2007 42.655 -47.327 27.04.2007 47.192 -46.456 846 4.2 
140 MSM051-20 27.04.2007 47.192 -46.456 30.04.2007 47.047 -42.337 643 5.0 
141 MSM051-23 30.04.2007 47.047 -42.337 02.05.2007 47.549 -52.392 545 4.1 
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PFC Concentrations 

 
Table S4- 21: Gas-phase concentrations of neutral polyfluorinated compounds of one and two day ship-

based samples and the 14 months average of land-based samples. n.d.: not detected. n.q.: not quantified. 

n.a.: not analyzed due to the high water content of the samples. Values in brackets are instrumentally 

validated concentrations that appear to be erroneous: a singular contamination, probably during sampling 

or sample treatment. Value is usually not displayed by the three day parallel sample, b flow meter 

problems. 
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BAR  14 months average (02.04.2007 – 01.06.2008) 

1 0.3 22 62 21 13 119 1.9 4.2 2.5 8.6 3.0 2.6 0.8 1.3 1.0 9.2 2.7 2.2 1.0 5.9 143 

MSM05/6, Longyearbyen – Kiel (11.08.2007 – 19.08.2007) 

2 n.d. 26 11 1.8 0.4 40 0.9 0.2 n.d. 1.1 0.3 0.4 n.d. 0.2 n.d. 0.9 n.q. 1.0 n.q. 1.0 42 

3 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

4 n.d. 15 10 2.2 0.8 28 1.0 0.3 0.1 1.4 0.3 0.6 n.d. 0.1 n.d. 1.0 0.1 0.6 0.5 1.2 32 

5 n.d. 12 11 3.7 2.1 28 0.6 n.d. n.d. 0.6 2.0 1.0 n.d. 0.2 n.d. 3.3 0.9 0.4 0.7 1.9 34 

6 n.q. 51 18 3.0 1.6 74 8.9 5.2 0.1 14 6.0 7.7 n.d. n.q. n.q. 14 3.4 0.7 2.5 6.7 108 

7 n.d. 13 50 11 6.2 80 n.d. 1.8 0.3 2.1 0.5 0.8 n.d. n.q. 5.2 6.5 1.3 1.9 0.7 3.9 92 

8 n.d. 16 29 7.2 4.4 57 2.4 2.1 0.2 4.7 4.8 4.3 n.d. n.q. 2.4 11 n.q. n.q. n.q. 0.0 73 

AntXXIV-1, Bremerhaven – Cape Town (26.10.2007-26.11.2007) 

9 n.d. 7.5 21 4.5 8.7 42 4.9 2.0 n.d. 6.9 1.8 2.2 n.d. 1.3 n.d. 5.3 1.2 1.9 1.6 4.7 59 

10 n.d. 8.2 12 1.9 1.4 24 n.q. 2.2 n.d. 2.2 1.6 1.6 0.1 0.5 n.d. 3.8 0.9 0.9 0.3 2.1 32 

11 n.d. 11 23 4.6 11 49 6.7 n.d. n.d. 6.7 2.6 2.5 n.d. 3.3 n.d. 8.4 n.d. 1.8 1.1 2.8 67 

12 n.d. 9.6 24 5.6 8.4 47 2.7 1.3 n.d. 4.0 1.3 2.4 1.3 1.4 n.d. 6.5 1.1 1.4 1.5 4.0 62 

13 n.d. 35 39 17 5.9 97 5.8 n.d. n.d. 5.8 4.5 5.5 1.5 4.2 n.d. 16 2.1 2.5 2.0 6.7 125 

14 n.d. 5.1 21 2.2 2.6 31 3.5 0.4 n.d. 3.9 0.6 1.1 0.4 0.7 n.d. 2.8 0.5 0.9 0.7 2.1 39 

15 n.d. 9.3 15 3.1 8.2 36 3.9 0.9 n.d. 4.8 1.3 1.9 n.d. 1.8 n.d. 5.0 0.9 1.4 0.8 3.2 49 

16 n.d. 9.5 26 4.1 8.2 48 7.4 3.5 n.d. 11 4.6 5.4 3.8 4.4 n.d. 18 1.6 1.2 2.1 4.9 82 

17 n.d. 7.6 6.5 1.6 3.4 19 2.3 0.8 n.d. 3.0 0.8 0.9 0.9 0.5 n.d. 3.1 0.4 1.1 0.4 1.9 27 

18 n.d. 1.6 5.7 1.3 3.2 12 3.0 n.d. n.d. 3.0 n.d. n.d. n.d. 1.2 n.d. 1.2 0.7 1.0 0.8 2.5 19 

19 n.d. (13)a (54)a 3.9 6.3 10 (16)a 2.5 1.2 3.7 1.7 2.1 n.d. 1.7 n.d. 5.5 2.4 2.7 1.9 7.0 26 

20 n.d. 1.8 3.5 1.2 4.4 11 2.6 1.0 1.6 5.2 n.d. 0.7 n.d. 0.5 n.d. 1.2 0.3 0.8 0.3 1.5 19 

21 n.d. 4.4 9.2 1.7 9.0 24 2.1 0.8 n.d. 2.9 n.d. 1.5 n.d. 0.7 n.d. 2.2 0.8 1.3 0.5 2.6 32 

22 n.d. 6.5 17.7 7.1 5.2 36 4.0 n.d. n.d. 4.0 1.3 1.1 n.d. 2.0 n.d. 4.3 1.9 3.6 0.4 5.9 51 

23 n.d. 1.1 1.5 n.d. (18)a 2.6 1.1 1.5 n.d. 2.6 n.d. 0.3 n.d. 0.5 n.d. 0.8 n.d. 1.1 0.2 1.2 7.2 

24 n.d. (40)a 13 3.0 (18)a 34 2.9 0.6 1.4 5.0 n.d. 1.4 n.d. 0.5 n.d. 1.9 n.d. 0.9 0.5 1.4 42 

25 n.d. 2.4 4.6 0.8 1.5 9.4 7.3 1.9 n.d. 9.1 1.0 0.8 n.d. 1.5 n.d. 3.3 n.d. 2.8 0.3 3.1 25 

26 n.d. 5.1 5.9 1.3 6.3 19 1.8 0.4 n.d. 2.2 n.d. 1.3 n.d. 0.5 n.d. 1.8 n.d. 1.1 0.4 1.5 24 

27 n.d. 2.7 7.2 1.9 2.0 14 6.6 2.0 0.7 9.3 1.4 0.9 n.d. 1.8 n.d. 4.1 n.d. 3.7 0.8 4.5 32 

28 n.d. (19) a (16)a (90)a (165)a 34 4.4 1.9 n.d. 6.3 n.d. 0.8 n.d. 1.9 n.d. 2.7 n.d. 3.7 0.4 4.0 47 

AntXXV-1, Bremerhaven – Cape Town (31.10.2008 – 03.12.2008) 

29 n.d. 1.2 8.0 2.2 n.d. 11 n.q. n.d. n.d. 0.0 n.d. 0.3 n.d. n.d. n.d. 0.3 0.9 1.3 0.2 2.4 14 
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30 n.d. 0.6 3.4 0.7 n.d. 4.7 n.q. n.d. n.d. 0.0 n.d. 0.5 n.d. n.d. n.d. 0.5 0.2 0.6 0.2 1.0 6.2 

31 n.d. 3.1 5.8 1.4 n.d. 10 n.q. n.d. n.d. 0.0 0.5 n.d. n.d. 0.1 n.d. 0.5 0.9 0.6 0.3 1.7 13 

32 n.d. 1.5 4.7 1.2 n.d. 7.4 n.q. n.d. n.d. 0.0 n.d. 0.2 n.d. n.d. n.d. 0.2 n.d. 1.1 n.d. 1.1 8.7 

33 n.d. n.d. 3.6 2.1 0.6 6.3 n.q. n.d. n.d. 0.0 1.6 1.5 n.d. n.d. n.d. 3.1 0.8 1.2 0.4 2.4 12 

34 n.d. 1.0 4.0 2.1 n.d. 7.1 n.d. n.d. n.d. 0.0 n.d. 0.9 n.d. n.d. n.d. 0.9 n.d. 0.7 n.d. 0.7 8.7 

35 n.d. n.d. 6.0 1.6 n.d. 7.6 n.d. n.d. n.d. 0.0 n.d. n.d. n.d. n.d. n.d. 0.0 n.d. 0.3 0.2 0.4 8.0 

AntXXV-2, Cape Town – Neumayer Station – Cape Town (05.12.2008 – 05.01.2009), average of parallel samples 

36 n.d. 0.9 6.7 2.7 1.1 11 n.d. n.d. n.d. 0.0 0.3 1.0 0.0 n.d. n.d. 1.4 0.4 0.9 0.3 1.7 14 

37 n.d. 0.6 6.8 2.4 n.d. 9.8 0.9 n.d. n.d. 1.0 0.4 0.3 n.d. n.d. n.d. 0.7 0.4 0.5 0.5 1.1 13 

38 n.d. 0.7 2.9 1.1 n.d. 4.8 0.1 0.1 n.d. 0.1 0.4 0.1 n.d. 0.0 n.d. 0.5 0.5 0.6 n.d. 1.1 6.4 

39 n.d. n.d. 4.9 1.4 0.2 7.0 n.d. n.d. n.d. 0.0 n.d. 0.2 n.d. n.d. n.d. 0.2 0.7 0.9 0.3 1.7 8.8 

40 n.d. 0.5 6.5 2.2 0.1 9.3 n.d. n.d. n.d. 0.0 n.d. 0.2 n.d. 0.1 n.d. 0.2 0.5 0.4 0.6 1.0 11 

41 n.d. n.d. 2.8 1.6 n.d. 4.8 n.d. 0.2 0.0 0.1 0.2 0.2 n.d. n.d. n.d. 0.4 0.1 0.3 0.6 0.8 6.1 

42 n.d. n.d. 3.7 1.7 n.d. 5.6 n.d. n.d. n.d. 0.0 n.d. 0.4 n.d. n.d. n.d. 1.9 0.3 4.5 0.2 2.6 10 

43 n.d. 0.2 1.8 1.2 0.1 3.2 n.d. n.d. n.d. 0.0 0.3 0.6 n.d. 0.0 n.d. 0.6 0.3 0.4 0.2 0.6 4.4 

44 n.d. n.d. 5.2 1.8 n.d. 7.0 n.d. n.d. n.d. 0.0 n.d. n.d. n.d. n.d. n.d. 0.0 0.4 0.5 n.d. 0.9 7.9 

45 n.d. n.d. 4.8 2.5 0.6 7.9 n.d. n.d. n.d. 0.0 n.d. 1.2 n.d. n.d. n.d. 1.2 n.d. 2.2 n.d. 2.2 11 

46 n.d. n.q. 5.5 2.7 n.d. 8.3 n.d. n.d. n.d. 0.0 0.3 0.2 n.d. n.d. n.d. 0.4 0.5 1.2 0.1 1.8 11 

47 n.d. n.d. 7.7 2.6 n.d. 10 n.d. n.d. n.d. 0.0 n.d. n.d. n.d. n.d. n.d. 0.0 n.d. n.d. n.d. 0.0 10 

48 n.d. n.d. 9.1 3.0 n.d. 15 n.d. n.d. n.d. 0.0 0.3 0.6 n.d. n.d. n.d. 0.9 n.d. n.d. n.d. 0.5 17 

49 n.d. n.d. 11 4.2 n.d. 16 n.d. n.d. n.d. 0.0 1.3 2.3 n.d. n.d. n.d. 3.6 n.d. n.d. 1.1 2.1 21 

MSM08/3, Rostock – Tallinn – Kiel (18.06.2008 – 17.07.2008) 

50 n.d. 16 79 33 12 139 0.6 3.7 2.7 7.1 4.4 5.4 n.q. 3.7 n.d. 14 2.5 1.2 0.6 4.3 164 

51 n.d. 14 33 13 5.3 64 0.4 0.6 0.3 1.3 3.2 4.0 n.q. 2.0 n.d. 9.3 n.d. 0.8 n.d. 0.8 76 

52 n.d. 8.1 45 9.6 3.6 67 0.1 0.3 n.d. 0.4 2.3 2.8 n.q. 1.7 n.d. 6.8 n.d. 0.9 n.d. 0.9 75 

53 n.d. 6.9 22 9.5 6.6 45 0.1 0.2 n.d. 0.3 2.5 2.3 n.d. 1.6 n.d. 6.3 n.d. 0.4 n.d. 0.4 52 

54 n.d. 4.4 20 7.1 3.4 35 0.1 0.1 n.d. 0.2 2.2 2.3 n.d. 1.9 n.d. 6.5 n.d. 0.1 n.d. 0.1 42 

55 n.d. 6.9 94 18 0.1 119 0.7 0.4 0.3 1.4 1.2 1.3 n.d. 0.6 n.d. 3.1 1.0 1.3 0.7 3.0 127 

56 n.d. 4.7 9.5 3.8 0.1 18 6.1 0.3 0.0 6.4 0.8 0.3 n.d. 0.3 n.d. 1.4 0.7 0.3 0.2 1.2 27 

57 n.d. 2.7 19 4.2 1.3 27 0.7 0.2 0.1 1.0 1.0 1.0 n.d. 0.4 n.d. 2.4 n.d. 4.7 0.5 5.2 35 

58 n.d. 1.6 10 2.2 0.9 15 n.d. 0.1 0.0 0.1 0.5 0.8 n.d. 0.2 n.d. 1.5 0.6 1.3 1.2 3.1 20 

59 n.d. 3.1 7.0 8.0 2.5 21 0.7 0.2 0.1 1.0 1.2 0.9 n.d. 0.3 n.d. 2.4 0.9 4.7 0.2 5.8 30 

60 n.d. 5.7 23 7.1 1.0 36 n.d. 0.3 0.2 0.5 0.6 1.2 0.1 0.6 n.d. 2.5 0.6 0.8 0.4 1.8 41 

61 n.d. 3.3 10 5.0 1.8 20 0.1 n.d. n.d. 0.1 0.8 0.9 n.q. 0.2 n.d. 1.9 0.2 0.5 n.d. 0.6 23 

62 n.d. 9.4 22 8.5 2.1 42 0.4 0.5 0.1 1.0 0.6 0.7 0.1 1.3 n.d. 2.7 0.3 0.3 0.1 0.8 47 

63 n.d. 4.8 26 9.2 2.3 42 0.9 0.4 0.1 1.4 1.1 1.5 0.2 0.5 n.d. 3.3 0.5 0.8 0.3 1.7 48 

64 n.d. 11 18 1.3 1.6 32 n.d. n.d. n.d. 0.0 0.6 0.5 n.d. n.d. n.d. 1.0 n.d. 0.7 0.6 1.2 34 

65 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

66 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

67 n.d. 8.8 38 8.5 5.6 61 n.d. n.d. 1.3 1.3 1.7 (14)a n.d. n.d. n.d. 2 n.d. 2.2 n.d. 2 80 

68 n.d. 19 34 14 3.0 69 n.d. 1.3 0.5 1.8 1.2 1.7 0.3 n.d. n.d. 3.3 4.1 2.3 n.d. 6.4 81 

69 n.d. 7.1 19 9.9 4.2 40 n.d. 0.4 0.4 0.8 1.1 2.0 0.3 0.7 n.d. 4.1 0.9 1.1 n.d. 2.0 47 
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70 n.d. 1.8 13 5.2 6.6 27 n.d. 0.4 n.d. 0.4 n.d. 1.1 n.d. 0.6 n.d. 1.7 n.d. 11 n.d. 11 39 

71 n.d. 3.6 19 7.5 0.6 31 0.5 0.2 n.d. 0.7 0.9 0.6 n.d. 0.3 n.d. 1.9 1.2 1.5 n.d. 2.7 36 

72 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

73 n.d. 15 59 16 n.d. 90 0.1 0.8 0.2 1.1 3.0 1.8 0.0 0.4 n.d. 5.2 1.9 2.5 n.d. 4.5 101 

74 n.d. (102)a 44 15 6.5 66 7.3 2.2 0.2 9.6 2.8 1.8 n.d. n.d. n.d. 4.6 2.3 2.7 n.d. 5.0 85 

75 n.d. 4.7 17 4.8 0.5 27 n.d. 0.1 n.d. 0.1 1.2 0.8 n.d. 0.3 n.d. 2.2 0.1 0.7 0.2 1.1 30 

76 n.d. 6.4 22 7.0 1.0 36 0.1 0.2 0.1 0.3 1.1 1.1 6.3 13 n.d. 22 0.2 1.2 n.d. 1.4 60 

Atair 155, German Bight, North Sea (30.10.2007 – 06.11.2007), average of parallel samples 

77 1.4 5.0 11 2.8 1.7 21 n.d. 2.2 0.9 3.1 7.1 3.7 n.d. 1.7 2.5 15 0.6 1.3 n.d. 1.9 41 

78 n.d. 8.6 56 14 3.1 82 5.7 3.2 1.3 10 5.8 1.5 0.5 0.8 1.9 11 1.4 0.9 0.1 2.4 105 

79 n.d. 5.8 13 3.5 1.3 24 n.d. 1.9 0.8 2.8 3.1 2.5 n.d. 0.4 3.4 9.5 1.0 2.0 n.d. 3.0 39 

80 2.3 5.7 16 5.7 1.3 31 n.d. 1.7 1.2 2.9 3.4 3.3 1.4 1.4 2.8 12 1.3 2.5 0.3 4.2 50 

81 1.8 3.3 8.2 2.1 1.5 17 n.q. 1.8 0.8 2.6 6.0 3.9 0.5 1.5 n.q. 12 0.6 2.2 0.3 3.2 35 

82 1.4 15 28 6.7 2.3 53 n.d. 3.6 1.2 4.8 4.7 3.1 0.7 1.1 n.d. 9.7 1.0 1.2 n.d. 2.2 70 

83 n.d. 13 130 29 8.0 180 4.2 15 6.6 26 3.4 2.4 0.5 0.5 7.3 14 2.5 1.4 n.d. 3.9 224 

MSM05/1, Las Palmas – St. John’s (12.04.2007-02.05.2007) 

84 n.d. 7.6 124 53 35 220 n.d. 15 4.5 19 5.6 8.0 n.q. 67 n.q. 81 6.8 3.9 5.2 16 335 

85 n.d. 7.3 44 19 10 81 n.d. 3.8 1.3 5.1 3.7 5.8 n.q. 3.0 11 24 9.3 9.6 5.0 24 134 

86 n.d. 3.9 13 2.6 0.6 20 n.d. 0.3 0.1 0.4 1.0 1.0 n.q. 1.8 n.q. 3.8 0.4 0.9 0.2 1.5 26 

87 n.d. 11 20 7.5 3.2 42 3.8 1.5 0.6 5.9 5.5 7.6 n.d. 6.1 7.4 26 2.7 7.2 3.9 14 88 

88 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

89 n.q. 4.6 11 3.8 2.3 21 n.d. 0.1 0.1 0.2 0.7 0.6 n.q. 0.2 n.d. 1.6 0.4 1.1 0.3 1.8 25 

90 n.d. 3.9 7.6 2.4 1.3 15 0.5 0.2 <0.1 0.7 0.7 0.4 n.q. 0.1 n.d. 1.2 0.4 1.6 0.3 2.3 19 

91 n.d. 5.7 7.5 1.9 1.3 16 0.5 0.2 <0.1 0.7 0.6 2.7 n.q. 0.2 2.6 6.1 0.3 3.1 0.2 3.5 27 

92 n.d. 1.7 9.4 3.1 2.5 17 n.d. 0.1 <0.1 0.1 0.6 0.4 n.d. n.q. n.q. 1.0 0.2 1.2 0.2 1.5 19 

93 n.q. 3.7 7.0 1.6 0.9 13 0.5 0.2 <0.1 0.7 0.4 0.4 n.q. 0.2 n.q. 0.9 0.2 0.5 0.2 0.9 16 

94 n.q. 4.2 6.8 2.1 2.8 16 0.5 0.1 <0.1 0.7 0.5 0.4 n.d. 0.1 0.5 1.5 0.2 0.6 0.2 1.0 19 

95 n.d. 5.9 20 5.3 2.2 33 2.1 1.3 0.5 3.9 2.1 6.7 n.d. 3.0 4.4 16 1.8 4.6 2.3 8.7 62 

96 1.2 (165)a 38 12 2.9 54 0.7 0.5 0.1 1.3 0.7 0.8 n.d. 0.6 n.q. 2.1 0.9 0.8 n.q. 1.7 59 

97 n.d. 4.8 10 3.8 2.4 21 1.3 0.3 0.1 1.7 0.5 0.8 n.d. n.q. n.q. 1.3 0.3 2.3 0.5 3.0 27 

98 n.d. 9.0 45 14 4.9 73 4.1 1.8 0.6 6.6 2.1 3.1 n.d. 3.3 n.q. 8.5 3.7 2.6 1.3 7.5 95 

99 n.d. 5.2 11 3.9 1.2 21 0.6 0.3 0.1 1.0 0.5 7.9 n.d. 0.5 n.q. 8.9 0.4 10 0.8 11 42 

L’Atalante leg 2 MARSÜD IV, Recife – Dakar  (07.01.2008 – 31.01.2008) 

100 n.d. 6.4 29 24 6.5 66 5.5 3.6 n.d. 9.1 n.d. n.d. n.d. 1.5 n.d. 1.5 (42)a 20 n.d. 20 97 

101 n.d. 2.2 10 4.8 0.4 17 1.0 n.d. n.d. 1.0 0.7 1.6 n.d. 0.9 n.d. 3.2 (10)a 2.5 0.9 3.4 25 

102 n.d. 3.7 7.5 5.0 2.6 19 n.d. n.d. n.d. 0.0 n.d. 0.5 n.d. 0.2 n.d. 0.7 (18)a 3.4 1.9 5.3 25 

103 n.d. 2.8 9.2 4.3 1.8 18 0.8 0.4 n.d. 1.2 0.1 0.9 n.d. 0.6 n.d. 1.6 (5.7)a 2.0 1.8 3.8 25 

104 n.d. 6.3 14 7.6 2.1 30 0.6 n.d. n.d. 0.6 0.2 1.7 n.d. 0.4 n.d. 2.3 (75)a 4.3 3.8 8.1 41 

105 n.d. n.d. 6.2 3.8 1.4 11 0.4 n.d. n.d. 0.4 n.d. 0.3 n.d. n.d. n.d. 0.3 (1.0)a n.d. n.d. 0.0 12 

106 n.d. 2.8 7.1 5.5 2.9 18 0.9 0.4 n.d. 1.4 n.d. 1.7 n.d. 0.1 n.d. 1.8 (12)a 4.1 1.9 6.0 27 

107 n.d. 3.0 14 11 6.7 35 6.7 1.5 n.d. 8.2 n.d. 1.4 n.d. n.d. n.d. 1.4 (22)a 7.3 3.1 10 55 

108b n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.0 0 
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Table S4-21: cont 
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109 n.d. 0.8 7.5 4.5 0.3 13 0.7 n.d. n.d. 0.7 n.d. n.d. n.d. 1.2 n.d. 1.2 (1.6)a 0.4 0.5 0.9 16 

110 n.d. 3.1 16 9.6 3.6 33 4.0 2.5 n.d. 6.5 n.d. 5.5 n.d. 1.9 n.d. 7.4 (18)a 6.9 2.3 9.2 56 

111b n.d. (34) a (77) (45) (20) (176) (1.2) n.d. n.d. (1.2) (5.6) (1.9) n.d. 

(4.9

) n.d. (12) (209) (15) (7.9) 

(23

) (212)

112 n.d. 1.4 10 6.9 4.8 23 4.3 n.d. n.d. 4.3 n.d. 1.2 n.d. n.d. n.d. 1.2 2.9 4.3 n.d. 4.3 33 

3 day parallel samples of all cruises 

113 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

n.a

. n.a. 

114 n.d. 15 6.5 3.0 1.0 25 1.8 2.0 0.1 3.8 2.8 2.6 n.d. 2.5 1.0 8.9 n.q. 2.5 2.0 4.6 42 

115 n.d. 13 32 8.1 2.4 55 2.2 2.8 0.1 5.1 3.5 4.1 n.d. 2.3 n.q. 9.9 2.2 0.6 1.4 4.2 75 

116 n.d. 23 41 8.3 2.4 75 6.0 3.7 0.2 9.9 4.5 4.5 0.1 3.1 2.2 14 n.q. 1.3 2.3 3.6 102 

117 n.d. 18 23 3.5 9.5 54 0.6 0.7 n.d. 1.4 1.1 1.1 0.3 0.5 n.d. 3.1 0.9 2.7 0.8 4.4 63 

118 n.d. 11 18 7.6 3.4 40 n.d. n.d. n.d. 0.0 1.3 3.0 0.5 2.1 n.d. 6.9 2.1 2.4 0.2 4.7 52 

119 n.d. 8.1 18 2.2 (14) 28 1.3 0.9 n.d. 2.2 1.8 1.5 1.7 1.9 n.d. 6.9 n.d. 0.9 n.d. 0.9 38 

120 n.d. 4.6 8.4 4.2 2.8 20 1.0 1.3 n.d. 2 n.d. 2.8 n.d. 2.8 n.d. 5.6 1.6 4.9 0.6 7.1 35 

121 n.d. 2.6 8.3 3.7 2.7 17 1.3 1.7 n.d. 3.0 2.6 2.4 n.d. 4.3 n.d. 9.3 n.d. 4.4 0.6 5.0 35 

122 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

123 n.d. 6.2 8.6 14 12 41 2.8 4.1 2.6 9.5 n.d. 0.8 1.9 1.1 n.d. 3.8 0.6 2.5 0.4 3.4 57 

124 n.d. 18 63 41 13 134 0.5 2.9 2.7 6.2 1.4 2.2 2.9 3.2 n.d. 9.8 2.8 1.4 0.7 4.9 155 

125 n.d. 11 42 8.2 4.1 66 0.1 0.6 0.2 0.9 1.4 2.1 0.4 0.8 n.d. 4.6 0.3 0.6 0.2 1.1 72 

126 n.d. 6.2 41 12 1.2 60 n.q. 1.0 0.9 1.9 1.8 1.8 n.d. 1.2 n.d. 4.7 0.9 1.5 0.4 2.8 69 

127 n.d. 6.3 39 10 2.1 58 n.q. 2.5 2.1 4.6 4.2 3.9 2.1 2.3 n.d. 12 1.3 1.4 n.d. 2.7 77 

128 n.d. 5.8 17 7.2 1.7 31 n.q. 2.0 1.3 3.4 1.6 1.8 6.0 n.d. n.d. 9.5 1.3 1.4 n.d. 2.7 47 

129 n.d. 5.1 13 8.2 2.1 29 n.q. 1.2 1.0 2.2 1.7 1.6 1.1 1.0 n.d. 5.4 1.1 0.8 0.3 2.2 38 

130 n.d. 8.8 29 12 4.7 55 n.q. 2.2 1.5 3.7 1.5 1.8 1.5 1.4 n.d. 6.2 1.8 1.6 0.4 3.8 69 

131 n.d. 4.1 19 5.1 13 42 n.d. 0.7 7.0 7.8 1.0 0.8 0.3 3.4 n.d. 5.5 2.4 1.4 n.d. 3.7 59 

132 n.d. 9.4 41 52 13 116 0.3 0.3 0.6 1.2 2.6 1.3 0.0 0.4 n.d. 4.4 0.9 0.7 n.d. 1.6 123 

133 n.d. 3.7 13 4.9 1.4 23 0.0 0.1 n.d. 0.1 1.1 0.6 0.0 0.1 n.d. 1.8 1.7 1.0 n.d. 2.7 27 

134 n.d. 13 103 36 15 167 0.7 6.8 2.0 9.5 1.5 1.5 n.q. 14 n.d. 17 6.9 5.0 1.3 13 207 

135 n.q. 7.9 11 3.1 1.8 24 1.7 0.3 0.1 2.1 0.7 1.0 n.d. 0.5 0.4 2.6 0.3 0.9 1.1 2.3 31 

136 n.d. 11 33 12 5.8 61 0.6 0.7 0.3 1.6 1.4 1.3 n.d. 0.6 n.d. 3.3 1.7 2.0 0.4 4.1 70 

137 n.d. 1.9 12 2.6 1.5 18 n.d. n.d. n.d. 0 0.3 2.7 n.d. 1.0 1.1 5.1 n.q. 1.1 n.d. 1.1 24 

138 n.d. 4.5 12 3.5 1.7 22 0.2 0.2 <0.1 0.4 0.7 0.7 n.q. 0.1 0.2 1.8 0.4 1.0 0.1 1.5 26 

139 0.1 4.1 14 2.7 0.9 21 0.3 0.2 0.1 0.6 0.5 0.8 n.d. 0.5 n.q. 1.7 0.2 0.5 0.2 0.9 25 

140 n.q. 14 12 2.6 2.1 31 0.6 0.2 0.1 0.9 0.7 0.4 n.d. 0.1 n.d. 1.2 0.3 0.8 1.0 2.0 35 

141 1.5 12 17 2.3 5.7 39 1.0 n.d. 0.1 1.1 n.q. 0.4 n.d. 0.1 n.q. 0.4 0.3 0.8 0.3 1.4 42 
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Table S4-22: Overview about particle-phase concentrations (c; pg m-3) determined by GC-MS. C max: 

maximum concentration, NH: northern hemisphere, SH: southern hemisphere, BG-NH marine 

background concentration in the northern hemisphere, BG-SH: marine background concentration in the 

southern hemisphere. 

   cmax
 (pg m-3) caverage (pg m-3) 

 all samples all samples NH SH BG-NH BG-SH 

  n=99 n=99 n=63 n=34 n=13 n=24 

4:2 FTOH 0.1 0.0 0.0 0.0 0.0 0.0 

6:2 FTOH 2.7 0.1 0.2 0.0 0.2 0.0 

8:2 FTOH 3.1 0.4 0.5 0.1 0.8 0.1 

10:2 FTOH 1.0 0.1 0.1 0.1 0.1 0.1 

12:2 FTOH 5.4 0.4 0.5 0.0 1.0 0.0 

Σ FTOH 8.1 0.9 1.3 0.3 2.0 0.2 

6:2 FTA 0.3 0.0 0.0 0.0 0.0 0.0 

8:2 FTA 0.0 0.0 0.0 0.0 0.0 0.0 

10:2 FTA 0.0 0.0 0.0 0.0 0.0 0.0 

Σ FTA 0.3 0.0 0.0 0.0 0.0 0.0 

MeFBSA 0.1 0.0 0.0 0.0 0.0 0.0 

MeFOSA 5.6 0.3 0.5 0.0 0.5 0.0 

Me2FOSA n.d. n.d. n.d. n.d. n.d. n.d. 

EtFOSA 3.1 0.2 0.3 0.0 0.2 0.0 

PFOSA 0.0 0.0 0.0 0.0 0.0 0.0 

Σ FASA 8.7 0.5 0.7 0.0 0.7 0.0 

MeFBSE 2.3 0.1 0.1 0.1 0.0 0.0 

MeFOSE 9.0 0.4 0.5 0.2 0.2 0.2 

EtFOSE 8.0 0.4 0.5 0.3 0.2 0.3 

Σ FASE 15.9 0.9 1.1 0.6 0.4 0.5 

total 43.3 3.0 4.3 0.8 3.1 0.7 
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Spatial Distribution of Selected PFC  

 
Figure S4-2: Spatial distribution of 6:2 FTOH gas-phase concentrations determined during several cruises 

in the Baltic Sea, the Atlantic and Southern Ocean. Note: Close-up of the Baltic Sea region is not to scale.  
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Figure S4-3: Spatial distribution of 8:2 FTOH gas-phase concentrations determined during several cruises 

in the Baltic Sea, the Atlantic and Southern Ocean. Note: Close-up of the Baltic Sea region is not to scale.  
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Figure S4-4: Spatial distribution of 10:2 FTOH gas-phase concentrations determined during several 

cruises in the Baltic Sea, the Atlantic and Southern Ocean. Note: Close-up of the Baltic Sea region is not to 

scale.  
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Figure S4-5: Spatial distribution of 12:2 FTOH gas-phase concentrations determined during several 

cruises in the Baltic Sea, the Atlantic and Southern Ocean. Note: Close-up of the Baltic Sea region is not to 

scale.  
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Figure S4-6: Spatial distribution of MeFOSA gas-phase concentrations determined during several cruises 

in the Baltic Sea, the Atlantic and Southern Ocean. Note: Close-up of the Baltic Sea region is not to scale.  
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Figure S4-7: Spatial distribution of MeFOSE gas-phase concentrations determined during several cruises 

in the Baltic Sea, the Atlantic and Southern Ocean. Note: Close-up of the Baltic Sea region is not to scale. 
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Latitudinal Distribution of Selected PFC  

 

6:2 FTOH 8:2 FTOH 

10:2 FTOH 12:2 FTOH 

MeFOSA MeFOSE 
Figure S4-8: Concentration of Selected PFC as function of latitude. Mind the different scale. 
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Gas-Phase PFC Composition  

 

Figure S4-9: PFC Composition (proportions in %) of gas-phase samples. Empty Bars are samples that 

were not analyzed or not considered because of contamination with respect to certain individual analytes.  



 

SUPPORTING INFORMATION  STUDY 4 

 

 224

Correlation Analysis 

 
Table S4-23: Correlation coefficients resulting from Pearson correlation of normal distributed PFC.               
a correlation is significant at the p<0.05 level. 
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6:2 FTOH 0.31a 0.24 a 0.11 0.33 a 0.27 a 0.04 0.44 a 0.46 a 0.08 0.36 a -0.06 0.27 a 

8:2 FTOH  0.89 a 0.61 a 0.09 0.75 a 0.75 a 0.43 a 0.40 a 0.52 a 0.57 a 0.08 0.44 a 

10:2 FTOH   0.74 a 0.09 0.73 a 0.71 a 0.44 a 0.48 a 0.67 a 0.69 a 0.30 a 0.56 a 

12:2 FTOH    0.38 a 0.69 a 0.64 a 0.40 a 0.45 a 0.81 a 0.64 a 0.20 a 0.57 a 

6:2 FTA     0.46 0.15 0.50 0.30 0.19 0.60 0.23 0.32 

8:2 FTA      0.92 a 0.54 a 0.47 a 0.63 a 0.58 a 0.14 0.67 a 

10:2 FTA       0.41 a 0.29 a 0.46 a 0.42 a 0.03 0.52 a 

MeFBSA        0.72 a 0.35 a 0.49 a 0.18 0.50 a 

MeFOSA         0.45 a 0.61 a 0.44 a 0.67 a 

EtFOSA          0.53 a 0.08 0.56 a 

MeFBSE           0.55 a 0.87 a 

MeFOSE                       0.61 a 
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This extraordinary barrier of ice, 

of probably more than a thousand 

feet in thickness, crushes the 

undulations of the waves, and 

disregards their violence: it is a 

mighty and wonderful object, far 

beyond anything we could have 

thought or conceived. 

(James Clark Ross, 1847) 

 

 

 






